Hemispheric Transport of Ozone Pollution:

Multi-model Assessment of the Role of Methane and the Conventional Ozone Precursors

F. Dentener, O. Wild, C. Cuvelier, M. Schultz, C. Textor, M. Schulz, C. Atherton,
D. Bergmann, I. Bey, G. Carmichael, R. Doherty, B. Duncan, G. Faluvegi, G.
Folberth, M. Garcia Vivanco, M. Gauss, S. Gong, D. Hauglustaine, P. Hess, T.
Holloway, L. Horowitz, I. Isaksen, D. Jacob, J. Jonson, J. Kaminski, T. Keating,
A. Lupu, I. MacKenzie, E. Marmer, V. Montanaro, R. Park, K. Pringle, J. Pyle, M.
Sanderson, S. Schroeder, D. Shindell, D. Stevenson, S. Szopa, R. Van
Dingenen, P. Wind, G. Wojcik, J. West, S. Wu, G. Zeng, A. Zuber

Quadrennial Ozone Symposium, Tromsø, Norway, July 2, 2008

Evidence of intercontinental transport at northern midlatitudes: 2001 Asian dust event

Dust leaving the Asian coast in April 2001

Reduced Visibility from Transpacific Transport of Asian Dust

Regional control efforts (even under optimistic scenarios) may be offset by increases in hemispheric ozone pollution

By 2030 under the CLE scenario (considers air pollution regulations), "the benefit of European emission control measures is... significantly counterbalanced by increasing global O₃ levels..." [Szopa et al., GRL, 2006]

U.S. grid-square days > 70 ppb

Convention on Long-Range Transboundary Air Pollution (CLRTAP)

Task Force on Hemispheric Transport of Air Pollution

Co-chairs: Terry Keating (U.S. EPA) and André Zuber (EC)

TF HTAP Mission: Develop a fuller understanding of hemispheric transport of air pollution to inform future negotiations under CLRTAP

www.htap.org for more information + 2007 TF HTAP Interim Report

Wide range in prior estimates of intercontinental surface ozone source-receptor (S-R) relationships

Estimates are from studies cited in TF HTAP [2007] Ch5, plus new work [*Holloway et al.*, 2008; *Duncan et al.*, 2008; *Lin et al.*, 2008] **Assessment hindered by different:**

- 1) methods
- 2) regional definitions
- 3) reported metrics
- 4) years (meteorology)
- \rightarrow Adopt a multi-model approach
- → Consistency across models
- \rightarrow Examine all seasons

Objective: Quantify & assess uncertainties in N. mid-latitude S-R relationships for ozone

BASE SIMULATION (21 models):

- \rightarrow horizontal resolution of 5 x5° or finer
- \rightarrow 2001 meteorology
- \rightarrow each group's best estimate for 2001 emissions
- → methane set to 1760 ppb

SENSITIVITY SIMULATIONS (13-18 models):

- → -20% regional anthrop. NO_x , CO, NMVOC emissions, individually + all together (=16 simulations)
- \rightarrow -20% global methane (to 1408 ppb)

Large inter-model range; multi-model mean generally captures observed monthly mean surface O₃

- → Many models blased low at altitude, high over EUS+Japan in summer
- → Good springtime/late fall simulation

North America as a receptor of ozone pollution: Annual mean foreign vs. domestic influences

North America as a receptor of ozone pollution: Seasonality of response to -20% foreign anthrop. emissions

A.M. Fiore

North America as a receptor of ozone pollution: Seasonality of response to -20% foreign anthrop. emissions

 \rightarrow large uncertainty in the estimated response of NA O₃

North America as a receptor of ozone pollution: Seasonality in "import sensitivity"

Estimates of S-R relationships for surface O₃ pollution

Annual mean surface O₃ decrease from -20% NOx+CO+NMVOC regional anthrop. emissions

Source region: **NA EU EU EA SA S** sum of 3 foreign regions

Surface O₃ response to decreases in foreign anthropogenic emissions of O₃ precursors

Monthly mean import sensitivities

Application of S-R relationships: Consistency between background O₃ trends and reported changes in Asian emissions?

1984

Fig 3.6 from TF HTAP [2007]

1988

1992

2000

A.M. Fiore

-- continental-avg vs. "west coast" obs

Addressing Uncertainties: Quantifying model differences due to transport (vs. emissions and chemistry)

Example: SA \rightarrow EA for CO

POSTER by Martin Schultz et al.: Passive tracer simulations in the context of the **TF HTAP multi-model assessment activity**

Surface ozone response to -20% global [CH₄]: similar decrease over all regions

Estimate O₃ response to -20% regional CH₄ anthrop. emissions to compare with O₃ response to NOx+NMVOC+CO:

- (1) -20% global [CH₄] \approx -25% global anthrop. CH₄ emissions
- (2) Anthrop. CH₄ emis. inventory [Olivier et al., 2005] for regional emissions
- (3) Scale O₃ response (linear with anthrop. CH₄ emissions [Fiore et al., 2008])

Tropospheric O₃ responds approximately linearly to anthropogenic CH₄ emission changes across models

Anthropogenic CH₄ contributes ~50 Tg (~15%) to tropospheric O₃ burden ~5 ppbv to surface O₃

Fiore et al., JGR, 2008

Comparable annual mean surface O_3 response to -20% foreign anthropogenic emissions of CH_4 vs. NO_x +NMVOC+CO

Sum of annual mean ozone decreases from 20% reductions of anthropogenic emissions in the 3 foreign regions

(Uses CH_4 simulation + anthrop. CH_4 emission inventory [*Olivier et al.*, 2005] to estimate O_3 response to -20% regional anthrop. CH_4 emissions) **Conclusions: Hemispheric Transport of O₃** www.htap.org for more information + 2007 TF HTAP Interim Report

- Benchmark for future: Robust estimates + key areas of uncertainty
- > "Import Sensitivities" (ΔO_3 from anthrop. emis. in the 3 foreign vs. domestic regions): 0.5-1.1 during month of max response to foreign emis; 0.2-0.3 during month of max response to domestic emissions
- > Our estimates + emis. trends \rightarrow low end of observed surface O₃ trends
- Comparable O₃ decrease from reducing equivalent % of CH₄ and NOx+NMVOC+CO over foreign regions (0.4-0.6 ppb for 20% reductions)

ADDITIONAL QUESTIONS (TF HTAP work ongoing for 2010 report):
How well do models capture the relevant processes (e.g. export, chemical evolution, transport, mixing)?
Can we scale our estimated O₃ responses to other combinations and magnitudes of emission changes?

What is the contribution of hemispheric transport to metrics relevant to attainment of O_3 air quality standards?