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[1] We present a hybrid method for the numerical solution of advection-diffusion problems that combines
two standard algorithms: semi-Lagrangian schemes for hyperbolic advection-reaction problems and Crank-
Nicolson schemes for purely diffusive problems. We show that the hybrid scheme is identical to the two
end-member schemes in the limit of infinite and zero Peclet number and remains accurate over a wide
range of Peclet numbers. This scheme does not have a CFL stability criterion allowing the choice of time
step to be decoupled from the spatial resolution. We compare numerical results with an analytic solution
and test both an operator split version of our method and a combined version that solves advection and
diffusion simultaneously. We also compare results of simple explicit and implicit numerical schemes and
show that the semi-Lagrangian Crank-Nicolson (SLCN) scheme is both faster and more accurate on the
same problem. We then apply the combined SLCN scheme to a more geologically relevant benchmark for
calculating the thermal structure of a subduction zone. This problem demonstrates that the SLCN scheme
can remain stable and accurate at large Courant numbers even in flows with highly curved streamlines.
Finally, we introduce a variable order interpolation scheme for the semi-Lagrangian schemes that reduces
interpolation artifacts for sharp fronts without introducing numerical diffusion.
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1. Introduction

[2] Advection-diffusion problems are ubiquitous in
physical sciences and engineering and can pose
significant challenges for accurate numerical solu-
tion. Typical problems arise where the Peclet num-
ber varies strongly across the domain as, for
example, in convection problems that are predom-
inantly advective but develop narrow diffusive

boundary layers, or for problems where advective
stirring significantly steepens concentration gra-
dients enhancing diffusion. These problems can
also prove difficult for operator splitting approaches
when advection modifies gradients on timescales
comparable to diffusion timescales. We have also
encountered problems in advection-diffusion-
reaction problems [e.g., Spiegelman et al., 2001;
Spiegelman and Kelemen, 2003] (see http://
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www.ldeo.columbia.edu/�mspieg/SolFlow/)
where the three processes are so closely balanced
that small amounts of excess numerical diffusion (or
even operator splitting) can change the numerical
results. Ideally we would like a efficient numerical
solver that can handle a wide range of Peclet
numbers and solve both advection and diffusion
simultaneously.

[3] Here, we describe a numerical scheme with
these properties that we have found useful for
solving chemical transport in reactive media. This
scheme is a hybrid that combines Crank-Nicolson
schemes for diffusion and semi-Lagrangian
schemes for advection, drawing on advantages of
both algorithms. We show that this scheme reduces
identically to the two end-member schemes in the
limits of zero and infinite Peclet number and is
accurate for a wide range of Peclet numbers in
between. Furthermore, SLCN has no inherent sta-
bility criterion and therefore it decouples the reso-
lution in space from the resolution in time,
reducing the computational cost of increasing the
grid size. We present numerical tests of the scheme
against an analytic solution that couples advection
and diffusion. We show that the combined scheme
is more accurate and faster than simple explicit or
implicit schemes. We also consider a more geolog-
ically relevant problem of calculating the thermal
structure in subduction zones and demonstrate the
utility of being able to decouple spatial and tem-
poral resolution. We discuss existing short-comings
of this scheme and some approaches to correcting
them.

2. Algorithms

[4] Before developing the hybrid semi-Lagrangian
Crank-Nicolson scheme it is worth briefly review-
ing the component schemes and their behavior.

2.1. Basic Algorithms

2.1.1. Crank-Nicolson Scheme

[5] A d-dimensional Crank-Nicolson scheme for
solution of the diffusion equation

@u

@t
¼ r2u ð1Þ

can be written as

unþ1 � un

Dt
¼ 1

2
Lunþ1 þLun
� �

ð2Þ

where un is the discrete solution to equation (1) at
time step n and L is the discrete diffusion operator
(Laplacian). Rearranging equation (2) yields

I � Dt

2
L

� �
unþ1 ¼ I þ Dt

2
L

� �
un ð3Þ

which is a sparse linear system (assuming L is a
linear operator) for un+1 which we solve rapidly
using a standard geometric multi-grid solver [e.g.,
Briggs et al., 2000] for cartesian geometries. The
Crank-Nicolson scheme is unconditionally stable
for all time steps.

2.1.2. Semi-Lagrangian Schemes

[6] Semi-Lagrangian schemes solve the advection-
reaction problem

@u

@t
þ v 	 ru ¼ f u; x; tð Þ ð4Þ

using the method of characteristics for each point
in a regular mesh. Unlike fully Lagrangian
(particle tracking schemes), which take an initially
regular mesh and distort it, semi-Lagrangian
schemes are effectively particle tracking schemes
between two regular meshes that preserve the
regularity of the mesh from time step to time step.
Staniforth and Cote [1991] provide a useful
introduction and details for the basic schemes.
More complex variants (including conservative,
parallel and 3-D unstructured mesh implementa-
tions) are given by Bermejo and Conde [2002],
Malevsky and Thomas [1997], Giraldo et al.
[2003], Kaazempur-mofrad and Ethier [2002],
and Kaazempur-mofrad et al. [2003]. The essen-
tial idea of semi-Lagrangian schemes is that they
actually solve the equation

Du

Dt
¼ f u; x; tð Þ ð5Þ

as an ordinary differential equation along the
trajectory that connects from some take-off point
x* at time t to the regular grid point x at time t +
Dt. In general they can be written as

unþ1 ¼ un* þ
Z tþDt

t

f u tð Þ; x tð Þ; tð Þdt ð6Þ

where un+1 is the solution on the regular grid at
time step n + 1. u*

n = un(t,x*) is the value of the
solution at the take-off point (which is generally
not on the grid). The final term is the line integral
of the source terms along the trajectory. The take-
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off point x* is found by solving the ODE particle
tracking problem

dx

dt
¼ �v ð7Þ

starting at the grid point x and moving back in
time. Once the take-off point is located, the value
of the function and any associated source terms
are found at this point by interpolation from the
regular mesh un. Semi-Lagrangian schemes have
considerable flexibility in their choice of particle
tracking and interpolation schemes [e.g., Martin
and Gorelick, 2005; Kaazempur-mofrad and
Ethier, 2002]. Here we use the simplest second-
order, two-level scheme which uses an iterated
midpoint scheme to find the take-off point and
bicubic interpolation (in 2-D) to interpolate values
at time step n (see Staniforth and Cote [1991] for
details). Lower-order interpolants such as bilinear
interpolation introduce systematic errors similar to
the numerical diffusion introduced by low-order
up-wind schemes and are not acceptable [e.g., see
Bermejo and Conde, 2002]. However, higher-
order interpolants can produce systematic over-
shoots near sharp edges that remain localized to
the edges but grow with time. The overshoot
problem can be handled by variable order
interpolation schemes, for example, the QMSL
scheme of Bermejo and Conde [2002]. Section 5
describes another hybrid interpolation scheme that
preserves high-order interpolation for smooth
fields but prevents overshoots near discontinuities.

[7] To complete equation (6) requires an approxi-
mation to the final integral. For the second-order
two-level scheme, we use a trapezoidal rule so that
the full algorithm can be written

unþ1 ¼ un* þ Dt

2
fn* þ fnþ1
h i

ð8Þ

where f*
n = f(x*,t) is the value of the source term

(usually interpolated) at the take-off point.

[8] For pure advection problems with no source
terms, the semi-Lagrangian scheme reduces to
un+1 = u*

n, i.e., the value of the function remains
constant on the characteristic and the old value is
simply copied into its new position on the regular
grid. As long as the take-off point and the old value
can be found accurately, there is no stability limit
to the length of the time step. In practice, the
second-order accuracy of the midpoint scheme
restricts the time step to �4–5 times the Courant
number although for simpler flow fields, time steps

greater than 10 times the Courant condition are
possible.

2.2. Hybrid Schemes

[9] Given these two schemes for advection and
diffusion, we combine them to solve the scaled,
constant diffusivity advection-diffusion problem

@u

@t
þ v 	 ru ¼ r2u ð9Þ

where the maximum scaled velocity kvkmax is
order the Peclet number, Pe = Lv0

k .

2.2.1. Operator Splitting OS-SLCN

[10] The first approach simply uses the semi-
Lagrangian scheme to advect the quantity for a
time Dt such that un

0
= u*

n and then diffuses for a
time Dt using the CN scheme. The operator split
semi-Lagrangian Crank-Nicolson scheme for equa-
tion (9) is then

I � Dt

2
L

� �
unþ1 ¼ I þ Dt

2
L

� �
un

0 ð10Þ

[11] Note that un
0
has first been moved onto the

regular grid before the diffusion operator is
applied. A more complex operator split-scheme
for 3-D unstructured meshes is presented by
Kaazempur-mofrad et al. [2003] combining ‘‘char-
acteristic Galerkin’’ schemes for advection
[Kaazempur-mofrad and Ethier, 2002] together
with standard Galerkin treatment of diffusion. For
small time steps or for flows that do not significantly
distort gradients over a time step, the operator split
SLCN scheme can produce accurate solutions for
large time steps (see section 3). However, for
strongly distorting flows where advection and
diffusion operate simultaneously, we find that a
small modification to this scheme is more reliable.

2.2.2. Operator Combined SLCN

[12] In the operator combined SLCN scheme, we
consider the problem slightly differently as

Du

Dt
¼ r2u ð11Þ

and treat it in the same manner as equation (5) with
the diffusion as a ‘‘source term.’’ Using the same
discretization that leads to equation (8) we write
the SLCN scheme as

unþ1 ¼ un* þ Dt

2
Lunð Þ*þLunþ1

� �
ð12Þ
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where (Lun)* is the diffusion operator acting at the
take-off point x* before advection has distorted the
gradients. If L is the discrete Laplacian operator
and C* is the bicubic interpolation operator at point
x* then it is straightforward to show, for a regular
cartesian grid, that the order of interpolation and
diffusion is interchangeable, i.e., (Lun)* = LC*un =
CLun. Thus, in practice, it is usually easier to
apply the Laplacian on the regular grid at time step
n and then interpolate the resulting field. With
these definitions equation (12) can be rearranged to
yield

I � Dt

2
L

� �
unþ1 ¼ un* þ Dt

2
Lunð Þ* ð13Þ

or

I � Dt

2
L

� �
unþ1 ¼ C* I þ Dt

2
L

� 	
un

� �
ð14Þ

[13] In the limit of no motion (Pe = 0 or v = 0),
equation (14) is identical to a Crank-Nicolson
scheme (equation (3)) as C* = I (or u*

n = un

and (Lun)* = Lun). It is less obvious that in
the limit of no diffusion (Pe ! 1), this
scheme reduces identically to the semi-Lagrangian
scheme.

[14] To see this, we first note that although none
of these schemes have stability criteria, we still
have to choose a time step Dt based on some
accuracy criterion. For mixed advection-diffusion
problems we choose a time step based on the
fastest process and an accuracy criterion based on
either the maximum number of grid points we
want to move in a time step or the smallest
wavelength that we want to decay accurately.
For example we set

Dt ¼ min
aDx

k v kmax

; bDxð Þ2
� 	

ð15Þ

where Dx is a measure of the grid spacing, a is the
maximum number of grid points to move in a time
step (i.e., the maximum Courant number) and l =
bDx is the minimum wavelength to resolve for
diffusion at long times. In the limit of large
velocities (Pe ! 1), the time it takes to move a
grid points is negligible (i.e., Dt = O(e)). In the
limit Dt ! 0 equation (13) reduces to un+1 = u*

n

which is just the semi-Lagrangian advection
scheme.

[15] For strongly advection dominated problems, it
usually makes more sense to scale by the advection

time so that the dimensionless velocities are order
1, in which case the problem becomes

Du

Dt
¼ 1

Pe
r2u ð16Þ

and the combined SLCN scheme becomes

I � Dt

2Pe
L

� �
unþ1 ¼ un* þ Dt

2Pe
Lunð Þ* ð17Þ

and the Peclet number enters into the operator.
With this scaling, it is clear that as Pe ! 1 the
problem reduced identically to the non-diffusive
semi-Lagrangian scheme.

3. An Analytic Test Problem

[16] Strictly speaking, the method of characteristics
does not work for advection-diffusion problems
because the diffusion operator moves information
between particle trajectories such that character-
istics do not exist for all times. However, in
practice, this numerical scheme works well because
it only considers the particle trajectories for a
single time step and just provides a more accurate
method to map a uniform grid un at time t to
another uniform grid un+1 at time t + Dt. We have
not proved this rigorously, but below we describe a
useful test of the algorithm for an analytic solution
that combines both advection and diffusion in a
non-separable way.

[17] This problem considers the solution of equa-
tion (9) in an infinite domain with velocity field

v x; tð Þ ¼ U yð Þ ¼ Peyi ð18Þ

and initial condition

u x; 0ð Þ ¼ eik	x ð19Þ

Physically, this problem corresponds to advection-
diffusion of a plane wave in a shearing flow field
(see Figure 1).

[18] In the absence of diffusion, this problem can
be solved by characteristics for any initial condi-
tion u(x, 0) = f(x) such that u(x, t) = f(x � Peyt, y).
In the case of a plane wave initial condition, the
solution is

u x; tð Þ ¼ ei kx x�Peytð Þþkyy½ � ð20Þ
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which can be written more physically as u(x, t) =
eik(t)	x where

k tð Þ ¼ kxiþ ky � kxPet

 �

j

is a time dependent wave-number. Thus any
initial plane wave remains a plane wave but
changes wavelength with time. For an initially
vertical plane wave (ky = 0), shear increases the
wave-number with time and should enhance
diffusion.

[19] An analytic solution to the full advection-
diffusion problem can be found by seeking solu-
tions of the form

u x; tð Þ ¼ ei k tð Þ	xð Þþs tð Þ ð21Þ

Substituting equations (18) and (21) into equa-
tion (9) and solving for s(t) gives

s tð Þ ¼ � k2t � Pekxkyt
2 þ Pekxð Þ2t3=3

h i
ð22Þ

where k2 = kx
2 + ky

2. In the absence of advection
(Pe = 0), this solution is simply the exponential
decay of a static plane wave. When Pe > 0 and
initially ky = 0, the shear enhances the decay rate
of the amplitude as expected.

[20] We test both the operator split and combined
versions of the SLCN scheme against the real part
of this solution for a computational domain x 2
[�1/2, 1/2], y 2 [�1/2, 1/2]. Boundary conditions
are periodic in the x-direction and Dirichlet in y; we
prescribe the analytical solution at y = ±1/2 for all

x. The initial condition that we use is ky = 0, kx =
10p for five full cycles in the x-direction.

[21] In addition to the two schemes described
above, we also compare results with numerical
solutions using a Forward-time centered-space
(FTCS) scheme as well as a semi-implicit Crank-
Nicolson centered-space (CNCS) scheme. In both
schemes, the advection term is discretized as

Pey
@u

@x
� Pey

2Dx
uniþ1;j � uni�1;j

h i
¼ Aun

and therefore the explicit FTCS scheme can be
written as

unþ1 ¼ I þ Dt �Aþ Lð Þ½ �un ð23Þ

and the CNCS scheme as

I þ Dt

2
A� Lð Þ

� �
unþ1 ¼ I � Dt

2
A� Lð Þ

� �
un ð24Þ

The linear system in equation (24) is solved rapidly
using multigrid. The FTCS is a straw-man scheme:
its CFL condition limits it to very small time steps
and even under these conditions its accuracy and
efficiency are poor. However, it provides a useful
baseline for the simplest explicit scheme. The
CNCS scheme is better than FTCS however it too
has a stability criterion that limits the time step
size.

4. Results

[22] For each run of the benchmark problem we
measure the accuracy of the solution and the

Figure 1. Results of an example calculation using the operator combined SLCN scheme. (a) The u field at model
time t = 2.8 with a grid spacing of 25 points per initial wavelength. (b) The residual, analytic minus numerical, at the
same time. (c) The residual over model time. The red curve shows the maximum residual normalized by the L2 norm
of the discrete analytic solution. The blue curve is the grid averaged L2 norm of the residual, normalized in the same
way.
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process time. Accuracy is measured by comparing
the numerical solution to a discretized version of
the exact solution utrue

n :

%error ¼ k untrue � un k2 or1
k untrue k2

� 100 ð25Þ

Timing results are relative to one ‘‘work unit’’
which is the time it takes for 1200 FTCS sweeps on
a 100 � 100 grid (which at one instant in
computational history was conveniently equal to
1 second). One FTCS sweep is a good measure of a
standard stencil operation.

[23] Figure 1 shows the results of an example
calculation using operator combined SLCN for
the scaling given by equations (16) and (17). In
this example the Peclet number is 4000 and final
shear strain is 0.625. This combination of param-
eters results in the decay of the signal to 30% of its
initial amplitude. The L2 norm percent error is
parallel to the infinity norm in our calculations; for
the rest of the paper, percent error is reported in
terms of the infinity norm.

[24] Figure 2 shows the comparison of accuracy as
a function of Peclet number for the SLCN scheme
in operator split and combined versions with the
CNCS scheme. Each simulation is run to approx-
imately one e-folding time in amplitude, thus the
maximum amount of shear increases with Peclet
number. For small Peclet number (Pe ] 10), all the
schemes give the same results. This is as expected:
they all reduce to pure Crank-Nicolson for Pe ! 0.

For large Peclet number runs where the maximum
shear is larger, SLCN performs considerably better
than CNCS, with a significant advantage for the
operator combined version of SLCN.

[25] Figure 3 shows the results of a suite of
simulations similar to Figure 1 but with different
Dx and Dt. All calculations have been run to one e-
folding time in amplitude. It is clear that even for
time steps an order of magnitude longer, SLCN is
more accurate than the other schemes. For exam-
ple, in Figure 3c, with 12 grid intervals per initial
wavelength and a Courant number of about 10, the
error is 0.03%, around an order of magnitude
smaller than the CNCS scheme can achieve.

[26] The computational time required for each of
the calculations performed is shown in Figure 4.
Computation time for the CNCS scheme and the
SLCN schemes are comparable for a given Courant
number as they use the same multigrid scheme for
solving the respective linear systems. However, the
SLCN scheme is stable and accurate to much
higher Courant number, so it is capable of accel-
erating the simulation significantly. For the exam-
ple given above, the SLCN scheme is about five
times faster than the CNCS scheme for an order of
magnitude improvement in accuracy.

[27] A comparison of operator split and operator
combined SLCN shows that while the operator
combined SLCN scheme has a wide stability range
where accuracy is approximately constant, the
operator split version has two regimes of accuracy
dependence on Courant number. In the first regime,
at lower Courant numbers, the performance of the
scheme improves with increasing time step size.
The second regime shows a rapid degeneration of
the performance as the time step size continues to
increase.

5. Discussion

[28] The utility of the shearing, diffusing plane
wave as a benchmark problem is that it couples
advection and diffusion in a non-trivial way while
still allowing for an analytic solution. This test
clearly distinguishes the behavior of the different
schemes and shows that the SLCN scheme is
significantly more accurate and efficient than the
other schemes considered, particularly at high Pe.
The performance of the operator split SLCN
scheme is the same as the operator combined
version, but its accuracy is highly variable and
overall, the combined scheme appears to be more

Figure 2. L1 percent error as a function of Peclet
number for CNCS, operator split SLCN, and operator
combined SLCN. The time step is set according to
equation (15), with b = 0.7 and a = 6 for the semi-
Lagrangian algorithms and a = 1 for the CNCS scheme.
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robust. As yet, we do not have a good understand-
ing of the behavior of the operator split scheme.

[29] Nevertheless, there are some obvious limita-
tions of this benchmark problem with respect to
testing the SLCN scheme for more complex flows.
The principal issue is that in a shear flow, the

velocity along any 1-D horizontal line is a constant
that only depends on height. Thus the calculated
characteristics are exact and interpolation is re-
duced to 1-D along lines (although the times
reported are for full bicubic interpolation). A more
demanding test, albeit without an analytic solution,
is to calculate the advection-diffusion of tempera-

Figure 3. L1 percent error (as defined in equation (25)) as a function of Courant number, PevmaxDt
Dx

at the constant
Pevmax used in Figure 1. Each graph represents a different grid spacing Dx, which is described in terms of grid points
per wavelength of the initial u field (Figure 1): (a) 6 grid points per wavelength (i.e., 33 � 33 grid), (b) 9 points per
wavelength, (c) 12, (d) 19, (e) 25, and (f) 38.
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ture for the kinematic ‘‘subduction zone’’ problem
shown in Figure 5a. This problem is described in
detail at the Web site associated with [van Keken et
al., 2005] (see http://www.geo.lsa.umich.edu/
keken/subduction/benchmark/) and corresponds to
benchmark 1a. This problem requires solving for
the advection-diffusion of temperature in a flow

field with strongly curved particle trajectories, a
stagnation point at the wedge corner, a discontin-
uous velocity field between the upper plate and
subducting plate, and extremely large temperature
gradients in the thermal boundary layers. Never-
theless, the operator combined SLCN scheme per-
forms well for this problem.

Figure 4. Computational time (in work units) as a function of Courant number, PevmaxDt
Dx

for the runs shown in
Figure 3. One work unit is the time required for 1200 FTCS time steps on a 100 � 100 grid. Each graph represents a
different grid spacing. These are, in terms of grid points per wavelength of the initial q field: (a) 6, (b) 9, (c) 12, (d) 19,
(e) 25, and (f) 38.
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[30] For example, the errors due to strongly curved
streamlines are small even at Courant numbers
�10. Figure 5b shows the difference in temper-
atures calculated using the second-order iterated
midpoint scheme to find the take-off points relative
to a scheme with near exact take-off positions
calculated using a adaptive time step Runge-Kutta
scheme on the analytic velocity field. The maxi-
mum differences are less than 0.6% (<2�C for the
temperature scaling used here). More significant
errors arise from underresolving the very large
temperature gradients near the wedge corner.
Figure 5c shows the relative temperature difference
from 320�C at a reference point located at 54 km

depth on the slab (i.e., T(54,54)). This point has
proved to be a useful benchmark for this problem
[see van Keken et al., 2005]) as it is extremely
sensitive to resolution in the corner (and, as it turns
out, to how the velocity discontinuity between the
upper plate and the slab is implemented). Temper-
ature differences are shown as a function of grid
spacing and Courant number for constant values of
the time step Dt. Temperature is most sensitive to
the grid spacing and not the time step or particle
tracking scheme and shows that accurate solution
of this problem requires highly refined grids. For
time-dependent problems, however, the SLCN
scheme allows for accurate spatial resolution with-

Figure 5. Advection-diffusion of temperature for the kinematic subduction zone benchmark 1a [van Keken et al.,
2005]. (a) Temperature field and stream function near the ‘‘wedge corner’’ for a problem with uniform grid spacing
D = 0.475 km and Courant number a = 4

ffiffiffi
2

p
= 5.7 which advects 4 grid squares along the slab per time step.

(b) Relative temperature difference due to take-off point mislocation (Tmidpoint/Texact � 1). This calculation has the
same grid spacings as Figure 5a but twice the Courant number. Even for a = 8

ffiffiffi
2

p
= 11.3, the maximum temperature

difference due to point mislocation is less than 2�C. (c) Scaled temperature differences from 320�C at a point located
at 54 km depth on the slab (T(54,54)) as a function of grid spacing, Courant number, and particle tracking scheme.
Dashed lines connect runs with the same time step Dt. Note, smaller errors can actually be produced for comparable
cost by using more highly refined grids and larger time steps.
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out a commensurate penalty in time step. In this
example, it is even possible to achieve improved
accuracy at the same computational cost by in-
creasing grid resolution and taking longer time
steps.

[31] Another limitation of the shearing-diffusing
plane-wave is that the quantity being transported
varies smoothly in space. It is common to encoun-
ter shocks or fronts in the transported quantity in
high Peclet number advection-diffusion problems.
A known problem with the semi-Lagrangian ad-
vection scheme arises under these circumstances.
The bicubic interpolant, chosen to reduce numeri-
cal diffusion without incurring too great a compu-
tational cost, tends to overshoot near dis-
continuities in the field. The overshoot problem
can be dealt with by considering error estimates
between different interpolation schemes (e.g., see
Bermejo and Conde [2002] for a conservative
quasi-monotone scheme for pure advection prob-
lems). Here we present an adaptive interpolation
method that retains the advantages of bicubic
interpolation while avoiding its associated over-
shoot problems. To demonstrate this issue, and our
solution, we performed a standard test of the semi-
Lagrangian advection scheme: calculating
solid-body rotation of a square bordered with a
discontinuity. Issues of numerical diffusion should
be negligible for problems with moderate physical
diffusivity, as diffusion will smooth the advected
quantities and avoid overshoots.

[32] The adaptive interpolation method makes use
of the fact that a bicubic interpolation is executed
by doing five cubic interpolations on four points

each. Avoiding overshooting on each of these five
one dimensional interpolation steps is thus required
for avoiding overshooting in the overall bicubic
interpolation.

[33] In constructing the one-dimensional cubic
overshoot detection algorithm we make the as-
sumption that the field is sufficiently well resolved
on the grid that there are no oscillations at the grid
scale. Thus we expect that over a set of four points,
the first derivative of the field can change signs at
most once. Given a set of field values yi with local
index i 2 {0, 1, 2, 3} and a real-valued interpola-
tion target in local grid coordinates x = iDx, 1 �
x � 2, we detect an overshoot using the following
steps:

[34] 1. For each i, compute the slope, y0i, of the
cubic interpolant at x = iDx.

[35] 2. There are oscillations in the interpolant over
the grid segment if SIGN(y03) equals SIGN(y

0
0) and

SIGN(y02) does not equal SIGN(y
0
3).

[36] Because this test is fairly expensive, it is
performed only if the set of points y meets two
conditions. First, the absolute range of y over the
interpolating patch must be greater than a speci-
fied fraction of the range in values over the whole
domain. If the set of interpolation points is
roughly constant within this fraction it may still
have features in the noise that cause detectable
but small overshoots that do not damage the
solution. Second, the cubic interpolant must fall
outside of a specified envelope around the linear
interpolant. This envelope is defined by a toler-
ance on the normalized difference between the

Figure 6. Two examples of adaptive interpolation with overshoot detection, both with x = 1.3. The green lines
delineate the tolerance envelope, the thickness of which is exaggerated for clarity. (a) In this case, assuming that the
field is smooth, the cubic interpolant is a better approximation than the linear one. The overshoot detection algorithm
correctly returns false. (b) This figure shows the overshoots that characterize the cubic interpolant near an edge. The
overshoot detection algorithm returns true, and thus the linear interpolant is chosen.
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cubic and the linear interpolants, as shown in
Figure 6.

[37] The results of the solid body rotation test are
shown in Figure 7 for three full rotations around a
corner of the box. The overshoots evident in the
pure bicubic interpolation run are suppressed by
the adaptive interpolation method. Bilinear inter-

polation is included for comparison (but tends to
show large amounts of numerical diffusion).

6. Conclusions

[38] A general numerical solver for advection-
diffusion problems must be capable of handling

Figure 7. Results for three interpolation methods for the semi-Lagrangian advection scheme, compared with the
analytic solution after three full rotations. (a) Analytic solution. (b) Bilinear interpolation. (c) Bicubic interpolation.
(d) Adaptive interpolation. (e) Profiles across the box after 1 (solid line), 3 (dashed line), and 9 (dash-dotted line) full
revolutions.
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pure advection, pure diffusion and any combina-
tion of the two. The accuracy and stability of such
a solver becomes especially critical in the case of
advectively dominated problems with sharp spatial
gradients in the transported quantity. The SLCN
algorithm draws on the strengths of the Crank-
Nicolson scheme for diffusion and the semi-
Lagrangian scheme for advection. Since neither
of these have time steps limited by a stability
criterion, the SLCN scheme is also unconditionally
stable. We have shown that the SLCN scheme is
accurate and efficient over a broad range of time
step sizes relative to two other advection-diffusion
schemes when the advection and diffusion opera-
tors act simultaneously on the transported field. For
more complex flow fields, the SLCN schemes
allows for enhanced spatial resolution to resolve
steep boundary layers without a commensurate
penalty in the time step. Finally, by employing
our adaptive interpolation method, the SLCN
scheme is able to handle discontinuities while
reducing the problems of cubic interpolant over-
shooting, and maintaining its low numerical
diffusivity.
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