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[1] Quantifying how global warming impacts the spatiotemporal distribution of
precipitation represents a key scientific challenge with profound implications for human
welfare. Utilizing monthly precipitation data from Coupled Model Intercomparison Project
(CMIP3) climate change simulations, the results here show that the occurrence of very dry
(<0.5 mm/day) and very wet (>10 mm/day) months comprises a straightforward, robust
metric of anthropogenic warming on tropical land region rainfall. In particular, differencing
tropics-wide precipitation frequency histograms for 25-year periods over the late 21st and
20th centuries shows increased late-21st-century occurrence of histogram extremes both in
the model ensemble and across individual models. Mechanistically, such differences are
consistent with the view of enhanced tropical precipitation spatial gradients. Similar
diagnostics are calculated for two 15-year subperiods over 1979–2008 for the CMIP3
models and three observational precipitation products to assess whether the signature of
late-21st-century warming has already emerged in response to recent warming. While both
the observations and CMIP3 ensemble-mean hint at similar amplification in the warmer
(1994–2008) subinterval, the changes are not robust, as substantial differences are evident
among the observational products and the intraensemble spread is large. Comparing
histograms computed from the warmest and coolest years of the observational period
further demonstrates effects of internal variability, notably the El Niño/Southern
Oscillation, which appear to oppose the impact of quasi-uniform anthropogenic warming
on the wet tail of the monthly precipitation distribution. These results identify the increase
of very dry and wet occurrences in monthly precipitation as a potential signature of
anthropogenic global warming but also highlight the continuing dominance of internal
climate variability on even bulk measures of tropical rainfall.
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1. Introduction

[2] The spatial and temporal distribution of precipitation
has a strong influence on human systems. However, the
extent to which the distribution of precipitation may change
in a warming climate is currently poorly constrained, espe-
cially when considering the wet and dry tails of the

precipitation distribution [Intergovernmental Panel on
Climate Change, 2007]. Indeed, the complex interplay of
dynamics and thermodynamics controlling extreme precipi-
tation makes it unlikely that whatever changes do occur will
manifest as a simple shift in the precipitation probability
density function (pdf) [Emori and Brown, 2005]. Moreover,
a large range of time scales must be considered, especially
given the inherent asymmetry of hydroclimatic extremes,
e.g., a flood can follow a single rainfall event, while droughts
occur over longer time scales.
[3] A number of studies [Emori and Brown, 2005; Held

and Soden, 2006; O’Gorman and Schneider, 2009; Allan
et al., 2010; Romps, 2011] have developed theoretical
guidance for how global warming may affect mean and
extreme precipitation behavior. A prevailing view is that the
regional redistribution of precipitation, or more precisely
precipitation minus evaporation, in response to a warmer
troposphere can be understood in terms of wet areas or
periods becoming wetter and dry areas or periods becoming
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drier [Held and Soden, 2006], although the multiscale nature
of precipitation complicates this interpretation. This theo-
retical argument may be loosely rephrased as predicting that
mean precipitation should span a wider distribution, with
more extremely dry and wet occurrences. On sufficiently
short time scales, extreme rainfall events are also expected to
intensify from application of Clausius-Clapeyron (CC)
scaling arguments, which predict exponentially increasing
water vapor in response to increasing temperature, albeit
with deviations away from theoretical scaling because of
changes in cloud microphysics, entrainment, and convective
velocity profiles [O’Gorman and Schneider, 2009]. At the
same time, the upped-ante mechanism [Neelin et al., 2003]
predicts that areas that are now marginal for deep convection
will become dry in a warmer world, given that a warmer
troposphere requires increased moisture to meet a threshold
for deep convective occurrence [Neelin et al., 2008] and
regions of strong dry air inflow will be unable to achieve the
higher threshold. This may help to explain why the fre-
quency of dry days appears to increase with warming
[Giorgi et al., 2011].
[4] In summary, there are theoretical reasons to expect that

dry and wet “extremes” will be more common across a range
of timescales, from daily events to the annual mean clima-
tology, and it is reasonable to expect that similar changes
could be expected at the intermediate, monthly time scales.
This study focuses on such intermediate timescales: we are
motivated here by the idea that changes in the tails of the
frequency distribution of monthly rainfall in the global tro-
pics might be more robust than regional changes. Indeed,

while some locations exhibit consistency in projected future
precipitation change across climate models [Solomon et al.,
2009] there is typically large intermodel divergence of
rainfall changes on smaller spatial scales [Neelin et al.,
2006]. Moreover, from a climate impacts and assessment
perspective, knowledge of how monthly rainfall extremes
might change is clearly important for applications such as
drought and crop-yield forecasting and water resource
management.
[5] Here we examine output from 24 global climate models

(archived in Phase 3 of the Coupled Model Intercomparison
Project (CMIP3) [Meehl et al., 2007]) to quantify changes in
the simulated statistics of monthly precipitation that occur in
response to anthropogenic global warming (data and meth-
ods are given in Section 2). As shown in Section 3, we find a
robust projection of increased very dry and very wet monthly
counts. We further interpret the histogram changes in terms
of a simple model [Lintner and Neelin, 2007, 2008, 2009]
describing the transition from weak to strong convection
applicable over tropical continents. To compare the strength
of the change in the histogram to the noise of internal vari-
ability, in Section 4 we perform the same analysis for the
same models, as well as the available observations, for the
last 30 years. The effect of ENSO, in contrast to the effect
of more uniform warming, is explored in more detail in
Section 5. Section 6 discusses the implications of our
results for assessing signatures of warming-related impacts
on precipitation.

2. Models, Data Sets, and Methodology

[6] We analyze 20th and 21st century A1B scenario pre-
cipitation data simulated by 24 global climate models
archived in the CMIP3 database and featured in the Fourth
Assessment Report (AR4) of the Intergovernmental Panel on
Climate Change (IPCC) [Meehl et al., 2007]. The models
and simulations are discussed at length in the 2007 IPCC
report and the extensive peer-reviewed literature referenced
therein. The particular models analyzed are identical to those
analyzed in Biasutti et al. [2009] and are labeled similarly
(see model abbreviations in Figure 2).
[7] We also analyze the gridded monthly mean rainfall

data from three precipitation data sets for the 30-year period
spanning January 1979–December 2008: (1) the January
2010 release of the NOAA Center for Climate Prediction
(CPC) Merged Analysis of Precipitation (CMAP) [Xie and
Arkin, 1997] product; (2) the NASA Global Climatology
Precipitation Project (GPCP) [Adler et al., 2003; Huffman
et al., 2009] version 2.1 product; and (3) the University
of East Anglia (UEA) Climate Research Unit (CRU)
[Mitchell and Jones, 2005] TS3p1 product. (For simplicity,
we use the notation Year1:Year2 to denote the period of
January of Year1 through December of Year2.) The
2.5! " 2.5! CMAP and GPCP products each combine sat-
ellite and rain gauge measurements from a variety of sources;
the 0.5! " 0.5! CRU product, regridded here to 2.5! " 2.5!

by simple area-weighting of available grid points, comprises
gauge measurements only. Each data set was downloaded
from the International Research Institute/Lamont-Doherty
Earth Observatory data library (http://iridl.ldeo.columbia.
edu/index.html).

Figure 1. Ensemble-mean CMIP3 precipitation histograms
and their difference between the late 20th and 21st centuries.
Shown here are normalized histograms for the ensemble-mean
of 24 CMIP3 models for tropical land region (30 S-30 N)
monthly mean precipitation counts for the periods January
1975 to December 1999 (1975:1999; blue squares) and Janu-
ary 2075 to December 2099 (2075:2099; red squares), rela-
tive to the logarithmic vertical axis on the left, as well as
the difference histogram (dark gray bars), relative to the ver-
tical axis on the right). The normalization employed here (and
elsewhere, unless otherwise stated) represents the sum over
the total histogram. The horizontal dashed lines depict the
#1s levels for the intraensemble variations.
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[8] Our focus here is restricted to land grid points, given
the obvious implications of land region precipitation for
human impacts. For the purposes of comparison to obser-
vations, there are also data considerations, such as the
availability of rain gauge measurements and concerns about
the fidelity of satellite-derived trends over the ocean given
that both IR and microwave satellite data infer precipitation
from cloud characteristics rather than directly measuring
rainfall [Adler et al., 2000]. Well-known model deficiencies
that may impact the high-frequency statistics (e.g., lack of

mesoscale organization) likely affect the monthly statistics,
but we expect monthly values to be less sensitive than daily
values.

3. CMIP3 Results for Late-21st Minus Late-20th
Centuries

[9] Figure 1 depicts normalized histograms of tropical
land region monthly mean precipitation rates for the
ensemble mean of the 24 CMIP3 models for the late 20th

Figure 2. Ends of the 20th and 21st century precipitation histograms for the 24 CMIP3 models. Depicted
here for each of the 24 models are monthly mean tropical land region precipitation histograms for the per-
iods 1975:1999 (blue squares) and 2075:2099 periods (red squares, respectively; relative to the logarith-
mic vertical axis on the left), as well as the difference histogram (dark gray bars; relative to the vertical
axis on the right). Note that the values in the rightmost bins include all counts above 20 mm day$1.
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(1975:1999; blue squares) and late 21st (2075:2099; red
squares) centuries. Figure 2 depicts similar histograms for
each of the 24 models; note that the values plotted in right-
most bins in Figure 2 encompass all counts above
20 mm day$1. Consistent with the observed monthly tropi-
cal precipitation distribution (see Figure 5 below), the
model-simulated histograms exhibit highly non-Gaussian
statistics, with prominent positive skewness and kurtosis
(leptokurtosis). In the late-20th-period, roughly one third
of all tropical land region monthly means fall into the
0–0.5 mm day$1 bin. For bins above %8 mm day$1, the
counts decrease approximately exponentially, i.e., linearly
according to the logarithmic scale used in Figure 1. For daily
precipitation data, prior studies have fitted histograms with
gamma distributions [Husak et al., 2007]; however, it is not
obvious how monthly distributions should relate to such
distributions.
[10] For our change metric, we subtract the late-20th

century histograms from the late-21st century histograms
(gray bars in Figures 1 and 2). Differencing the histograms
shows a clear increase in ensemble-mean counts in the lowest
bin (0–0.5 mm day$1) as well as in those bins for which
precipitation exceeds%7 mm day$1, although the 1s spread,
as shown by the horizontal lines in Figure 1, excludes zero
only for precipitation bins above %12 mm day$1. Amplifi-
cation of both histogram extremes implies increasing inci-
dence of both very wet and very dry monthly mean rainfall
rates under late 21st century conditions. Many of the indi-
vidual models manifest qualitatively similar histogram dif-
ferences (Figure 2), although there are notable intermodal
differences in the quantitative characteristics such as the
precipitation value at which positive difference tails
emerge on the high side of the precipitation range. Sev-
eral of the models also have negative differences in the
0–0.5 mm day$1 bin.
[11] The differences in the precipitation histogram over

tropical land areas between the late-20th and late-21st cen-
turies broadly reflect intensification of the “atmospheric
branch” of the tropical hydrologic cycle through sharpening
of the contrast between wet and dry conditions [Held and
Soden, 2006; Allan et al., 2010]. While this interpretation
is not new, we attempt here to provide a semiquantitative
assessment of its applicability to the monthly precipitation
histograms. To do so, we note that Lintner and Neelin [2007,

2008, 2009] describe conditions occurring over tropical
continents (i.e., low-level inflow from a nonconvecting
ocean region) for which an increase in temperature increases
both the areal extent of non-precipitating conditions as well
as the intensity of precipitation within strongly convecting
regions. (This model unifies the upped ante and rich-get-
richer mechanisms of Neelin et al. [2003].) In an aggregate
sense, we suggest that this model accounts for the increasing
incidence of wet and dry months in a warming troposphere.
[12] Under the assumption of a transition to strong con-

vection occurring above a (temperature-dependent) moisture
threshold, qc [Peters and Neelin, 2006], Lintner and Neelin
[2008] show that the maximum “convective core region”
precipitation rate Pmax is given by:

Pmax ≈
MqcRclear þMcE
Mc þ fcrfMqc

; q > qc ð1Þ

where Rclear is the clear-sky radiative forcing; E evaporation;
fcrf net cloud-radiative feedback factor (related to the fraction
of convective cloudiness); Mqc = Mqpqc is the moisture
stratification with Mqp representing the change in moisture
with pressure; and Mc is the convecting region gross moist
stability. On the other hand, the transition point between
nonconvecting and convecting conditions, xc, defined along
an inflow coordinate x relative to an inflow point (x = 0), is:

xc ¼ l$1ln
qc
q0

! "
ð2Þ

where the length-scale l$1 is related to the ratio of moist-
ening by flow convergence (or evaporation) and drying by
advection and q0 is the initial (“inflow”) moisture value. In
the context of the distribution changes under increasing
tropospheric temperature, equation (1) suggests increasing
Pmax by increasing qc, implying a shift of the high-side of
the histogram to the right; while equation (2) suggests
increasing xc, implying an increase in the occupation of the
lowest bin.
[13] Figure 3 provides a schematic summary of the chan-

ges implied by equations (1) and (2) for an idealized tropical
continent and the associated frequency histogram. In the
base state (Figure 3, left), an idealized tropical continent is
depicted with a single interior convecting region. If the

Figure 3. The impact of tropospheric warming on tropical precipitation histograms from the convective
margins prototype of Lintner and Neelin [2007]. The spatial distribution of precipitation for an idealized
continent under (left) normal and (middle) warmed conditions, respectively. (right) The histograms indi-
cate how the bimodal count distribution changes between the normal (blue) and warmed (red) states.
See text for discussion.
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continent is characterized by large-scale convergence, the
location of edge of the convection zone (i.e., xc) is set by
conditions along a local inflow path from a moisture source
(e.g., the adjacent ocean) as in equation (2). As the continent
warms (Figure 3, middle), qc increases, which by equation (2)
results in a larger value for xc for all other factors equal; thus
the areal extent of the convecting region decreases. At the
same time, according to equation (1), precipitation within the
convecting region increases. The net change to the histogram
(Figure 3, right) reflects expansion of the dry margin, so
increasing counts in the lowest bin, and increasing precipi-
tation within the convection zone, so increasing counts in the
highest bin.
[14] Figure 4 depicts a map view of the late-21st minus

late-20th century differences for the CMIP3 models. To
reduce the noise inherent at the grid point scale, Figure 4
depicts only those grid point changes satisfying a threshold
condition considering both the size of the count change at
each grid point as well as the number of models for
which the sign of the count difference is consistent. That
is, for a grid point to be highlighted, the late 21st minus
late 20th century count difference within a given model
must be ≥3 (≤$3), in which case that model is assigned
a score of 1 ($1). The sum over these scores for all 24
models is then computed: the grid points displayed in
Figure 4 are those for which score sum is either greater
than 12 for an increase to be displayed or less than $12
for a decrease to be displayed. We note that this thresh-
old condition is somewhat arbitrary, although the results
shown are insensitive to modest variations in the mini-
mum count difference and score sum. Furthermore, a
more sophisticated approach accounting for differences in
the mean values within each bin may be more appropri-
ate but is not necessary for our purposes here.
[15] Most of the dry count increases (brown circles) occur in

regions where rainfall changes are negative. Such regions—
e.g., southeastern tropical South America, southern Africa,
and western Australia—are climatologically dry under current
climate. Almost without exception, the areas exhibiting

increases in dry counts do not exhibit corresponding decreases
in wet count. Indeed, decreases in wet counts that pass our
criteria are almost entirely absent from tropical land areas
(with the exception of northernmost South America). Further,
although dry count increases do occur outside of those areas in
which rainfall changes are negative, wet count increases (blue
squares) occur exclusively in regions where rainfall changes
are positive (southeast Asia, east Africa). In addition, some
areas in which rainfall changes are positive also exhibit dry
count decreases (blue circles) that pass our criteria. These are
concentrated primarily in eastern Africa, and mostly corre-
spond with areas that also exhibit wet count increases.
[16] While the spatial distribution of count differences

evident in Figure 4 is broadly consistent with the simplistic
model outlined above, it is clear that regional-scale effects
are substantial. At some level, this doubtlessly reflects the
small sample sizes at the grid point scale. More significantly,
the simplistic model is based on thermodynamical under-
standing of the controls on behavior between distinct mean
hydroclimatic regimes, namely nonconvecting and convect-
ing regions. In reality, transitions between such regimes are
not abrupt and may be controlled by factors not accounted
for in the model, e.g., dynamical changes associated with the
feedback between a change in convection and circulation or
land-atmosphere coupling. Moreover, the simplistic model
assumes a steady state equilibrium, while extreme events—
with events here understood as anomalous monthly mean
precipitation values—are frequently linked to particular
episodic conditions. However, we suggest that the model
nonetheless provides a useful thermodynamic framework for
interpreting changes in the likelihood of episodic monthly
mean extreme behavior at different mean hydroclimatic
conditions.

4. Late 20th Century Observations and CMIP3
Models

[17] Given the response of the precipitation distribution to
the elevated radiative forcing projected for the late-21st

Figure 4. Map view of the changes in the precipitation distribution extremes for the late 21st – late 20th
century in the CMIP3 models. Depicted are grid points contributing to the 2075:2099–1975:1999 CMIP3
model differences in the either the 0–0.5 mm day$1 bin (“dry counts”; circles) or the sum of all bins for
which precipitation >6 mm day$1 (“wet counts”; squares). Also shown is the ensemble-mean 4 mm day$1

precipitation contour as a proxy for regions of strong tropical convection (thick black line) and the sign of
the ensemble-mean precipitation 2075:2099–1975:1999 difference, with light (dark) shading showing
where the precipitation difference is positive (negative).
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century, it is reasonable to ask whether the distribution
amplification seen for the late-21st minus late-20th century
histograms is already emerging in response to the global
warming that has occurred over recent decades. Given that
the tropical troposphere has warmed by %0.1 K/decade over
the past 30 years [Santer et al., 2005], we calculate precip-
itation histograms and their differences for the two 15-year
periods covering 1979:1993 and 1994:2008 from the
CMAP, GPCP, and CRU data sets (Figure 5). Here we have
used bootstrap sampling with replacement to generate 1000
sample histogram differences, from which #1s levels for are
estimated. As with the simulated data, in each of observa-
tional data sets, roughly 35% of all tropical land region
monthly means fall into the bin between 0 and 0.5 mm day$1.
There is also a log linear regime at high precipitation
(>%8 mm day$1), although the slopes differ slightly among
the three data sets.
[18] When comparing the later observational period

(1994:2008) with the earlier observational period (1979:1993),
the CMAP data set, and (to a lesser extent) the GPCP data
set, show increases both in the very high monthly precipi-
tation bins (>6 mm day$1) and in the lowest precipitation
bin (<0.5 mm day$1) between 1979:1993 and 1994:2008
(Figure 5, gray bars). These observed differences in the
monthly scale distribution are consistent with the analysis of
binned annual-mean precipitation trends over recent decades
by Lau and Wu [2007], which showed decreasing annual-
means over the lowest 5th percentile and increasing annual-
means over highest 10th percentile during recent decades.
Furthermore, the behavior of the CMAP and GPCP differ-
ence histograms is broadly consistent with the changes
simulated by the CMIP3 ensemble for the late-21st minus
late-20th centuries (Figure 1), and for the two periods of the
late-20th century (1979:1993 and 1994:2008) (Figure 6). For
the recent decades in the CMIP3 models, it is important to
note that although the ensemble-mean signal does manifest
the pattern of positive/negative/positive differences for the
lowest/intermediate/and high precipitation bins, the signal
lies within the intraensemble spread across the range of
precipitation values shown. Examination of the individual
model histograms (Figure 7) suggests that only half exhibit
differences that are qualitatively consistent with the ensem-
ble-mean, and even then, the quantitative details differ con-
siderably across the models.
[19] The difference histogram for the CRU data set

(Figure 5c) is somewhat at odds with the CMAP and GPCP

difference histograms. While the CRU data exhibit increased
counts in the high precipitation bins during 1994:2008, the
difference for the lowest bin is negative, indicating decreas-
ing counts of the lowest monthly mean precipitation values
during the later period. This disagreement for the lowest bin
counts suggests caution in assessing the robustness of the
observational results.
[20] In interpreting these results, we caution that the

observational data sets have known strengths and weak-
nesses and further exhibit systematic differences in data
coverage. While land region precipitation estimates in
CMAP and GPCP show widespread agreement, substantial
regional discrepancies, such as over equatorial West Africa,
do occur [Yin et al., 2004]. Since the CRU data comprise
rain gauges only, these may substantially undersample the
tropics where coverage is sparse. For example, the CMAP
data suggest increasing later period dry counts over eastern
tropical South America (see Figure 4 and associated dis-
cussion), but CRU has relatively sparse coverage in that
region. On the other hand, CRU shows a large increase in
dry counts over Africa (not shown), although station data
there are generally considered poor. A further caveat is that
the spatiotemporal heterogeneity of the rain gauge data, as

Figure 5. Observed precipitation histograms and their differences over the period 1979–2008. As in
Figure 1 but for 15 year subintervals 1979:1993 and 1994:2008 for the (a) CMAP; (b) GPCP; and (c)
CRU precipitation data sets. Here the dashed lines depict the #1s levels as estimated from bootstrap
sampling.

Figure 6. Ensemble-mean CMIP3 precipitation histograms
and their differences over the period 1979–2008. As in
Figure 1 but for 15 year subintervals 1979:1993 and
1994:2008.
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well as changes in satellite observing platforms, could
introduce spurious behavior; we therefore cannot exclude
the possibility that the observed histogram changes reflect
such data artifacts.

5. Precipitation Histograms Defined Directly
in Terms of Temperature and Their Relationship
to ENSO

[21] The disagreement among the 20th century results of
CMIP3 models suggests that natural (“unforced”) variability
may have an important impact on the precipitation statistics.
Indeed, the simulated late-20th-century tropical warming is

an order of magnitude smaller than the simulated late-21st-
century tropical warming (Figure 8), suggesting that the
signature response that we identify in the late-21st-century
simulations should be much less robust in response to the
more slight warming that has occurred over the recent dec-
ades. We further note that large-scale land use change such
as deforestation or agricultural conversion may potentially
amplify extremes over tropical land regions [Lee et al.,
2011].
[22] In order to isolate the influence of warming, we

construct histograms obtained by sorting the precipitation
data directly on tropical tropospheric temperature anomalies,
rather than chronologically. To do this, we sort the CMAP

Figure 7. Late 20th century precipitation histograms for the 24 CMIP3 models. As in Figure 2 but for the
15 year subintervals 1979:1993 and 1994:2008.
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data by dividing the monthly stratified values for 1979 to
2008 into the 15 warmest and 15 coolest Januaries, Febru-
aries, …, Decembers, using deep-layer (850 mb–200 mb)
tropospheric temperature anomalies estimated from the
NCEP/NCAR Reanalysis 1 to identify the warmest and
coolest months (Figure 9). Note that broadly comparable
results are obtained from temperature-sorting the GPCP and
CRU data and are not discussed here.
[23] Overall, the temperature-sorted CMAP differences

(Figure 9b) are smaller than the chronological sorting
(Figure 9a): in fact, only the “warm minus cool” increase in
counts in the 0–0.5 mm day$1 bin exceeds the 1s level from
the bootstrap uncertainty estimate. At first glance, this
appears to contradict the hypothesis of tropospheric warm-
ing as the source of the decadal histogram change. However,
we note that presence of several sizable El Niño events
during the last 3 decades (e.g., 1982/83, 1986/87, and 1997/
98) may influence the temperature-based analysis. Although

El Niño events lead to widespread warming of the tropical
troposphere, the spatially non-uniform way in which ENSO
forcing interacts with tropical circulation leads to different
spatial rearrangement of tropical rainfall [Ding and Wang,
2005]. For example, using idealized model simulations
with greenhouse gas forcing tuned to match temperature
increases during an El Niño event, Lintner and Chiang
[2005] showed that while both greenhouse warming and El
Niño decrease rainfall in tropical areas of low climatological
mean precipitation, they oppose each other in areas of higher
mean climatological precipitation, i.e., El Niño decreases
rainfall but greenhouse gas warming increases it.
[24] In order to isolate the influence of ENSO on the 20th-

century histograms, we construct histograms by sorting on
temperature after first regressing out the ENSO signature,
with the latter reflected in the NINO3 region sea surface
temperature index. Removing the ENSO signature is found
to yield a “warmminus cool” difference signature (Figure 9c)

Figure 8. Comparison of CMIP3 simulated surface temperature differences for 1979:1993 and
1994:2008 (x axis) and 1975:1999 and 2075:2099 (y axis).

Figure 9. CMAP histograms computed directly from temperature. (a) The chronologically sorted histo-
gram (Figure 5a). (b) Temperature-sorted histograms, using the 15 warmest (red squares) and coolest (blue
squares) Januaries, Februaries, …, Decembers over 1979–2008. (c) Temperature-sorted histograms but
using NINO3-regressed temperature anomalies.
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that is comparable to that found in the chronological sorting
(Figure 9a), suggesting that ENSO teleconnections do indeed
confound the direct effects of atmospheric warming on the
observed monthly distribution of tropical precipitation. Of
course, the regression approach used here may not provide
the cleanest separation of anthropogenic warming from
ENSO; given a longer time series, one could envision
excluding large ENSO events directly.
[25] In fact, we obtained qualitatively similar behavior for

such a temperature-based analysis for a 3-member ensemble
of GFDL CM2.1 integrated over the 1860–1999 period
(Figure 10), with the longer data set affording a greater
temperature contrast than exists in the shorter observational
records. The chronological difference of 1985:1999 and
1860:1874 (Figure 10a) underscores the tendency for the
later-period GFDL precipitation counts to increase in the
nearest-to-zero bin but to decrease broadly over the remain-
ing bins. Sorting by temperature (Figure 10b) yields much
larger negative differences, especially in the range of 8–
10 mm day$1. By contrast, sorting on temperature after the
NINO3 variability has been removed (Figure 10c) results in
increased warm month counts beyond %10 mm day$1, in
agreement with the changes seen in the late-21st-century
CMIP3 simulations. That the removal of ENSO variability
changes the sign of the response for warm minus cool con-
ditions in the highest precipitation bins in the GFDL model
suggests that ENSO may indeed complicate the simulated
response of the wet tail to elevated greenhouse forcing, at
least when the warming forced by greenhouse gases remains
small. Precisely how this interaction plays out in other
models (not to mention the observations) is worth investi-
gating in greater detail, as it likely depends on the detailed
expression of the ENSO teleconnection over tropical land
regions.

6. Summary and Conclusions

[26] In this study, we document changes in histograms of
monthly mean tropical land region rainfall for 24 CMIP3
simulations of greenhouse-gas-induced global warming. The
ensemble-mean histogram between the late-21st and late-
20th centuries manifests increasing incidence of both the
lowest (0–0.5 mm day$1) and very high monthly mean
precipitation rates, with widespread consistency among the
model simulations. Thus, the bulk tropics-wide histogram of

monthly mean precipitation rates appears to reflect a distinct
signature of global warming.
[27] We reiterate that the changes in precipitation distri-

bution seen in the late-21st-century simulations should not
be interpreted too strictly in terms of the theoretical argu-
ments posited for daily (or sub-daily) time scales, as these
might suggest that any one location should experience both
an increase in the intensity of rain events and more frequent
and/or lengthier dry episodes in a warmer world [e.g., Giorgi
et al., 2011]. In particular, since Figure 4 shows that wet
anomalies in wet regions are mostly responsible for the
increase in high-rainfall counts and dry anomalies in dry
regions are mostly responsible for the increase in very low
rainfall counts, we posit that our results reflect increased
rainfall spatial gradients within the tropics.
[28] The warming that has occurred over the tropics in

recent decades raises the question of whether the increasing
counts of the wet and dry tails of the precipitation distribu-
tion may in fact be evident in observed precipitation. We
thus analyze changes in the precipitation distributions for
two 15-year subperiods of the 1979–2008 interval using
three observed precipitation products. While the CMAP and
(to a lesser extent) GPCP products hint at similar signatures,
the CRU product fails to show an increase in counts in the
lowest (0–0.5 mm day$1) bin. At this stage, we cannot dis-
tinguish whether the observed changes in the bulk precipi-
tation histograms point to an emerging signal from global
warming or are the effect of the regional rainfall changes
associated with ENSO; in both cases, they are linked to
precipitation changes that enhance mean moisture gradients
across tropical land regions. Analysis of the CMIP3 models
over the same late-20th century subperiod reveals only a
weak signature in the ensemble-mean histogram difference,
further highlighting the dual influences of anthropogenic
warming and natural variability on the wet and dry tails of
the monthly precipitation distribution over the last 30 years.
In isolating the influence of atmospheric warming from the
influence of ENSO teleconnections, we find that ENSO
variability does indeed confound the effects of atmospheric
warming on the distribution of tropical land precipitation,
particularly at the wet tail, where atmospheric warming leads
to increasing counts but El Niño events lead to decreasing
counts.
[29] The opposing effects of ENSO variability and atmo-

spheric warming raise a number of questions, including (1)

Figure 10. GFDL CM2.1 histograms computed directly from temperature. As in Figure 9, but for the
period 1860–1999 in a 3-member ensemble of the GFDL model.
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what is the minimum level of greenhouse forcing that is
necessary for the signature seen in the late-21st century
CMIP3 simulations to emerge beyond the background
influence of ENSO, and (2) how do changes in ENSO var-
iability that are induced by anthropogenic radiative forcing
influence the response of the tropical precipitation distribu-
tion to global warming, particularly given uncertainties
about the ENSO response [e.g., IPCC, 2007, chapter 10,
Figure 10.16; Vecchi and Soden, 2007]. These questions
are clearly intertwined, and highlight the importance of
improving our understanding of the response of both
precipitation processes and ENSO to elevated greenhouse
forcing.
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