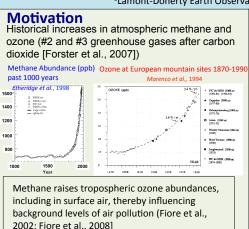
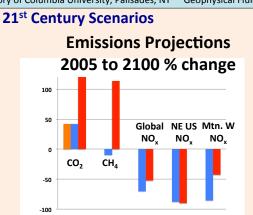
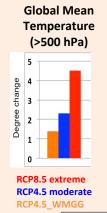
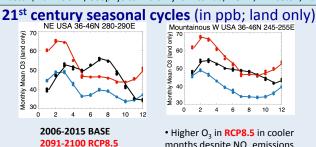


COLUMBIA UNIVERSITY Shifting seasonal cycles of surface ozone: the role of regional vs. Lamont-Doherty Earth Observatory global emission changes in Northeast & Mountainous West U.S.

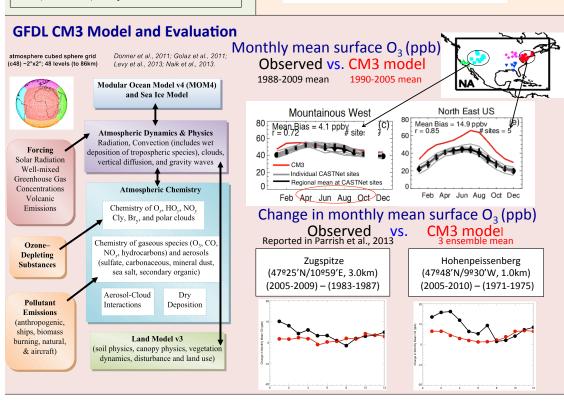





COLUMBIA UNIVERSITY | EARTH INSTITUTE

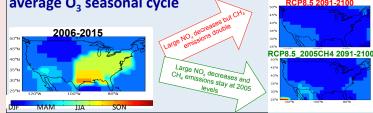

Olivia E. Clifton¹ (oclifton@ldeo.columbia.edu), A.M. Fiore¹, L.W. Horowitz², G. Correa¹, V. Naik³

¹Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY ²Geophysical Fluid Dynamics Lab, NOAA, Princeton, NJ ³UCAR/Geophysical Fluid Dynamics Lab, NOAA, Princeton, NJ


• Higher O₃ in RCP8.5 in cooler months despite NO, emissions

2091-2100 RCP4.5 Each simulation has three ensemble members

controls • NO_v reductions decrease O₃


in most months under RCP4.5

Change in monthly mean surface O₃ from 2006-2015 to 2091-2100 (in ppb; land only)

RCP4.5 shows a Doubling CH, by end of Northeast U.S. large impact from 21st century (RCP8.5 & NO. controls RCP8.5 2005CH4 rad) RCP4.5 WMGG contributes to higher shows little change increases in O₃ in in the seasonal winter & early spring cycle due to a offsets decreasing Jan Apr July Nov Jan Apr July Novwarming climate effect of NO, controls but all 3 ensemble on summer O2 (as members show determined by summer O3 comparing with a increases in NE US simulation with CH₄ Mountainous West U.S. set at 2005 levels for chemistry)

