

Measured and modeled PAN at N. mid-latitude mountain sites: Insights into hemispheric ozone transport?

A. M. Fiore¹ (<u>Arlene.Fiore@noaa.gov</u>), D. Jaffe^{*2}, E. Fischer², J. Staehelin³, S. Pandey³, M. Steinbacher⁴, C. Zellweger⁴, Y. Fang¹, L. W. Horowitz¹, and the TF HTAP Modeling Team

* Presenting author

¹Geophysical Fluid Dynamics Lab, NOAA, Princeton, NJ, USA ²Atmospheric Sciences, University of Washington, Seattle WA, USA

³Institute for Atmospheric Climate Science, ETH Zurich, CH-8092, Zurich, Switzerland ⁴Laboratory for Air Pollution/Environmental Technology, Empa, Duebendorf, Switzerland

1. Introduction

Multi-model studies supporting the Task Force on Hemispheric Transport of Air Pollution (TF HTAP) show a wide range (often more than a factor of 2) in individual model estimates for hemispheric transport of O₃ and precursors [e.g., TF HTAP, 2007, 2010; Sanderson et al., 2008; Shindell et al., 2008; Casper Anenberg et al., 2009; Fiore et al., 2009; Jonson et al., 2009; Reidmiller et al., 2009; Wu et al., 2009; Lin et al., 2010]. Comparisons with ozonesondes and surface observations are complicated by the large O_3 background.

Evaluation with free tropospheric PAN and NOy measurements may be useful:

- PAN decomposition enhances O_3 far from source regions, as observed in Asian **plumes** [e.g., Moxim et al., 1996; Heald et al., 2003; Hudman et al., 2004; Zhang et al., 2008; Fischer et al., 2010] • PAN formation differs across models [e.g., von Kuhlmann et al., 2004; Emmerson and Evans, 2009]
- The signal of anthropogenic emission perturbations should be larger for PAN than for O_3 [Jaffe et al., 2007]

2. HTAP simulations and mountain sites

BASE SIMULATION (21 models): horizontal resolution of 5°x5° or finer; 2001 meteorology; $CH_4 = 1760$ ppb; each group's best estimate for 2001 anthropogenic & natural emissions SENSITIVITY SIMULATIONS (13-18 models): -20% regional anthrop. NO_x, CO, NMVOC emissions, individually + all three O₃ precursors (NOx+CO+NMVOC) = 16 simulations MONTHLY MEAN 3D model distributions of PAN, O_3 , NO_2 , HNO_3 archived for analysis.

Models are sampled at the mountain sites shown in red.

3. How (and why) do models vary in estimates of intercontinental influence?

Europe (EU)

East Asia (EA)

08

N. America (NA) ----

seasonally; "domestic" influence typically strongest in summer

• with other processes (meteorology, other emissions) not considered here

Model fraction of PAN at mountain sites from regional anthrop. emissions

4 example HTAP models (one model per column)

We previously showed that individual model estimates of the NAO₃ response to EU anthropogenic NMVOC (AVOC) emissions correlates strongly with the EU AVOC inventories used in the models (see figure below from Fiore et al., 2009). In contrast, we do not find a similar relationship for exported O_3 with regional anthropogenic NO_x emissions since they are similar across the models (<10% standard deviation). We extend this analysis to explore model variability in intercontinental influence on PAN (figures to the right).

4. Measured vs. Modeled PAN at mountain sites

Year-to-year and seasonal changes in sources and meteorology contribute to variability in measured PAN abundances. Differences in model representations of these processes, and their ability to resolve transport to the mountain site, leads to a large spread in simulated PAN at the mountain sites.

5. Impacts on PAN from isoprene and lightning

In addition to anthropogenic sources considered in the HTAP study, isoprene [e.g., von Kuhlmann et al, 2004; Pfister et al., 2008] and lightning NO_x [e.g., Labrador et al., 2005] influence PAN, and they contribute to model

Lack of 2001 obs. (year of model data) precludes definitive conclusions.

differences in tropospheric O₃ [e.g., Stevenson et al., 2006; Wild et al., 2007, Wu et al., 2007].

Mt. Bachelor,

0.6

With the MOZART-2 model [Horowitz et al., 2003], we place the PAN response to the anthropogenic emission perturbations in the HTAP study in the context of interannual variations of isoprene emissions over NA (+/- 20-30%) [*Palmer et al.*, 2006].

The influence of NA isoprene on PAN at Jungfraujoch is equivalent to that from EU and NA anthrop. emissions in summer

With the MOZART-4 model [Emmons et al., 2010], we examine the sensitivity of PAN to changes in anthropogenic NO_x (23% decrease over the USA from 1999 to 2004), and to uncertainties in lightning NO_x which are quite large [Fang et al., 2010]. For this simulation the northern mid-latitude lightning source over continents is increased by a factor of 10 (a similar absolute perturbation over NA as from anthropogenic NO_x). The model vertical profile adjusts to increase upper tropospheric NO_x [Fang et al., 2010], which is closer to observations over North America [Pickering et al., 2006; Ott et al., 2010].

Cross-model differences in lightning NO_x may contribute not only to variations in total PAN, but also to hemispheric O₃ transport (by influencing **PAN** and the downwind O_3 production efficiency [Fang *et al.*, 2010]).

PAN/NO_v in the free troposphere is much more sensitive to changes in lightning NO_x (LowLght vs. HighLght) than to changes of similar magnitude in anthropogenic NO_x (NOx99 vs. NOx04)

Ratio of mean PAN and NO_v during INTEX-NA over the eastern U.S. during summer 2004

ACKNOWLEDGEMENTS: We thank Brigitte Buchmann, Ron Cohen, Jennifer G. Murphy, Ludwig Ries, Hiroshi Tanimoto, Maria Val Martin for helping to provide PAN and NO_v measurements at the mountain sites.

6. Summary: Consistent multi-year measurements of free tropospheric PAN and NO_y are sparse. Given the large spread in model simulated PAN and source attribution, observations at mountain sites are expected to provide important information on the intercontinental transport of reactive nitrogen.

REFERENCES

Casper-Anenberg S., et al. (2009), Intercontinental impacts of ozone pollution on human mortality, Environ. Sci. and Technol., 43(17), 6482-6487, DOI: 10.1021/es900518z. Emmerson, K. M. and Evans, M. J. (2009), Comparison of tropospheric gas-phase chemistry schemes for use within global models, Atmos. Chem. Phys., 9, 1831-1845, doi:10.5194/acp-9-1831-2009. Emmons, L.K., et al. (2010), Description and evaluation of the Model for Ozone and Related chemical Tracers, version 4 (MOZART-4), Geosci. Model Dev., 3, 43-67, doi:10.5194/gmd-3-43-2010. Fang, Y., et al. (2010), Sensitivity of the NOy budget over the United States to anthropogenic and lightning NOx in summer, J. Geophys. Res., in press. Fiore, A. M., et al. (2009), Multimodel estimates of intercontinental source-receptor relationships for ozone pollution, J. Geophys. Res., 114, D04301, doi:10.1029/2008JD010816. Fischer, E. V., et al. (2010), Meteorological controls on observed peroxyacetyl nitrate at Mount Bachelor during the spring of 2008, J. Geophys. Res., 115, D03302, doi:10.1029/2009JD012776. Jonson, J. E., et al. (2009), A multi-model analysis of vertical ozone profiles, Atmos. Chem. Phys. Discuss., 9, 26095-26142. Jaffe, D.A., et al. (2007), Can we detect an Influence over North America From Increasing Asian NOx Emissions? Eos Trans, AGU, 88(52), Fall Meet. Suppl., Abstract A51E-04 Heald, C. L., et al (2003), Asian outflow and transpacific transport of carbon monoxide and ozone pollution: An integrated satellite, aircraft, and model perspective, J. Geophys. Res., 108 (D24), 4804-4820. Horowitz, L. W., et al. (2003), A global simulation of tropospheric ozone and related tracers: Description and evaluation of MOZART, version 2, J. Geophys. Res., 108(D24), 4784. Hudman, R. C., et al. (2004), Ozone production in transpacific Asian pollution plumes and implications for ozone air quality in California, J. Geophys. Res., 109, D23S10, doi:10.1029/2004JD004974. Labrador, L.J., et al. (2005), The effects of lightning-produced NO_x and its vertical distribution on atmospheric chemistry: sensitivity simulations with MATCH-MPIC, Atmos. Chem. Phys., 5, 1815-1834. Lin, M., et al. (2010), Quantifying pollution inflow and outflow over East Asia in spring with regional and global models, Atmos. Chem. Phys., 10, 4221-4239. Moxim, W. J., et al. (1996), Simulated global tropospheric PAN: Its transport and impact on NOx, J. Geophys. Res., 101(D7), 12,621–12,638, doi:10.1029/96JD00338 Ott, L. E., et al. (2010), Production of lightning NOx and its vertical distribution calculated from three dimensional cloud-scale chemical transport model simulations, J. Geophys. Res., 115, D04301. Palmer, P. I., et al. (2006), Quantifying the seasonal and interannual variability of North American isoprene emissions using satellite observations of the formaldehyde column, J. Geophys. Res., 111, D12315. Pickering, K.E., et al. (2006), Using Results from Cloud-resolving Models to Improve Lightning NO_x Parameterizations for Global Chemical Transport and Climate Models, AGU 2006 Joint Assembly. Sanderson, M. G., et al. (2008), A multi-model study of the hemispheric transport and deposition of oxidised nitrogen, Geophys. Res. Lett., 35, L17815, doi:10.1029/2008GL035389. Stevenson, D., et al. (2006), Multi-model ensemble simulations of present-day and near future tropospheric ozone, J. Geophys. Res., 111, D08301, doi:10.1029/2005JD006338. Task Force on Hemispheric Transport of Air Pollution (2007), Hemispheric transport of air pollution 2007 interim report, eds., T. J. Keating and A. Zuber, Air Pollut. Stud. 16, U.N. Econ. Comm. for Europe, New York. Reidmiller, D. R., et al. (2009), The influence of foreign vs. North American emissions on surface ozone in the US, Atmos. Chem. Phys., 9, 5027-5042, doi:10.5194/acp-9-5027-2009. Shindell, D. T., et al. (2008), A multi-model assessment of pollution transport to the Arctic, Atmos. Chem. Phys., 8, 5353-5372. von Kuhlmann, R., et al. (2004), Sensitivities in global scale modeling of isoprene, Atmos. Chem. Phys., 4, 1–17, http://www.atmos-chem-phys.net/4/1/2004/. Wild, O. (2007), Modelling the global tropospheric ozone budget: exploring the variability in current model, Atmos. Chem. Phys., 7, 2643-2660. Wu, S., et al. (2007), Why are there large differences between models in global budgets of tropospheric ozone?, J. Geophys. Res., 112, D05302, doi:10.1029/2006JD007801 Zhang, L., et al. (2008), Transpacific transport of ozone pollution and the effect of recent Asian emission increases on air quality in North America: an integrated analysis using satellite, aircraft, ozonesonde, and surface observations, Atmos. Chem. Phys., 8, 6117-6136, http://www.atmos-chem-phys.net/8/6117/2008/