E3101: A study guide and review, Short Form Version 1.3

Marc Spiegelman

December 8, 2007

1 The Short-form

Okay, here is the entire study guide in compact form

Solving $A\mathbf{x} = \mathbf{b}$ for $A \in \mathbf{R}^{n \times n}$

- Equation: $A\mathbf{x} = \mathbf{b}$
- Algorithm: Gaussian Elimination $[A \ \mathbf{b}] \rightarrow [U \ \mathbf{c}]$ and backsubstitute
- Factorization: PA = LU (or PA = LDU or $PA = LDL^T$ if $A^T = A$. Also $A = CC^T$ (Cholesky factorization for SPD matrices).

The Matrix Inverse A^{-1}

- Definition: $AA^{-1} = A^{-1}A = I$, solves $\mathbf{x} = A^{-1}\mathbf{b}$.
- Existence: A^{-1} exists iff Gaussian Elimination produces n pivots (i.e. n linearly independent columns).
- Uniqueness: if A is invertible, A^{-1} is unique and $\mathbf{x} = A^{-1}\mathbf{b}$ is unique
- Algorithm: Gauss-Jordan Elimination $[A \ I] \rightarrow [U \ E_d] \rightarrow [D \ E_u E_d] \rightarrow [I \ D^{-1} E_u E_d] = [I \ A^{-1}]$

Product Rules

- For Matrices
 - General AB: inner products must agree. In general $AB \neq BA$.
 - Inverse: $(AB)^{-1} = B^{-1}A^{-1}$ (if A,B both square and invertible)
 - Transpose: $(AB)^T = B^T A^T$ (all A and B such that AB exists.
 - Determinant: |AB| = |A||B|

- For vectors
 - $\mathbf{x}^T \mathbf{y}$: inner product, dot product, maps $\mathbf{R}^n \to \mathbf{R}$
 - $\mathbf{x}^T \mathbf{y} = \mathbf{y}^T \mathbf{x}$
 - $\mathbf{x}^T \mathbf{x} = ||\mathbf{x}||^2$, where $||\mathbf{x}||$ is length of \mathbf{x}
 - $\mathbf{x}\mathbf{y}^T$: outer product. Is a rank 1 matrix. if $\mathbf{x} \in \mathbf{R}^m$ and $\mathbf{y} \in \mathbf{R}^n$ then $\mathbf{x}\mathbf{y}^T \in \mathbf{R}^{m \times n}$ - $\mathbf{x}\mathbf{y}^T \neq \mathbf{y}\mathbf{x}^T$

General Solutions of $A\mathbf{x} = \mathbf{b}$ for $A \in \mathbf{R}^{m \times n}$

- Algorithm: Gauss-Jordan Elimination $[A \ \mathbf{b}] \rightarrow [R \ \mathbf{d}]$ where R is reduced row echelon form
- Identify rank of A (number of pivot columns) and label pivot and free columns.
- Check *existence* of solution ($\mathbf{d} \in C(R)$ implies $\mathbf{b} \in C(A)$).
- Solve $R\mathbf{x}_p = \mathbf{d}$ for the particular solution \mathbf{x}_p (i.e. combination of pivot columns and **no** free columns that add to **d**).
- Find special solutions as basis of N(R) = N(A).
- General solution is $\mathbf{x} = \mathbf{x}_p + N\mathbf{c}$ if $\mathbf{b} \in C(A)$
- Note: \mathbf{x}_p not usually entirely in $C(A^T)$ (i.e. $\mathbf{x}_p \neq x^+$). $\mathbf{x}^+ = A^+ \mathbf{b} = A^+ A \mathbf{x}_p$

The four fundamental subspaces of $A \in \mathbf{R}^{m \times n}$

- Definition of Basis: a minimum set of linearly independent vectors that span a vector space or subspace.
- Definition of Dimension: the number of basis vectors for any subspace.
- The four subspaces of a matrix A which is $m \times n$ with rank r

Name	Symbol	Dimension	Basis
Row Space	$C(A^T) \subset \mathbf{R}^n$	r	linearly independent rows of R
Null Space	$N(A) \subset \mathbf{R}^n$	n-r	special solutions of $A\mathbf{x} = 0$
Column Space	$C(A) \subset \mathbf{R}^m$	r	linearly independent columns of A
Left Null Space	$N(A^T) \subset \mathbf{R}^m$	m-r	special solutions of $A^T \mathbf{x} = 0$

• Orthogonality of the four subspaces: $C(A^T) \perp N(A)$ in \mathbb{R}^n and $C(A) \perp N(A^T)$ in \mathbb{R}^m .

Projections, Q matrices, Least Squares

- Fundamental Equation: $A^T A \hat{\mathbf{x}} = A^T \mathbf{b}$.
- Principal Algorithm: Gram-Schmidt Orthoganalization $A \rightarrow Q$

• Factorization: A = QR

Projections

- Project **b** onto the column space of A:
 - 1. solve $A^T A \hat{\mathbf{x}} = A^T \mathbf{b}$ for the *least-squares solution* $\hat{\mathbf{x}}$. (symbolically $\hat{\mathbf{x}} = (A^T A)^{-1} A^T \mathbf{b}$ if A is full column rank...but you should use Gaussian Elimination to solve for $\hat{\mathbf{x}}$).
 - 2. The projection is $\mathbf{p} = A\hat{\mathbf{x}}$.
 - 3. The projection Matrix is $P = A(A^T A)^{-1}A^T$ s.t. $p = P\mathbf{b}$
- Projection onto a line is just the special case that $A = \mathbf{a}$
- Projection matrices are usually singular (unless A is square invertible where P = I.

Least-squares solutions and curve fitting

- Find the best solution (shortest error) to Ax = b when A is full column rank and b ∉ C(A). Just solve A^TA x̂ = A^Tb for x̂ as above.
- The error $\mathbf{e} = A\hat{\mathbf{x}} \mathbf{b}$ will be minimum such that $\mathbf{e} \in N(A^T)$ (i.e. $A^T \mathbf{e} = \mathbf{0}$).
- General function fitting through points:
 - 1. fit straight lines $y(x) = c_0 + c_1 x$ through *n* points
 - 2. fit general polynomials $y(x) = c_0 + c_1 x + c_2 x^2 + \ldots + c_p x^p$ through $n \ge p$ points.
 - 3. fit general linear combination of functions $y(x) = \sum_{i=0}^{n} c_i f_i(x)$
 - 4. In general, the problem set up is $A(\mathbf{x})\mathbf{c} = \mathbf{y}$ where $A(\mathbf{x})$ is a generalized vandermonde matrix with columns $f_i(\mathbf{x})$, \mathbf{c} is the vector of unknown coefficients and \mathbf{y} is a vector of data values.

Orthonormal Bases, Q matrices and Gram-Schmidt

- Q matrices (general $m \times n$) have n orthonormal columns such that $Q^T Q = I$.
- Gram-Schmidt takes $A \rightarrow Q$ by

$$\mathbf{q}_{1} = \frac{\mathbf{a}_{1}}{||\mathbf{a}_{1}||}$$
$$\mathbf{b}_{2} = \mathbf{a}_{2} - \mathbf{q}_{1}(\mathbf{q}_{1}^{T}\mathbf{a}_{2}) \qquad \mathbf{q}_{2} = \frac{\mathbf{b}_{2}}{||\mathbf{b}_{2}||}$$
$$\mathbf{b}_{3} = \mathbf{a}_{3} - \mathbf{q}_{1}(\mathbf{q}_{1}^{T}\mathbf{a}_{3}) - \mathbf{q}_{2}(\mathbf{q}_{2}^{T}\mathbf{a}_{3}) \qquad \mathbf{q}_{3} = \frac{\mathbf{b}_{3}}{||\mathbf{b}_{3}||}$$

such that C(Q) = C(A).

- $R = Q^T A$ is upper triangular.
- Least squares becomes $R\hat{\mathbf{x}} = Q^T \mathbf{b}, \mathbf{p} = QQ^T \mathbf{b}, P = QQ^T$.

Properties of Projection matrices • All projection matrices can be written as $P = QQ^T$ where $Q \in \mathbf{R}^{m \times n}$ contains an orthonormal basis for an *n* dimensional subspace of \mathbf{R}^m S. $\mathbf{p} = P\mathbf{b}$ is the **orthogonal projection** of any vector **b** onto that subspace. $P^{\perp} = (I - QQ^T)$ is the projection matrix onto the orthogonal complement S^{\perp} .

- $P = QQ^T$ implies that
 - All projection matrices are square, symmetric and at least positive semi-definite.
 - $P^2 = P^3 = P^q = P$
 - Most projection matrices are singular (if n < m)
 - If n = m (Q is square), P = I.
 - therefore the determinant |P| = 0 or 1.
 - Columns of Q are eigenvectors of P with eigenvalue $\lambda = 1$
 - vectors in $N(Q^T)$ are eigenvectors with eigenvalue $\lambda = 0$
 - The singular values of *P* are all 1.
 - The (economy sized) SVD of P is QI_nQ^T where I_n is the $n \times n$ identity matrix.

The Determinant (square matrices)

- |A| = 0 if A is singular, |I| = 1, |P| = ±1 for permutation matrices (swapping a row changes the sign of |A|). |Q| = ±1.
- $|tA| = t^n |A|$ for t a scalar (the determinant is linear by rows
- $\det\left(\left[\begin{array}{cc}a&b\\c&d\end{array}\right]\right) = ad bc$
- $|A| = \pm |U|$ (determinant is the sum of the pivots)
- $|AB| = |A||B|, |A^{-1}| = 1/|A|, |A^{T}| = |A|$
- Find |A| by cofactor expansion (and watch for signs)
- Find $|A \lambda I|$ for eigenvalue problems.

Eigen problems (square matrices again)

- Equation: $A\mathbf{x} = \lambda \mathbf{x}$
- Algorithm:
 - 1. Find *n* Eigenvalues, λ as roots of *n*-th order polynomial $|A \lambda I|$
 - 2. Find *n* Eigenvectors as the Null Space of $(A \lambda_i I)$
- Tests:

-
$$\sum_{i=1}^{n} \lambda_i = \operatorname{Tr}(A)$$

- $\prod_{i=1}^{n} \lambda_i = |A|$

- Special cases:
 - 2 × 2 matrices: $\lambda = \frac{Tr \pm \sqrt{Tr^2 4|A|}}{2}$
 - Singular matrices: any vector in N(A) is a eigenvector with eigenvalue zero. Always n r zero eigenvalues.
 - Triangular matrices (including diagonal), eigenvalues are diagonal terms.
 - square Rank 1 matrix $A = \mathbf{u}\mathbf{v}^T$, $\mathbf{u}, \mathbf{v} \in \mathbf{R}^n$
 - * **u** is an eigenvector with eigenvalue $\mathbf{u}^T \mathbf{v}$
 - * any vector in $N(\mathbf{v}^T)$ is an eigenvector with eigenvalue 0
 - Projection matrices $P = QQ^T$ (see section above)
 - Markov Matrices (all columns sum to 1). The largest eigenvalue is 1 and all other eigenvalues are < 1. Example, the Google matrix.
- Factorizations:
 - 1. General: $AS = S\Lambda$
 - 2. Diagonalizable $A = S\Lambda S^{-1}$, $\Lambda = S^{-1}AS$.
 - 3. non-Diagonalizable $A = MJM^{-1}$ (not covered in class)
 - 4. *A* is symmetric $(A^T = A)$: $A = Q\Lambda Q^T$.
- Diagonalization of matrices: A can be diagonalized if
 - all eigenvalues are distinct (no repeated roots)
 - Eigenvalues are repeated but Eigenvectors are Linearly independent
 - A is symmetric
- Symmetric Matrices
 - Have all real λ 's
 - Have orthogonal eigenvectors (which can be chosen orthonormal)
 - Can always be diagonalized.
 - Positive Definite Symmetric matrices all have eigenvalues > 0
 - Positive Semi-Definite Symmetric matrices have $\lambda_i \geq 0$.
 - $A^T A$ and $A A^T$ are both symmetric and at least positive semi-definite.
 - Tests for Symmetric Positive Definite matrices
 - * All pivots are positive (sign of pivots = sign of eigenvalues for $A^T = A$)
 - * quadratic form $f(\mathbf{x}) = \mathbf{x}^T A \mathbf{x} > 0$ for all $\mathbf{x} \neq \mathbf{0}$
- Applications
 - 1. Matrix Powers: if $A = S\Lambda S^{-1}$ then $A^n = S\Lambda^n S^{-1}$
 - 2. Iterative maps: $\mathbf{u}_{n+1} = A\mathbf{u}_n$ implies $\mathbf{u}_n = A^n \mathbf{u}_0$ or $\mathbf{u}_n = S\Lambda^n S^{-1} \mathbf{u}_0$ or $\mathbf{u}_n = c_1 \lambda_1^n \mathbf{x}_1 + c_2 \lambda_2^n \mathbf{x}_2 + \ldots + c_p \lambda_1^n \mathbf{x}_p$

- 3. Dynamical Systems: $\frac{d\mathbf{u}}{dt} = A\mathbf{u}$. General solution $\mathbf{u}(t) = Se^{\Lambda t}S^{-1}\mathbf{u}_0$ or $\mathbf{u}(t) = c_1e^{\lambda_1 t}\mathbf{x}_1 + c_2e^{\lambda_2 t}\mathbf{x}_3c + \ldots + c_ne^{\lambda_n t}\mathbf{x}_n$
- 4. Matrix exponential e^A . If A is diagonalizable $e^A = Se^{\Lambda}S^{-1}$. In general

$$e^{A} = I + A + A^{2}/2 + \dots A^{n}/n! + \dots$$

The Singular value decomposition: SVD $A = U\Sigma V^T$

- All matrices $(A \in \mathbf{R}^{m \times n})$ can be written as $U \Sigma V^T$ (or columwise as $A \mathbf{v}_i = \sigma_i \mathbf{u}_i$ where
 - 1. $U \in \mathbf{R}^{m \times m}, \Sigma \in \mathbf{R}^{m \times n}$ and $V \in \mathbf{R}^{n \times n}$
 - 2. $U^T U = I, V^T V = I$
 - 3. Σ is a "diagonal" matrix with $\sigma_1 \ge \sigma_2 \ge \ldots \sigma_r > 0$ where r is the rank (which is $\le \min(m, n)$)
 - 4. The columns of V are eigenvectors of $A^T A$, the columns of U are eigenvectors of AA^T and the "singular values" $\sigma_i = \sqrt{\lambda_i}$ where λ_i are the eigenvalues of $A^T A$ (or AA^T , they're the same) sorted from largest to smallest.
- A recipe for finding the SVD
 - 1. Find eigenvalues and eigenvectors of $A^T A$.
 - 2. Sort the eigenvalues largest to smallest and set $\sigma_i = \sqrt{\lambda_i}$
 - 3. Make the corresponding eigenvectors orthonormal.
 - 4. For all $\sigma_i > 0$ calculate $\mathbf{u}_i = A\mathbf{v}_i/\sigma_i$
 - 5. For all $\sigma_i = 0$ the \mathbf{u}_i are found from an *orthonormal* basis for the left Null-space $N(A^T)$.
- Properties of the SVD
 - The columns of U and V contain orthonormal bases for the 4 fundamental subspaces.
 - 1. The first r columns of U are a basis for the column space C(A)
 - 2. The last m r columns of U are a basis for the left-Null space $N(A^T)$
 - 3. The first r columns of V are a basis for the row space $C(A^T)$
 - 4. The last n r columns of V are a basis for the Null Space N(A).
 - if A is invertible, $A^{-1} = V \Sigma^{-1} U^T$.
 - if A has a null-space the Pseudo-inverse $A^+ = V\Sigma^+ U^T$ where $\Sigma^+ = \Sigma^{-1}$ for all $\sigma_i > 0$ and equals 0 where $\sigma_i = 0$.
 - x⁺ = A⁺b is the *shortest* least squares solution (i.e is entirely in the row space of A).
 - $P = AA^+ = QQ^T$ is the projection matrix onto C(A) (i.e. where Q contains the first r columns of U.

- $P = A^+A$ is the projection matrix onto $C(A^T)$
- Applications of the SVD
 - Least-squares by pseudo-inverse $\mathbf{x}^+ = A^+ \mathbf{b}$
 - Total-Least squares (best fit line/plane with orthogonal errors)
 - EOF/Principal component analysis.