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S U M M A R Y
Rocks often develop fabric when subject to deformation, and this fabric causes anisotropy
of physical properties such as viscosity and seismic velocities. We employ 2-D analytical
solutions and numerical flow models to investigate the effect of anisotropic viscosity (AV)
on the development of Rayleigh–Taylor instabilities, a process strongly connected to litho-
spheric instabilities. Our results demonstrate a dramatic effect of AV on the development of
instabilities—their timing, location, and, most notably, their wavelength are strongly affected
by the initial fabric. Specifically, we find a significant increase in the wavelength of instability
in the presence of AV which favours horizontal shear. We also find that an interplay between
regions with different initial fabric gives rise to striking irregularities in the downwellings.
Our study shows that for investigations of lithospheric instabilities, and likely of other mantle
processes, the approximation of isotropic viscosity may not be adequate, and that AV should
be included.

Key words: Creep and deformation; Seismic anisotropy; Dynamics of lithosphere and
mantle; Rheology: crust and lithosphere; Rheology: mantle.

1 I N T RO D U C T I O N

The response of anisotropic materials to stress depends on the ori-

entation of the stress relative to the orientation of the anisotropy.

Anisotropy of seismic wave speed in rocks has been studied vigor-

ously in the last decades, both in experimental (e.g. Zhang & Karato

1995) and theoretical work (e.g. Kaminski & Ribe 2001). It has been

shown that the deformation of rocks and minerals leads to develop-

ment of crystallographic preferred orientation (CPO), which leads

to seismic anisotropy (Karato et al. 1998). In addition, rotation of

grains and inclusions, alignment of microcracks or melt lenses, and

layering of different phases all lead to the development of shape pre-

ferred orientation (SPO), an important source for seismic anisotropy

(e.g. Crampin 1978; Holtzman et al. 2003; Maupin et al. 2005).

The anisotropic viscosity (AV) of earth materials has received

less attention, but its effects are dramatic. Using laboratory exper-

iments, Durham & Goetze (1977) showed that the strain rate of

creeping olivine with pre-existing fabric depends on the orientation

of the sample and can vary by up to a factor of 50. This is because

the orientation of the sample relative to the applied stress deter-

mines which slip systems are activated. In the experiments of Bai &

Kohlstedt (1992) on high-temperature creep of olivine and those of

Wendt et al. (1998) on peridotites, the measured strain rate depended

strongly on the relative orientation of the applied stress to the sample

crystallographic axis. Honda (1986) calculated the long-wavelength

constitutive relations for a transversely isotropic material, and con-

cluded that these can be characterized by two viscosities—a nor-

mal viscosity (ηN ), associated with principal stresses normal to the

easy-shear planes, and a shear viscosity (ηS), associated with shear-

ing parallel to the easy-shear planes. More theoretical work (e.g.

Weijermars 1992; Mandal et al. 2000; Treagus 2003) was done to

assess the AV of composite materials, depending on the geometry

and the relative strength of each component. These studies imply

that regions of the earth that are not likely to become anisotropic by

means of dislocation creep and LPO development may exhibit AV

due to the deformation of composite materials, such as most natu-

ral rocks, and two-phase materials, such as partially molten rocks.

Recently, Pouilloux et al. (2007) discussed the anisotropic rheology

of cubic materials and the consequences for geological materials.

A few geodynamic studies have examined the effect of AV

on mantle flow. Richter & Daly (1978) and Saito & Abe (1984)

used analytical solution methods to investigate the development of

Rayleigh–Bénard instabilities in a viscously anisotropic medium

with specified easy-shear geometry, and found a connection be-

tween the anisotropy of the fluid and the length-scales of the convec-

tion cells. In a very instructive study a few years later, Christensen

(1987) showed that the inclusion of AV affects two important man-

tle flows—postglacial rebound and thermal convection. For exam-

ple, Christensen (1987) pointed out a spatial offset between mass

anomalies and the resulting geoid signal in the presence of AV, which

may help to reconcile the argued mismatch between observed uplift

history near ice sheet margins and models of strong viscosity strati-

fication in the mantle. AV also leads to channelling of flow into low

viscosity region such as hot rising plumes. Nonetheless, Christensen

concluded that the actual effect of AV in the earth’s mantle would be

much smaller, as the fabric required for creating AV would be oblit-

erated by the highly time-dependent flow. However, the abundant

evidence for seismic anisotropy in the earth and its strong correla-

tion with tectonic processes and features suggest that large parts of

the mantle maintain fabric for long times. Pre-existing mechanical
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anisotropy in the lithosphere was shown to have an effect in vari-

ous tectonic settings such as oceanic shear zones (Michibayashi &

Mainprice 2004) and continental break-up parallel to ancient oro-

gens (Vauchez et al. 1998).

Recently, Moresi et al. (2002, 2003) presented an efficient algo-

rithm for including an AV that evolves with the flow in geodynamic

models. They demonstrated the new algorithm in a series of pa-

pers, looking at various geological problems, including folding of a

layered medium and thermal convection. We employ this technique

here to investigate lithospheric instabilities in the presence of AV.

The lithosphere is often identified as the cold upper thermal

boundary layer of Earth’s convecting mantle. The colder temperature

of the lithosphere makes it more dense than the asthenosphere un-

derneath, and leads to an unstable density layering (Houseman et al.
1981). This density instability may be further enhanced by thicken-

ing of the lithosphere due to convergence (Molnar et al. 1998) or

emplacement of dense material (eclogite) at the base of the litho-

sphere (Elkins-Tanton & Hager 2000). Lithospheric instabilities and

removal of the lower lithosphere have been invoked to explain ob-

servations in the New England Appalachians (Robinson 1993), the

Canadian Appalachians (Murphy et al. 1999), Europe (Wenzel et al.
1997), Argentina (Kay et al. 1994), the North China craton (Fan

et al. 2000; Wu et al. 2005) and Tibet (England & Houseman 1989).

Regions of high seismic velocity underneath southern California

(Humphreys & Clayton 1990; Kohler 1999; Yang & Forsyth 2006)

are also interpreted as cold material sinking from the bottom of the

lithosphere, probably as part of 3-D small-scale convection in the

region (Humphreys & Hager 1990) or Rayleigh–Taylor instabili-

ties (Billen & Houseman 2004). Upwelling of hot asthenospheric

material following removal of the lower lithosphere has been sug-

gested to explain, for instance, the massive flood basalts in Siberia

(Elkins-Tanton & Hager 2000).

The removal of the bottom of the lithosphere due to a density insta-

bility can be approximated as a Rayleigh–Taylor instability (Conrad

& Molnar 1997). Previous studies of Rayleigh–Taylor instabilities

addressed the effect of the density structure, the wavelength of the

density perturbation between the layers, and the rheology of the

layers, on the timing and location of instability onset (e.g. White-

head 1986; Houseman & Molnar 1997; Conrad & Molnar 1999;

Billen & Houseman 2004). Here we demonstrate the significance of

pre-existing and evolving fabric.

2 A N I S O T RO P I C V I S C O S I T Y A N D T H E

WAV E L E N G T H O F I N S TA B I L I T I E S

We begin our investigation with a simple conceptual setup: a dense

anisotropic layer laying over a more buoyant isotropic half-space.

All of the models in this study are 2-D. The interface between the

two layers is perturbed by a small initial displacement w(x) =
w0cos (kx), where x is the horizontal direction, and k is the

wavenumber of the interface perturbation. Our goal in this section is

to examine the dependence of the growth rate of instabilities on the

wavenumber of the perturbation, the initial orientation—horizontal

or dipping—of the easy-shear planes, and the ratio between the

shear and normal viscosities. We use both an analytical solution and

numerical experiments for this purpose.

2.1 Governing equations

We treat the mantle as an incompressible fluid, an approximation

valid for slow viscous deformation in the upper mantle (e.g. Schubert

et al. 2001). The main equation to be solved is conservation of

momentum:

∂σi j

∂x j
− ∂p

∂xi
+ fi = 0, (1)

where σ i j is the deviatoric stress tensor, p is the pressure, f i is the

force acting in the ith direction, and inertia is neglected. For our

case, fz = ρgẑ, where z is the vertical coordinate.

The flow also has to fulfil the continuity requirement for an in-

compressible material:

∂vi

∂xi
= 0, (2)

where v is the velocity.

A central equation for any flow model is the constitutive law, re-

lating stress and strain in the system. The constitutive law we use

in this study reflects the anisotropic rheology of the materials. The

simplest form of anisotropy is transverse isotropy (TI), as for a deck

of cards. As shown by Honda (1986), a TI material can be char-

acterized by two viscosities—a normal viscosity, ηN , and a shear

viscosity, ηS . This form of anisotropy can describe both a layered

medium, consisting of layers of different strength, or the CPO of

anisotropic minerals with a dominant easy glide plane. The nor-

mal viscosity governs deformation when the two principle stresses

are oriented normal and parallel to the glide plane, while the shear

viscosity governs deformation when the principle stresses are ori-

ented at 45◦ to the glide plane. The exact expressions we use for our

analysis are given in eqs (4) and (A1).

We note that in this formulation, materials with horizontal and

vertical easy-shear directions are mathematically equivalent. This

is similar to a stack of books on a shelf—it is easy to shear the

stack horizontally both when the books stand up (vertical easy-

shear planes) and when they lay on top each other (horizontal easy-

shear planes).We thus examine two end-member setups—in one the

anisotropic dense layer initially has a horizontal easy-shear direc-

tion, and in the other the easy shear direction initially dips at 45◦.

2.2 Analytical solution

In this analysis we use the propagator matrix technique (e.g. Hager

& O’Connell 1981) to calculate the growth rate of the instabilities as

a function of the wavelength of a small perturbation in the interface

between the two materials. The mean depth of the interface is at

z = 0. The boundary conditions for our problem are no-slip at the

top boundary (z = 1), which we take to be the base of the rigid part

of the lithosphere, and vanishing of the velocities and stresses as

z → −∞. By calculating the vertical velocity v(z = 0) we are able

to track the change in position of the boundary. The derivation is

outlined in Appendix A, and an important outcome of it is that

v(z = 0) ≡ ∂w

∂t
∝ w. (3)

Because the velocity of the interface is proportional to the amplitude

of the boundary topography (eq. 3), the change in the interface depth

follows an exponential growth rule: w(z, t) = e
t
τ . τ , the growth rate,

is a function of the wavenumber k of the perturbation w, and of the

two viscosities ηN and ηS .

The results we present in Section 2.4, as well as Appendix A, give

insight into the relationship between the growth rate and a range

of viscosities and wavenumbers. We note here that this analysis is

valid only for small interface perturbations, so we can assume that

the orientation of the AV does not evolve.
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2.3 Numerical experiments

To follow the instability to finite amplitude requires a numerical

approach. We solve the flow equations using a finite element formu-

lation on an Eulerian mesh embedded with Lagrangian integration-

points (‘particles’), as described by Moresi et al. (2003). In this

method, particles carry the material properties, and foremost their

deformation history and the derived AV. Variables such as velocity

and pressure are calculated at the location of the mesh nodes, which

are fixed in space. We use the software package Underworld to solve

the flow equations.

2.3.1 Including anisotropy in the flow equations

To include AV in our numerical experiments, we use the particle-in-

cell formulation (Moresi et al. 2003). By this method, the anisotropy

is represented by a set of ‘directors’ advected through the model,

analogous to particles (Mühlhaus et al. 2002). The directors are

vector-particles pointing normal to the easy-glide plane or layer,

thus defining the directions associated with ηN and ηs . In each time

step of the calculation, the directors are advected and rotated by the

flow, and in return determine the viscosity structure for the next time

step (Mühlhaus et al. 2004).

The AV enters the equation of momentum through a ‘correction’

term added to the isotropic part of the constitutive equation relating

stress and strain rate (Mühlhaus et al. 2002):

σi j = −pδi j + 2ηN ε̇i j − 2(ηN − ηS)	i jkl ε̇kl , (4)

where ηN , ηS are the normal and shear viscosities, respectively, σ is

the deviatoric stress tensor, and ε̇ is the strain rate tensor. 	 reflects

the orientation of the directors in space, denoted by n:

	i jkl = 1

2
(ni nkδl j + n j nkδil + ni nlδk j + n j nlδik) − 2ni n j nknl .

(5)

The evolution of the orientation of directors in time is controlled

by integration over time of

ṅi = − ∂vi

∂x j
n j (6)

(Belytschko et al. 2001). A more detailed description of how the

anisotropy described by the directors enters the equations of flow

and how it is represented in the finite element formulation is given

by Mühlhaus et al. (2002).

2.3.2 Model setup

We carried out a suite of 2-D numerical experiments to investigate

the development of instabilities in the presence of AV. The numer-

ical models we use in this section consist of a dense layer with a

uniform fabric throughout its width, overlying a more buoyant layer.

The model domain is a rectangular box with an aspect ratio of 1:6.4,

comprised of 240 × 32 elements. We place a dense layer in the top

15 per cent of the box. Because the thickness of the lower layer

is much greater than that of the upper layer, our analytical solu-

tion for a layer overlying a half-space should provide a reasonable

approximation to the finite-depth domain. The interface between

the layers is a cosine curve with an initial amplitude of 0.01. We

compare the growth rate for models with an either horizontal or dip-

ping initial easy-shear direction for a range of interface perturbation

wavelengths. We measure the non-dimensional time that it takes to

displace the interface by one element length, and define this time as

the reciprocal of the growth rate. The ratio of the shear viscosity to

the normal viscosity for the anisotropic material is 0.1 in all cases, in

accordance with the theoretical estimations of Mandal et al. (2000)

and Treagus (2003) and within the range of values measured in the

experiments of Durham & Goetze (1977). The isotropic viscosity

of the buoyant lower layer is equal to the normal viscosity (ηN ) of

the dense layer.

2.4 Results—a homogeneous but anisotropic upper layer

Both our numerical experiments and our analytical solution predict

that the most unstable wavelength for a dense layer with a horizontal

fabric is much longer than that for an isotropic layer or for a layer

with a dipping fabric. From our analytical solution, we calculate the

normalized values of τ for a range of wavenumbers and viscosity

ratios, for both a horizontal fabric and a dipping fabric. The results

are plotted in Fig. 1. For comparison, we also plot the growth-rate

curves for models with an isotropic dense layer with a viscosity that

equals the geometric and the arithmetic averages of the shear and

normal viscosities of the anisotropic material. Fig. 1 clearly shows

that the effect of anisotropy is dramatic, especially for a material

with initially horizontal easy-shear direction. For such a fabric, the

minimum point of the growth rate curve, which determines the most

unstable wavelength, shifts to a longer wavelength as the viscosity

ratio becomes smaller (blue curves in Fig. 1). For a case of a shear

viscosity that is 10 times smaller than the normal viscosity, a fairly

conservative estimate, the most unstable wavelength is twice as long

as for the isotropic one; For ηS/ηN = 0.01, the increase is by a factor

of 3.5. This increase in the most unstable wavelength is comparable

to the effect of having an isotropic dense layer with a lower viscosity
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Figure 1. Growth-rate curves, plotting the growth rate of Rayleigh–Taylor

instabilities versus the perturbation wavenumber, for models with varying

degrees and orientations of anisotropy of a dense upper layer overlaying an

isotropic half-space: black—isotropic upper layer with viscosity equal to

the viscosity of the bottom half-space; green curves—isotropic dense layer

with viscosity equal to the average of the normal and shear viscosities of the

anisotropic cases (dark green—geometric average, light green—arithmetic

average); blue curves—horizontal easy shear direction (dark blue—ηs/ηN =
0.1, dashed light blue—ηs/ηN = 0.01); red curves—easy shear direction

dipping at 45◦ (maroon—ηs/ηN = 0.1, dashed pink—ηs/ηN = 0.01). For

the anisotropic cases, ηN = ηbottom. The minimum point of each curve,

indicating the most unstable wavenumber for each configuration, is also

shown.
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Figure 2. Growth-rate curves, plotting the non-dimensional growth rate

versus perturbation wavenumber, for numerical experiments in which the

anisotropic dense layer initially has a horizontal easy shear direction (blue

line), a dipping easy shear direction (red line), or is isotropic (black line).

The thickness of the dense layer is 0.15 of the box depth.

(green curves in Fig. 1). Also, the shape of the curve is changed

compared to the isotropic case, and becomes flatter. For a dipping

fabric (Fig. 1, red curves), the change is minor—the most unstable

wavelength is equal to the isotropic and isoviscous one, and for long

wavelengths the stability curves are almost identical for all degrees

of anisotropy.

Fig. 2 shows the results from our numerical experiments. We

plot the growth rate versus the wavenumber of the density pertur-

bation for each initial configuration of the dense anisotropic layer:

horizontal fabric (blue line, squares), 45◦-dipping fabric (red line,

diamonds) and isotropic (black line, circles). The results agree with

the predictions from the analytical solution presented above—the

fastest growth rate for the horizontal fabric is at a longer wave-

length than that for the dipping fabric or for an isotropic layer, and

the curve is indeed flatter at longer wavelengths. The minimum

growth rate for a dipping fabric is at almost the same wavelength as

that for an isotropic material, again in agreement with the analytical

predictions. Fig. 3 shows the material distribution in the different

model configurations after the fastest drips have sunk half of the box

depth, as well as the approximate location of the initial perturbed

interface (yellow curve). These snapshots demonstrate clearly that

the wavelength of the instabilities developing in the initially hor-

izontal models is greater than of those developing in the initially

dipping models. This emphasizes the advantage gained by using

numerical experiments—the analytical solution gives insight into

the behaviour of instabilities at small amplitudes, while the numer-

ical experiments are essential for predicting the behaviour as the

flow progresses and instabilities of finite-amplitude develop.

3 L AT E R A L LY VA RY I N G A N I S O T RO P Y

Intrigued by the dramatic results for a simple model of a homo-

geneous anisotropic dense layer described above, we proceed and

use numerical experiments to examine the effect of including lateral

variations in the initial anisotropic fabric of the dense layer.

3.1 Model setup

Fig. 4 depicts the model geometry and initial and boundary condi-

tions. The model domain is again a rectangular box with an aspect

ratio of 1:6.4. The location and amplitude of the interface between

the layers is the same as in Section 2. Following the findings of Sec-

tion 2, we perturb the interface with a wavelength long enough to

allow deformation at a wide range of wavelengths to develop freely.

The dense layer now contains two anisotropic regions in the centre,

each 1.6 wide, and two isotropic regions of the same high density

near the edges. The anisotropic regions differ only by their initial

fabric orientation—one (shown in red) initially has a horizontal easy

shear direction, and the other has an easy shear direction initially

dipping at 45◦ (shown in yellow). The viscosity of the buoyant layer

is equal to the normal viscosity of the anisotropic layer. The shear

viscosity of the anisotropic material is a factor of 10 less than its

normal viscosity. We shift the anisotropic regions laterally in dif-

ferent models in order to change the phase between the viscosity

structure and the density interface perturbation. We then examine

the development of drips for each configuration.

3.2 Results—a heterogeneous upper layer

In Fig. 5, we show the instabilities that develop in our models. The

different panels depict models with different configurations of the

initial fabric domains, shown in red and yellow, as well as the results

for an isotropic model for comparison (Fig. 5a). We also show the

trace of the original density interface between the dense lithosphere

Figure 3. Material distribution for models with horizontal (left-hand panels) and dipping (right-hand panels) initial fabric of the dense top layer and various

initial interface deflection wavelengths, taken after the fastest downwellings sink past half the box depth. Colour denotes the materials—blue is the isotropic

buoyant material and red is the anisotropic denser material. The yellow curves show the approximate location of the initial density interface, exaggerated

vertically for visual clarity.
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Figure 4. A schematic description of the model geometry and initial conditions. The colours denote the densities and rheologies: blue—isotropic, ρ = 1,

η iso = 1, red—anisotropic with horizontal fabric, ρ = 1, δ = 0.1, yellow—anisotropic with dipping fabric, ρ = 1, δ = 10, cyan—isotropic, ρ = 0, η iso = 1).

There is no slip on the top and bottom boundaries, and free slip is allowed along the side walls. The thickness of the top layer and the amplitude of the interface

perturbation were exaggerated for clarity.

Figure 5. Material distribution in models with different configurations of initial anisotropic fabric taken after the fastest downwelling sinks over half the box

depth. Panel A shows the results for an isotropic model. The black cosine curve at a depth of 0.15 marks the original interface between the dense and buoyant

layers. The vertical dashed black lines show the deepest points of the original density interface, where the dense layer was thickest. Red material starts with

a horizontal fabric; Yellow material starts with a fabric dipping at 45◦. Blue materials are isotropic. Interestingly both panels (b) and (g), which start with

distinctly different material arrangements, show large downwellings comprised of both anisotropic materials, while others do not.

and the underlying mantle (black horizontal curve) and the loca-

tion of the deepest points of the initial perturbation of the density

interface (dashed vertical lines).

Several first-order observations can be made in Fig. 5. First, there

is a striking difference between the instabilities that develop in

the two anisotropic domains. Most notably, the wavelengths of the

downwellings that develop in the domain with easy horizontal shear

are much longer than the wavelengths in the dipping-fabric domains

or in the isotropic model (Fig. 5a). In addition, the domain which

starts with easy horizontal shear (red) develops instabilities faster

than the domain which starts with easy shear direction dipping at

45◦ (yellow). Next, for several situations, the fastest-growing down-

welling does not coincide with the locations of maximum thickness

of the dense layer, but is offset horizontally by up to 0.5 of the box

depth (Figs 5b and g). Finally, almost all of the fastest-growing in-

stabilities occur near the edges of the domain of horizontal easy

shear (excluding the case where the thickest part of the dense layer

was exactly in the centre of the domain of initial horizontal aniso-

torpy), but the instabilities that develop in the dipping easy shear

domain develop in its interior. Evidently, the initial fabric and its

lateral variations influence the flow significantly.

4 D I S C U S S I O N

Our models are set up in a non-dimensional manner, for generality.

It is interesting, though, to rescale the results to lithospheric dimen-

sions. The dense layer (top 15 per cent of the box) corresponds to

the viscously mobile part of the lithosphere, which is approximately

its lowest 40 km. The viscosity of the lithosphere is temperature-

dependent, and is believed to decrease exponentially with depth,

with a reasonable decay length of about 10 km (Molnar et al. 1998).

If we take the viscosity at the base of the lithosphere to be 1019 Pa s

(Hager 1991), then the average viscosity for a 40 km thick layer,

calculated as 〈η〉 = exp( log η1+log η2

2
), is 7.4 × 1019 Pa s. Using the

thickness of the lower lithosphere as the characteristic length scale,

we can estimate the spacing between the isotropic instabilities as

130 km, and the wavelength of the longest anisotropic instabilities

is close to 400 km. The lateral offset between the downwellings

and the locations of maximum lithospheric thickness scales to a

maximum of approximately 150 km. We rescale velocities based

on the viscosity and density contrast, using the ‘Stokes Velocity’

(VStokes = 
ρ∗g∗h2

η
, where η is the effective viscosity of the dense

layer, 
ρ is the density contrast and h is the dense layer thickness).

We estimate the difference between the density of the lower litho-

sphere and the density of the underlying asthenosphere as 40 kg m−3

(Molnar et al. 1998). After substituting the above values we can now

calculate the scaling of time. We estimate that the time it takes for

the drips to sink to a depth of 160 km (the stage shown in Fig. 5)

is approximately 12 Myr. This duration is within the range of times

estimated by Houseman & Molnar (1997) for removal of the base of

an unstable thickened lithosphere. This time and distance of sinking

imply an average sinking velocity of 14 mm yr−1.

The models we present here are a preliminary attempt at this

problem, and thus have some shortcomings when compared with

the lithosphere. First, the fabric development rule we use is a simple

rotational evolution law, and does not take into account factors such

as temperature, strain rate, and recrystallization, all known to affect

the development of CPO in rocks. Second, the rheology we use is a
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Newtonian creep law, while in fact anisotropy due to CPO requires

deformation in the dislocation creep regime, which is a power-law

creep process. Additionally, all our experiments are carried out in

two dimensions. There may be interesting consequences when these

effects are studied in a 3-D setup, especially given the 3-D nature of

some observed mantle instabilities (e.g. Yang & Forsyth 2006). A

3-D model would also be able to include orthorhombic symmetry

and would not be constrained to the use of TI. Hopefully future work

would be able to assess the significance of these factors and their

implications.

Both our analytical solution and the numerical flow models pre-

dict that the wavelength of Rayleigh–Taylor instabilities would be

longer for an anisotropic material, most significantly for a fabric

favouring horizontal flow. Some intuitive understanding of this can

be gained if we imagine a horizontally layered medium—it is much

easier for such a medium to flow sideways by simple shear, and not

to develop vertical drips. Drips will eventually develop in locations

where the horizontal flow encounters resistance—for instance, in the

form of a domain with a different fabric. This is likely the reason

that the largest downwellings developed in the edges of the domains

with initial horizontal easy shear direction (red domains in Fig. 5).

If, on the other hand, the initial fabric is at an angle to the main

acting force, it will be easier for the instabilities to thicken by pure

shear and ‘break’ the layering structure, and hence will be more

likely to follow a wavelength closer to the isotropic one. This result

is in agreement with the experiments of Richter & Daly (1978),

who found that anisotropy leads, in general, to longer wavelengths

of instabilities. Saito & Abe (1984) performed a marginal stability

analysis for a related model setup (bottom-heated Rayleigh–Bénard

convection with stress free boundaries and horizontal layering) and,

similarly to our results, found that the stability curves flatten out and

that the minimum shifts to a longer wavelength with lower viscosity

ratio.

We emphasize at this point that numerical techniques such as the

one we use here have several important advantages. Analytical so-

lutions, while elegant, give insight into the behaviour of instabilities

only at small amplitudes, and thus numerical experiments are es-

sential for predicting the flow as it progresses and instabilities of

finite-amplitude develop. Additionally, the numerical technique we

use is capable of modeling flows in which the fabric is evolving and

the orientation of the anisotropy is not fixed in space, as opposed

to the situation in our, as well as earlier (e.g. Richter & Daly 1978;

Honda 1986), analytical solutions. It is also straightforward to in-

clude lateral variations of the anisotropy, a scenario highly relevant

to tectonic processes in natural environments.

The strong effect of pre-existing fabric on the development of

Rayleigh–Taylor instabilities may have important implications for

the stability of the lithosphere. In our models, the fastest growing

downwelling sometimes develops away from the initially deepest

region of the density interface, due to the interaction between do-

mains with different fabric orientation. This change in geometry

may provide a simple explanation for the offset of the mantle drip

beneath the Sierras (e.g. Saleeby & Forster 2004). Our findings of

the effect of AV on the wavelength of instabilities should also be

considered in the context of other locations, for example Tibet. Con-

rad & Molnar (1997) argued that the wavelength of Rayleigh–Taylor

instabilities predicted to arise from the collision between India and

Eurasia is much shorter than the wavelength of the Tibetan plateau,

and hence such instabilities are unlikely to be the cause of the rapid

uplift of the plateau at 5–10 Myr ago. If, however, the existing fabric

in the collision zone was such that it leads to longer wavelengths,

this possibility may need to be reconsidered.

The points of contact between regions with different existing fab-

ric appear to have unique significance. This hints that when tectonic

units which have gone through a different evolution and developed

different fabrics are juxtaposed, this contact point may be particu-

larly unstable. An example of such a situation may be the placing of

a spreading centre, which is characterized by horizontal easy-shear

planes, next to a region that is more horizontally resistant. When

this combination is put under compression, the horizontal easy shear

planes will be unstable at the contact point, which may lead to ini-

tiation of downwelling and perhaps even subduction. Subduction

initiation at extinct spreading centres is likely the explanation for

the subduction zone at the Macquirie region south of New Zealand

(Lebrun et al. 2003) and near the Oman ophiolite (Michibayashi &

Mainprice 2004). Our results clearly show that additional knowl-

edge of the anisotropic fabric of the lithosphere, and, specifically,

the orientation of dipping fabrics, can shed light on different tec-

tonic problems, and highlights the importance of overcoming the

difficulties in making such measurements (e.g. Chevrot & van der

Hilst 2003).

5 S U M M A RY

We show the dramatic effect of AV on the development of Rayleigh–

Taylor instabilities. The wavelength, timing and shape of the insta-

bilities that develop in our models are strongly affected by the initial

fabric prescribed. The most notable effect of AV on Rayleigh–Taylor

instabilities, demonstrated here both analytically and numerically,

is the shift to longer wavelengths when the initial fabric of the dense

material favours horizontal flow (horizontal or vertical fabric). The

interplay between regions with different orientations of initial fabric

gives rise to a variety of features, such as an offset of the main down-

wellings away from the deepest point of the perturbed interface, and

demonstrates the importance of considering the deformation history

of all the units participating in a tectonic setting. Our results show

that for the study of lithospheric instabilities, and likely of other

mantle processes, the common isotropic approximation may not be

accurate, and hence AV should be included.
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A P P E N D I X A : D E R I VAT I O N O F

A N A LY T I C A L S O L U T I O N

We begin by defining the following anisotropic constitutive rela-

tions, which describe a transversely isotropic (TI) material in the

two special cases considered here of (1) easy-shear on horizon-

tal/vertical planes and (2) easy-shear on planes dipping at 45◦:

σxx = 2ηps ε̇xx (A1a)
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σzz = 2ηps ε̇zz (A1b)

σxz = ηss ε̇xz, (A1c)

where η ps is a viscosity corresponding to pure shear stresses, and ηss

corresponding to simple-shear. For a material with a horizontal easy-

shear direction (horizontal layering, for instance) ηss is equivalent

to ηS defined in Section 2.1, η ps ≡ ηN , and ηss < η ps . For an

anisotropic material with a dipping easy-shear direction, ηS ≡ η ps <

ηss ≡ ηN . For an isotropic material, η ps = ηss . This constitutive

relation can be derived from a matrix form similar to that in eq. (4):

σ i j = 2ηN ε i j − 2(ηN − ηS)	i jkl ε kl , where 	 is an alignment

tensor reflecting the orientation of the symmetry axis. Then, the

transformation from a horizontal symmetry anisotropy to a dipping

symmetry can be achieved by a rotation of the 4th-order tensor 	.

In our analytical solution, we employ the propagator matrix tech-

nique (e.g. Hager & O’Connell 1981) to calculate the growth rate of

Rayleigh–Taylor instabilities as a function of the wavelength of the

density perturbation between the two materials. We set z = 0 at the

interface between the layers, z = 1 at the top of the dense layer, and

the initial location of the density interface as w = w0 cos(kx). For

the horizontal and 45◦-dipping orientations we consider here, this

definition of the interface perturbation leads to v x , σ zz ∝ cos(kx),

and v z , σ xz ∝ sin(kx), where k is the wavenumber. For other ori-

entations there may be a phase shift with depth (Christensen 1987).

Thanks to the orthogonality of the trigonometric basis functions,

we can write a simplified set of equations for each wavenumber. We

define a vector u = [v, u, σ zz , σ xz], where v is the vertical velocity, u
is the horizontal velocity, σ zz is the normal stress in the z direction,

σ xz is the shear stress, and x and z are the horizontal and vertical

coordinates. After some manipulation, this definition of u enables

us to express the equations of flow in each layer for every k as

Du = Au + b, (A2)

where D = ∂

∂z , and b is a forcing term. The matrix A is where the

AV is manifested.

The definition of the anisotropic constitutive relation above leads

to a matrix A of the form:

A =

⎡
⎢⎢⎢⎣

0 −k 0 0

k 0 0 η−1
ss

0 0 0 −k

0 4ηpsk2 k 0

⎤
⎥⎥⎥⎦ . (A3)

When η ps = ηss (isotropic material), the expression in (A3) is equal

to the matrix A given by Hager & O’Connell (1981). Otherwise,

it reflects the AV of the material by including the two different

viscosities.

The solution to eq. (A2) is of the form

u(z) = eA(z−z0)u(z0) +
∫ z

z0

eA(z−ξ )b(ξ )dξ. (A4)

We define the propagator matrix P(z, z0) = eA(z−z0), so that the

velocities and stresses can be expressed as

u(z) = P(z, z0)u(z0) +
n∑

i=1

P(z, ξi )b(ξi )
ξI , (A5)

where ξ i is the depth at the centre of a the ith layer and 
ξ i is the

layer thickness. The propagator matrix for an anisotropic material

will naturally be different than the propagator matrix for an isotropic

material, given the difference in the corresponding A matrices. The

boundary conditions for our problem are no-slip at the top boundary

(z = 1), which we take to be the base of the rigid part of the litho-

sphere, and vanishing of the velocities and stresses as z → −∞.

We can express the boundary conditions using the vector u defined

earlier:

u(z = 1) = [
0, 0, σ t

zz, σ t
xz

]
, u(z = −∞) = [0, 0, 0, 0].

(A6)

In order to fulfill the boundary condition as z → −∞, u
just below the interface has to be of the form u(z = 0−) =
[C 1/2k, C 2/2k, C 1, C 2], where C 1, C 2 are the σ zz and σ xz at the

interface. We add a normalized forcing term which here represents

the gravitational forcing in the z direction. Thus u across the in-

terface, at the bottom of the dense layer, becomes u(z = 0+) =
[C 1/2k, C 2/2k, C 1 + 1, C 2]. We propagate this u(z = 0+) upwards

to the top interface using the anisotropic propagator matrix P ani:

u(z = 1) = P ani u(z = 0+). From the no-slip boundary condition at

the top, the first two components of the resulting vector are equal to

zero. We now have two equations and two unknowns—C1 and C2.

We solve for these two unknowns and use the result to calculate the

vertical velocity at the interface.

The change in the interface location with time is equal to the

vertical velocity at the interface—v(z = 0), where v is the vertical

velocity. A result of the derivation described above is that the vertical

velocity at the interface is proportional to the perturbation of the

interface, that is:

v(z = 0) ≡ ∂w

∂t
∝ w. (A7)

Therefore, the change in the interface depth follows an exponential

growth rule:w(z, t) = e
t
τ , which gives the dependence of the growth

rate τ on the model parameters:

τ = 1

K (ηps, ηss, k)
, (A8)

K is a complicated function of the viscosities and the wavenumber,

of the form:


ρg × [a sum of exponents o f powers of ηN , ηs , and k]. The

exact expression is too long to give here explicitly, but can be

obtained using the Matlab code in the Supplementary Material

(Appendix S1). The resulting relationship between 1/K (τ ) for a

range of wavenumbers and a set of viscosity ratios is demonstrated

in Fig. 1; Fig. S1 (Supplementary Material) shows a similar calcu-

lation for a range of viscosity ratios and k = 0.1.

A careful inspection of the anisotropic matrix Aani and the

anisotropic propagator matrix P ani reveals a very interesting

phenomenon—an oscillatory behaviour with depth for certain vis-

cosity ratios. Let us define δ, the viscosity ratio, as δ = ηss
ηps

. As

we noted earlier, for a material with a horizontal easy-shear direc-

tion ηss < η ps , and thus δ < 1, while for a material with a dipping

easy-shear direction ηss > η ps and δ > 1. The eigenvalues of the

matrix A are used in the expression for the propagator matrix and

control the behaviour of the velocities and stresses in the medium.

For an isotropic material, these eigenvalues are real and repeated,

and the propagator matrix includes additional terms depending lin-

early on the depth—P ∝ (1 ± kz)e±kz (Hager & O’Connell 1981).

The anisotropic A matrix has, on the other hand, four distinct eigen-

values, of the form:

λi = ±k

(
2 − δ ± 2

√
1 − δ

δ

) 1
2

. (A9)

All the eigenvalues for a material with horizontal fabric (δ < 1)

are real, leading to a propagator matrix (and thus velocities and
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Figure A1. Growth-rate curves, plotting the growth rate of Rayleigh–

Taylor instabilities versus the perturbation wavenumber, for models of an

anisotropic dense upper layer overlaying an anisotropic half-space, both

with a dipping easy-shear direction. The colours denote different degrees of

anisotropy: green—isotropic materials; blue to pink—increasing degrees of

viscosity contrast between the shear and normal viscosities. The oscillatory

behaviour, characteristic of materials with dipping easy-shear directions, is

apparent. As the viscosity contrast increases, the curves flatten for short

wavelength.

stresses) that are proportional to e±λi z . Anisotropy with a 45◦ dipping

easy-shear direction (δ > 1) implies that the four eigenvalues are

complex, and thus the velocities and stresses are proportional to

cos(I m(λi )z)e±Re(λi )z and sin(I m(λi )z)e±Re(λi )z . This gives rise to

a non-monotonic behaviour of the velocity and stress fields with

depth for dipping anisotropy, plotted in Fig. A1. This oscillatory

behaviour is strongly enhanced when both the dense layer and the

buoyant half-space underneath have an anisotropic, dipping fabric.

The growth-rate curves for this case are given in Fig. A1; the non-

monotonic fluctuations are obvious, especially as δ becomes larger.
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