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Abstract The intertropical convergence zone and the African monsoon system are highly sensitive to
climate forcing at orbital and millennial timescales. Both systems influence the strength and direction of
the trade winds along northwest Africa and thus directly impact coastal upwelling. Sediment cores from the
northwest African margin record upwelling-related changes in biological productivity connected to changes
in regional and hemispheric climate. We present records of 230Th-normalized biogenic opal and Corg fluxes
using a meridional transect of four cores from 19°N–31°N along the northwest African margin to examine
changes in paleoproductivity since the last glacial maximum. We find large changes in biogenic fluxes
synchronous with changes in eolian fluxes calculated using end-member modeling, suggesting that
paleoproductivity and dust fluxes were strongly coupled, likely linked by changes in wind strength. Opal and
Corg fluxes increase at all sites during Heinrich Stadial 1 and the Younger Dryas, consistent with an overall
intensification of the trade winds, and changes in the meridional flux gradient indicate a southward wind
shift at these times. Biogenic fluxes were lowest, and the meridional flux gradients were weakest during
the African Humid Period when the monsoon was invigorated due to precessional changes, with greater
rainfall and weaker trade winds over northwest Africa. These results expand the spatial coverage of previous
paleoproxy studies showing similar changes, and they provide support for modeling studies showing
changes in wind strength and direction consistent with increased upwelling during abrupt coolings and
decreased upwelling during the African Humid Period.

1. Introduction

Paleoclimate records from North Africa show that continental and marine climate during the African Humid
Period (AHP; 11.7–5 ka) was very different from the modern, resulting from nonlinear responses to gradual
insolation forcing [e.g., Adkins et al., 2006; deMenocal et al., 2000b; McGee et al., 2013; Prell and Kutzbach,
1987; Shanahan et al., 2015]. Many reconstructions also record rapid changes in African climate linked to
abrupt cooling events in the North Atlantic, such as the Younger Dryas (YD; 12.9–11.7 ka) and Heinrich
Stadial 1 (HS1; ~17.5–15 ka) [e.g., Adkins et al., 2006; McGee et al., 2013; Mulitza et al., 2008; Romero et al.,
2008;Weldeab et al., 2011; Zarriess and Mackensen, 2010]. North African climate is highly sensitive to changes
in the intensity and northward penetration of the African monsoon system, which is embedded within the
northern cell of the Hadley circulation and the Intertropical Convergence Zone (ITCZ).

The trade winds—the surface expression of the Hadley circulation—along with coastal geometry determine
the strength and location of coastal upwelling zones along the northwest African margin. The strength and
location of coastal upwelling help to determine coastal sea surface temperature (SST), which has been shown
to provide a positive feedback to orbital and millennial-scale changes in the monsoon [deMenocal et al.,
2000b; Liu et al., 2014;Mulitza et al., 2008; Tjallingii et al., 2008]. The strength of upwelling also partially deter-
mines the availability of nutrients at the ocean surface and, by extension, the surface production and sedi-
mentary accumulation of biogenic materials. Records of the accumulation of upwelling-driven biogenic
sediments along the northwest African margin thus provide an important means of reconstructing the
response of regional winds to high- and low-latitude influences over orbital and millennial timescales
[Freudenthal et al., 2002; Kuhlmann et al., 2004b;Martinez et al., 1999;Mulitza et al., 2008; Tjallingii et al., 2008].
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During the AHP, precessional increases in local summer insolation peaking at 10 ka [Berger and Loutre, 1991]
resulted in an intensification of the monsoon [Prell and Kutzbach, 1987] and northward migration of both the
ITCZ over the eastern tropical Atlantic and the rain belt over North Africa. North Africa contained several large
perennial lakes ranging in latitude from 13°N to 34°N [Gasse, 2000; Hoelzmann et al., 1998; Hoelzmann et al.,
2004; Kropelin et al., 2008; Street-Perrott and Harrison, 1984; Street-Perrott and Perrott, 1993], the approximate
range of the modern Sahara desert. The region also supported human settlements in this same latitudinal
range, as evidenced by archeological data [Kuper and Kropelin, 2006; Manning and Timpson, 2014]. Fluvial dis-
charge was greatly increased, while dust fluxes were dramatically reduced, as reflected in Gulf of Guinea paleo-
salinity data and by changes in the relative abundance of coarse-grained (eolian) and fine-grained (fluvial)
detrital sedimentary fluxes to ocean sediments [Adkins et al., 2006; Kuhlmann et al., 2004a; McGee et al., 2013;
Mulitza et al., 2008; Tjallingii et al., 2008; Weldeab et al., 2007]. Foraminiferal and diatom assemblages indicate
decreased upwelling (and upwelling-derived productivity) during the AHP, and alkenone-derived records of
SST show increased temperatures [Abrantes, 2000; Romero et al., 2008; Zarriess and Mackensen, 2010; Zhao
et al., 1995]. All available data are consistent with North Africa having been exceptionally wet during this period.

The termination of the AHP resulted from an orbital decrease in boreal summer insolation which caused a
southward retreat of the monsoonal rains and an ensuing reversal in the balance of evaporation and preci-
pitation for North Africa. Some paleolacustrine records and fluvial discharge indices suggest gradual
decreases in monsoonal precipitation between 6 and 4 ka B.P. [Gasse et al., 1990; Kropelin et al., 2008;
Street-Perrott and Harrison, 1984], and a recent data compilation suggests a time transgressive end of the
AHP spanning several thousand years, with sites in the north drying first [Shanahan et al., 2015]. In contrast,
sediments from Ocean Drilling Program (ODP) Site 658 (21°N) record a doubling of dust fluxes within a few
centuries of the termination of the AHP near 5 ka [Adkins et al., 2006]. Recent work on the transect of sediment
cores discussed here further indicates rapid, century-scale increases in 230Th-normalized dust fluxes near
5 ka B.P. across a large latitudinal range spanning 19°–27°N [McGee et al., 2013]. However, there is some
debate as to whether the observed dust flux changes primarily reflect changes in regional aridity and vegeta-
tion density or changes in the competence of the transporting winds. We address this issue here.

Abrupt stadial cooling events in the North Atlantic region are clearly imprinted on North African monsoonal
climate records. During HS1, dust fluxes were greatly elevated along the Mauritanian coast [McGee et al.,
2013] and SSTs decreased [Romero et al., 2008; Zhao et al., 1995]. An index of humidity based on the grain
size of terrigenous material in marine sediments suggests that HS1 was the most arid period in the past
~30 ka [Tjallingii et al., 2008]. Foraminiferal and diatom assemblages indicate increased upwelling (and
upwelling-derived productivity) during HS1, and bulk geochemical data lend support to the presence of both
increased dust as well as increased biogenic fluxes to the sediment [Abrantes, 2000; Kuhlmann et al., 2004b;
Martinez et al., 1999; Mulitza et al., 2008; Romero et al., 2008; Sarnthein et al., 1981; Zarriess and Mackensen,
2010]. All of these lines of evidence are consistent with a southward shift and intensification of the northern
trade winds as a result of rapid cooling of the North Atlantic and the associated decrease in North Atlantic
deepwater formation [McManus et al., 2004;Mulitza et al., 2008]. Climate models have likewise suggested that
such a southward shift of the Hadley Cell would be accompanied by an increase in trade wind strength
[Broccoli et al., 2006]. However, there is some uncertainty as to whether decreased SSTs along the northwest
Africanmargin duringHS1were due to (1) the southward advection of colder North Atlantic water, (2) increased
upwelling, or (3) both [Bard, 2002; Chapman et al., 2000; Claussen et al., 2003; deMenocal et al., 2000a;
Street-Perrott and Perrott, 1990; Zhao et al., 1995; Zhao et al., 2006].

The Bølling-Allerød warm period (BA; 14.7–12.9 ka) in the North Atlantic manifested as a time of decreased
dust fluxes [McGee et al., 2013; Mulitza et al., 2008] and increased SSTs [Romero et al., 2008] along the north-
west African margin. Bulk sedimentary Al/Si and Fe/K records also indicate generally more humid conditions
[Mulitza et al., 2008], all of which is consistent with a more northerly mean position of the African monsoonal
rain belt. In contrast, the Younger Dryas strongly resembles HS1 with respect to elevated dust fluxes [Adkins
et al., 2006; McGee et al., 2013], increased upwelling-derived biological productivity [Adkins et al., 2006;
Romero et al., 2008], lower humidity [Mulitza et al., 2008; Tjallingii et al., 2008;Weldeab et al., 2007], and lower
SSTs [Romero et al., 2008; Zhao et al., 1995; Zhao et al., 2000].

Here we present paleoproductivity records over the last 20 ka from a latitudinal transect of four cores along
the northwest African margin. Our 230Th-normalized flux records of biogenic opal and organic carbon (Corg)
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document spatial and temporal changes in the strength of upwelling-derived biological productivity asso-
ciated with orbital and millennial-scale changes. By examining paleoproductivity records from the coastal
upwelling system we seek to identify the influence of changes in wind patterns and to test whether
productivity changes documented in single cores reflect coherent regional-scale patterns [Adkins et al.,
2006; Bertrand et al., 1996; Romero et al., 2008].

We combine our results with records of eolian dust flux in the same cores [McGee et al., 2013] in order to
address the magnitude and timing of changes in regional climate, wind fields, and associated coastal
upwelling over the past 20 ka. By comparing the magnitudes of changes in two upwelling-derived biolo-
gical proxies to changes in dust fluxes in the same cores we hope to distinguish between several of the
major forcings common to all three proxies. If dust fluxes and biogenic fluxes are principally influenced
by wind strength and position, we would expect records of all three proxies to look similar through time
at each site. However, if dust fluxes are more significantly affected by regional paleohydrologic changes
and vegetation cover, or if biogenic fluxes are more sensitive to changes in the source and nutrient con-
tent of the upwelled water, then we might expect the biogenic and dust records to differ significantly.
Finally, the latitudinal transect allows us to examine meridional changes in regional climate, wind
strength, and coastal upwelling along the margin. In particular, changes in the north-south gradient in
opal and dust fluxes over time can be used to suggest latitudinal shifts in the northern trade wind position
and intensity.

2. Regional Background
2.1. Core Locations and Regional Setting

We present new opal and organic carbon results from four cores on the northwest African Margin. Cores
GC27, GC37, GC49, and GC68 were collected on the R/V Oceanus in 2007 as part of the Changing Holocene
Environments in the Eastern Tropical Atlantic cruise (OC437-7). Cores range from 19°N to 31°N and span
water depths of 1258m to 2771m (Table T11 and Figure F11). The southernmost cores (GC68 and GC49) are near
the area of maximummodern winter upwelling and trade wind strength (Figure 1a), while the northernmost
core (GC27) is in a region of relatively weak year-round winds [Mittelstaedt, 1991]. These differences in the
wind regime are reflected in the values of Si* and chlorophyll concentration in near-surface (200m) water
shown in Figures 1c and 1d.

The strength and seasonality of upwelling along the northwest African margin are influenced directly by the
trade winds, the lower limb of the northern hemisphere Hadley Cell. When the southern branch of the north-
easterly trade winds blow parallel to the North African coast, they induce Ekman transport of water offshore.
This water is subsequently replaced by cool nutrient-rich water from below. Over the ocean, the trades are
controlled by the migration of the ITCZ due to changes in insolation on both seasonal and orbital timescales;
changes in the relative heating of land and ocean may also play a role in coastal wind strength and orienta-
tion [Bakun, 1990]. The modern Atlantic ITCZ reaches its northernmost position (~15°N) during boreal sum-
mer, which causes strong trade winds from 20�32°N. During boreal winter the ITCZ shifts south to
approximately 5°N in the northwest margin region, and trade winds are strongest between 10 and 25°N at
this time [Van Camp et al., 1991]. Actual wind-driven upwelling is limited to a relatively narrow (20–30 km)
band along the shelf, but the influence of the upwelling system as indicated by low SSTs extends as far as
200–300 km from the coast [Mittelstaedt, 1991]. However, maximum accumulation of biogenic fluxes occurs
on the slope at depths from 1000 to 1500m due to shelf transport processes [Bertrand et al., 1996; Martinez
et al., 1999]. Our cores range from 75 to 160 km from the modern coast, or 30 to 80 km from the 120m
isobath, which approximates the LGM coastline (Table 1) [McGee et al., 2013]. Cores range from 1258m to
2771m water depth.

The seasonality of modern upwelling varies significantly with latitude. South of 20°N upwelling is strongest in
the winter and spring. From 20 to 25°N upwelling is strong year round, with maxima in the spring and
autumn. North of 25°N upwelling is strongest during summer and early autumn [Mittelstaedt, 1991]. In
general, the seasonality of upwelling is most pronounced south of Cape Blanc (20.8°N) and seasonality is
relatively insignificant north of 25°N [Mittelstaedt, 1991]. There is a wind shadow near 30°N due to the
presence of the Atlas Mountains that significantly decreases the overall strength of wind-driven upwelling
in this area [Mittelstaedt, 1991].
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Table 1. Core Locations, Depths, Linear Sedimentation Rates (LSRs), and Distances From Modern and LGM Shorelines
[McGee et al., 2013]

Core ID
Latitude
(°N)

Longitude
(°W)

Water
Depth (m)

Mean LSR
(cm/ka)

Distance to Modern
Shoreline (km)

Distance to 120m
Isobath (km)

OC437-7 GC27 30.880 �10.630 1258 6.1 75 50
OC437-7 GC37 26.816 �15.118 2771 9.5 90 70
OC437-7 GC49 23.206 �17.854 2303 8.6 160 80
OC437-7 GC68 19.363 �17.282 1396 11 75 30

Figure 1. (a) Core locations shown over winter (January, February, and March) SST [Locarnini et al., 2010] and February
winds [Zhang et al., 2006]. (b) Cores shown with summer (July, August, and September) SST [Locarnini et al., 2010] and
August winds [Zhang et al., 2006]. (c) Core locations shown over the annual average of the quantity Si* ([Si(OH)4] – [NO3

�];
μmol/l) at 200m water depth [Garcia et al., 2010; Sarmiento et al., 2004]. (d) Core locations shown over the concentration of
chlorophyll (mg/m3) at the surface [NASA Goddard Space Flight Center, Ocean Ecology Laboratory, Ocean Biology Processing
Group, 2014 Q3]. The maps also include locations of cores ODP 658C [Adkins et al., 2006; deMenocal et al., 2000b] and
GeoB7926-2 [Romero et al., 2008].
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The primary surface current in the region is the Canary Current, which flows south along the margin until it
detaches between 20 and 25°N and gradually turns into the North Equatorial Current at lower latitudes
[Mittelstaedt, 1991]. Beneath the Canary Current an undercurrent flows at least as far as 26°N, becoming
deeper as it flows from south to north. As a result, south of approximately Cape Blanc the primary source
of upwelled water is South Atlantic Central Water (SACW), which comes with the undercurrent. As the under-
current reaches depths below the reach of the upwelling system (~300m), the primary source of upwelled
water becomes North Atlantic Central Water (NACW), which is relatively poor in nutrients compared to
SACW [Mittelstaedt, 1991].

The convergence of the Canary Current and the North Equatorial Countercurrent at Cape Blanc results in a
persistent filament of strong upwelling and therefore high productivity [Helmke et al., 2005]. This filament,
identified by high concentrations of chlorophyll and low sea surface temperature, is strongest between 20
and 24°N and extends hundreds of kilometers offshore [Van Camp et al., 1991]. The location of the filament
is determined in large part by the interaction between surface currents and coastal and shelf morphology,
and so we must also consider how the location of the filament may have changed through time as changes
in sea level altered coastal and shelf morphology. The modern shelf is narrow (~45 kmwide), and the continen-
tal slope is also approximately 45 kmwide with a slope of 2–3° [Fütterer, 1983]. During periods of decreased sea
level, reductions in shelf area likely led to decreased filament formation, thereby decreasing export productivity
transport to the slope and nutrient recirculation [Holzwarth et al., 2010].

2.2. Modern Interannual-to-Decadal Variability in Upwelling and Dust Emissions

Interannual and decadal-scale changes in upwelling along the northwest African margin can be inferred from
wind speed data, SSTs from both satellite products and direct measurements, sea surface heights, and vertical
water column velocities. Observations over the last 30 years (1981–2012) indicate that summer upwelling varia-
bility is out of phase to the north and south of ~21°N, as strengthening of the Saharan Heat Low drives stronger
northeasterly winds in the north and onshore winds in the south. Some SST andwind data sets suggest a recent
increase in summer upwelling north of 21°N and an increase in downwelling south of this boundary [Cropper
et al., 2014]. This trend may have to do with recent strengthening of the Saharan Heat Low in summer [Evan
et al., 2015], which has intensified the land-ocean pressure contrast [Cropper et al., 2014].

In contrast, winter upwelling variability is coherent throughout the NW African margin from ~12 to 35°N
[Cropper et al., 2014]. This variability is correlated with the strength of the North Atlantic subtropical high,
because winds on the southeastern edge of the high flow parallel to the coast during winter (i.e., northeast-
erly trade winds) [Cropper et al., 2014]. Accordingly, periods of strong subtropical high pressure (the positive
phase of the North Atlantic Oscillation; NAO) lead to stronger winter winds and upwelling.

Dust deposition near the core sites occurs primarily in winter and early spring [Bory and Newton, 2000; Neuer
et al., 1997; Ratmeyer et al., 1999]. As with winter upwelling, the positive phase of the NAO is positively cor-
related with dust aerosol optical depth along the northwest African margin in winter [Chiapello et al.,
2005]. This variability appears to primarily reflect wind strength in the dust source areas rather than changes
in precipitation or vegetation. Doherty et al. [2012] used Center of Action indices to characterize modern win-
ter dust emissions data from west Africa and showed that southward shifts in the ITCZ lead to increased dust
load in the atmosphere due to increased northeasterly winds over dust source regions. Ridley et al. [2014]
modeled dust emissions from 1982 to 2008 using reanalysis meteorological data and demonstrated that
decreasing surface winds were the primary driver of the decrease in dust emissions over this time period.
Precipitation and vegetation changes in dust source areas played a very minor role in summer emissions
and had no effect in winter.

Modern observations provide a useful template for interpreting proxy data related to upwelling and dust
deposition on the northwest African margin. If variations in summer climate are the main driver of changes
in upwelling, then proxy data should show a dipole response centered around 21°N; the position of this
boundary may shift due to changes in the latitudinal position of the Saharan Heat Low and Atlantic
subtropical high. Variations in summer winds might not be reflected in the dust record given the modern
dominance of winter and spring dust deposition along our transect. Changes in winter climate should
produce coherent upwelling variability along the margin and may also be correlated with dust deposition,
as both winter upwelling and dust deposition vary with northeasterly wind strength in the modern climate.
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3. Methods
3.1. Analytical Methods

The age models for these cores have been previously described by McGee et al. [2013]; additional details, radio-
carbon ages, and complete age models can be found in the original reference and accompanying supporting
information. Core chronologies were developed using AMS radiocarbon ages on planktonic foraminifera using
monospecific samples (Globigerina bulloides) whenever possible. Radiocarbon measurements were made at
the Center for Accelerator Mass Spectrometry at Lawrence Livermore National Laboratory, and ages were con-
verted to calendar years using the Marine13 data set [Reimer et al., 2013] and a ΔR of 130±50 years (2σ) based
onmodern local reservoir ages [Ndeye, 2008]. An agemodel for each core was interpolated between radiocarbon
ages using the P_Sequence routine in Oxcal 4.1, a Bayesian age-depth modeling routine [Bronk Ramsey, 2009].
Note that radiocarbon dates in McGee et al. [2013] were converted to calendar years using the Marine09 data
set. The recalibration results in only minor changes to the age models used here. In core GC 37, modeled ages
from 14.5 to 12 kyr (new agemodel) are on average 300 years younger than in the original. In core GC68modeled
ages during the LGM are on average 200 years older, and ages during HS1 are 150 years younger than the original
model. The difference between age models in all other cores and at all other depths was less than 100 years.

The reservoir age of waters likely changed significantly over the period of study; previous work suggests that
the average marine reservoir correction in the North Atlantic was as high as 700 years during the YD (i.e., ΔR
of 300) [Bard et al., 1994] and was possibly even larger along the African Margin due to increased upwelling
[deMenocal et al., 2000b]. We tested the sensitivity of our age model during key intervals (LGM, YD, and H1)
using ΔR as high as 500 (i.e., a reservoir age of 900 years). While the resulting age models changed as
expected, with age estimates shifting younger, these changes were not enough to move samples from
one interval to another (e.g., all samples previously defined as being within H1 remained in H1 using the
new age model). However, the combination of uncertainty in ΔR and the effects of bioturbation does leave
open the possibility that some opal peaks that likely represent the YD appear to occur at the end of the BA
warm period (e.g., GC49) [McGee et al., 2013]. While a full treatment of changes in reservoir age over time at
these sites is outside the scope of this work, we are confident that our primary conclusions regarding changes
in biogenic accumulation during these time periods are robust with respect to uncertainty in the age models.

Percent biogenic opal was determined using alkaline extraction and molybdate blue spectrophotometry after
themethod ofMortlock and Froelich [1989]. An internal standard was run with each rack of 22 samples resulting
in a reproducibility of 4.1% relative standard deviation (RSD), relative to the measured value. Percent carbonate
and percent total carbon were determined through coulometry. Replicates were run for 43 carbonate samples
with an average error of 3.8% RSD. Total carbon samples were all duplicated; the average error was 3.2% RSD,
and the average of all replicates for a given sample was used to calculate percent organic carbon. Percent
organic carbon was calculated as the difference between total carbon and carbonate carbon.

Total sediment flux for all samples was determined by 230Th normalization. Most uranium and thorium isotope
concentrations were previously published by D. McGee [McGee et al., 2013]; newly collected data from GC37
are indicated in the supporting information. Uranium (238U and 234U) and thorium (232Th and 230Th) concentra-
tions were determined by isotope dilution using an Axiom single-collector ICP-MS at LDEO [McGee et al., 2013]
and a Thermo Scientific Neptune Plus multicollector ICP-MS at Brown University (this study) [Anderson and
Fleer, 1982; Fleisher and Anderson, 2003]. Uncertainties on isotopic compositions are ~1%, and the reproducibility
of 230Th-based fluxes in an internal standard included in each set of samples is better than 4% RSD. The thorium
normalization method is based on the assumption that the flux of particulate 230Th sinking to the ocean floor is
approximately equal to its known rate of production from 234U decay in the water column because the residence
time of 230Th in the water column is relatively short (on the order of a few decades) [Anderson et al., 1983] com-
pared to the rate of lateral mixing in deep ocean basins [Anderson et al., 1990]. Where burial rates of 230Th are
found to exceed its production in the water column, this is attributed to the lateral redistribution of sediments
by deep-sea currents. The 230Th normalization method has been supported by findings from both modeling
[Henderson et al., 1999] and sediment trap studies [Scholten et al., 2001; Scholten et al., 2005; Yu et al., 2001].

Using the total thorium normalized sediment flux, fluxes of individual sedimentary components can be calculated

as Fi ¼ Ci�β�z
xs230TH0

, where Fi is the flux of a sedimentary constituent of interest, Ci is the concentration of that consti-

tuent in bulk sediment, and β × z is equal to the production rate of 230Th in the water column (z is the depth of the
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water column (cm) and β =2.63×10�5 dpmcm�3 kyr�1). The quantity xs230Th0 (dpm/g) is calculated by correct-
ing the measured 230Th concentration for 230Th within detrital minerals, 230Th supported by detrital and authi-
genic U, and radioactive decay. Corrections for 230Th in detrital and authigenic U assume a 238U/232Th activity
ratio of 0.7±0.1 (1σ) in detrital minerals [Adkins et al., 2006].

Dust fluxes from these cores have been reported previously [McGee et al., 2013], but since they will be discussed
here a brief description of the methods is included. See the original reference and accompanying supporting
information for complete details. The terrigenous fraction of the sediment was first determined by subtracting
measured concentrations of calcium carbonate, biogenic opal, and organic carbon. Terrigenous sediments at
these sites are a mixture of relatively coarse-grained eolian dust and fine-grained sediment supplied by rivers
and remobilized from the continental shelf. End-member modeling of the grain size distribution of terrigenous
sediments was used to estimate the eolian fraction of terrigenous sediments in each sample. To isolate the oper-
ationally defined terrigenous fraction for grain size analysis, biogenic sediments were first removed using amod-
ification of the method ofMulitza et al. [2008]. Grain size measurements were subsequently conducted using an
LS200 Coulter laser particle size analyzer at the University of Bremen. McGee et al. [2013] fit the grain size data
usingWeibull distributions and used a three-end-member model to describe the downcore variability. The finest
end-member (EM3 mode=4–6μm) was interpreted as reflecting fluvial or resuspended sediments, while the
coarser two end-members (EM2 mode=20–30μm; EM1 mode >60μm) were combined to represent eolian
sediments [Mulitza et al., 2008; Tjallingii et al., 2008].

3.2. Biogenic Upwelling Proxies

Opal forms primarily as the siliceous frustules of diatoms and is therefore an indicator of export productivity.
While the majority of opal produced in the surface ocean is dissolved before reaching the seafloor [Nelson
et al., 1995; Treguer et al., 1995], several studies have reported that the presence of large, dissolution-resistant
species (Thalassionema nitzschioides and Chaetoceros) in upwelling regimes [Gil et al., 2007; Koning et al.,
2001] makes sedimentary opal flux a suitable proxy for diatom surface productivity in those areas. Opal fluxes
have furthermore been shown to reflect spatial patterns of primary productivity in regions of strong upwel-
ling in the equatorial Atlantic [Bradtmiller et al., 2007]. Study of a nearby core indicates that there was no pre-
ferential dissolution of opal during the LGM [Romero et al., 2008]; light microscopy showed good preservation
and only minor dissolution effects on the main species present. Opal is also produced by other groups, most
notably as the shells of radiolaria and in the form of sponge spicules. Additionally, opal in African margin sedi-
ments can also originate from freshwater diatoms blown from dried lake beds into the ocean. However, these
inputs are relatively small; the contribution of radioalaria and sponge spicules to total opal burial is thought to
be minimal except in specific environments [Tréguer and De La Rocha, 2013], and even during large dust
events, the abundance of freshwater diatoms is still an order of magnitude less than the abundance of marine
diatoms during moderately productive periods [Romero et al., 2008; Skonieczny et al., 2011].

The rain of Corg to the sea floor depends strongly on both opal and carbonate fluxes. Although early statistical
analyses identified a global correlation between the fluxes of Corg and of CaCO3 [Francois et al., 2002; Klaas and
Archer, 2002], other studies indicate a stronger mechanistic relationship between diatom productivity and the
flux of Corg to the deep sea. This relationship exists primarily because the fraction of net primary production that
is exported from the euphotic zone is strongly correlated with the abundance of large phytoplankton taxa,
especially diatoms [Buesseler, 1998; Buesseler et al., 2007; Guidi et al., 2009; Honda andWatanabe, 2010]. One rea-
son for this is that opal also serves as an effective ballast to enhance the transfer of Corg to the deep sea [Boyd
and Trull, 2007; Honda andWatanabe, 2010]. However, carbonate can also serve as an effective ballast for Corg; a
sediment trap study off of nearby Cape Blanc suggests that there is a particularly strong statistical relationship
between carbonate and Corg fluxes (r

2 = 0.75) in this area [Helmke et al., 2005]. While dust is not a significant
source of ballast material in most of the ocean, it plays an important but secondary role in this region; the same
study found r2 = 0.3 for the regression between lithogenic and Corg fluxes and r2 = 0.89 for the regression
between total mineral ballast (carbonate, lithogenic, and opal) and Corg fluxes [Helmke et al., 2005]. Fischer
and Karakaş [2009] note that primary productivity in the region is dominated by coccolithophorids, which
export disproportionately high amounts of Corg relative to other carbonate producers. In the context of this
work, we note that two primary scenarios might result in increased Corg fluxes to the sediment: increased
wind-driven upwelling, which would increase nutrient availability generally, or an increase in the Si content
of upwelled water, which might allow for more diatom export of Corg. A combination of these scenarios is also
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possible but would be difficult to differentiate using this suite of proxies. Where data exist, we also compare our
biogenic proxies with SST reconstructions as an independent indicator of upwelling.

4. Results

Opal and Corg fluxes generally decrease from south to north throughout the last 20 ka, in good agreement
with the modern upwelling climatology in the region [Mittelstaedt, 1991]. Opal fluxes in northernmost core

Figure 2. Fluxes of opal, Corg, and dust in cores (a) GC27, (b) GC37, (c) GC49, and (d) GC68. Dust fluxes are fromMcGee et al.
[2013]. Locations of radiocarbon tie points for each core are indicated by black diamonds.
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GC27 (Figure F22a) show an opal fluxminimumduring the late glacial period (~0.06 g cm�2 kyr�1) followed by a
gradual increase toward peak values from 14.1 to 9.7 ka (0.10–0.11 g cm�2 kyr�1). Opal fluxes then decrease
in a stepwise pattern throughout the Holocene. Fluxes of organic carbon show a similar pattern, with a late
glacial minimum (0.02 g cm�2 kyr�1) followed by an increase toward values above 0.03 g cm�2 kyr�1. After a
brief decrease, however, organic carbon fluxes increase during the late Holocene to 0.03 g cm�2 kyr�1. Both
opal and organic carbon fluxes show a similar temporal pattern to previously published dust flux data [McGee
et al., 2013] also included in Figure 2.

Core GC37 (Figure 2b) shows peaks in opal flux during HS1 (0.12gcm�2 kyr�1) and the YD (0.13g cm�2 kyr�1).
Opal fluxes then decrease gradually to a minimum at 6.3 ka (0.05gcm�2 kyr�1) and increase again into the late
Holocene. Organic carbon fluxes show a peak of 0.03gcm�2 kyr�1 during HS1 and a minimum value of
0.01g cm�2 kyr�1 at 8.2 ka but do not record a distinct YD peak. The dust flux record [McGee et al., 2013] strongly
resembles the opal flux record in this core as well, albeit with a muted peak during HS1 and a larger relative
increase into the late Holocene than the other two proxies.

Opal fluxes in GC49 increase in a stepwise pattern from late glacial values of approximately 0.1 g cm�2 kyr�1

to a peak value of 0.22 g cm�2 kyr�1 at 13.2 ka, with high fluxes persisting into the YD (Figure 2c). Opal fluxes
then decrease sharply until 10.3 ka and continue to decrease gradually until reaching a minimum value of
0.04 g cm�2 kyr�1 at 5.6 ka. Opal fluxes increase slightly throughout the uppermost part of the core.
Organic carbon fluxes exhibit elevated fluxes immediately prior to and during the YD (0.06 g cm�2 kyr�1), a
minimum during the AHP (0.01 g cm�2 kyr�1) and an abrupt increase during the termination of the AHP
between 5.6 and 4.6 ka. The dust flux record from this core [McGee et al., 2013] closely resembles the opal
and organic carbon records, with the exception that dust fluxes show a small peak associated with HS1.

Opal fluxes in GC68, the southernmost core, show the greatest variability over time (Figure 2d). Fluxes are
relatively low (0.13 g cm�2 kyr�1) during the late glacial period (19 ka) and increase to 0.31 g cm�2 kyr�1 at
16.3 ka, coincident with HS1, before decreasing again to values near 0.17 g cm�2 kyr�1 during the BA.
Fluxes are highest during the YD (0.39 g cm�2 kyr�1; 12.5 ka) and then decrease rapidly to fluxes similar to
that of the late glacial. Fluxes decrease slightly between 9.0 and 7.7 ka, after the onset of the AHP, and
increase slightly between 5.9 and 5.3 ka, near the AHP termination. Opal fluxes increase steadily after the
end of the AHP throughout the late Holocene, reaching a value of 0.19 g cm�2 kyr�1 at the coretop. The flux
of organic carbon follows a very similar pattern to that of opal flux, with a maximum flux of 0.13 g cm�2 kyr�1

during the YD and minima of 0.04 g cm�2 kyr�1 at 8 ka and during the late glacial. Opal and organic carbon
fluxes again show a very similar temporal pattern to previously published dust flux data [McGee et al., 2013].

Calcium carbonate fluxes in all four cores (not shown) primarily vary between 0.8 and 1.2 g cm�2 kyr�1

[McGee et al., 2013]. All cores show a consistent pattern, with low fluxes during the late glacial, a broad peak
during the deglaciation, and low, stable fluxes during the Holocene. While the carbonate data are not
discussed in detail on their own, we employ the ratio of opal:carbonate flux later in the discussion and so
include this brief description for context. Opal and carbonate fluxes are both susceptible to alteration during
the burial process through dissolution and/or remineralization. As such, the sedimentation rate often plays a
large role in the preserved flux of these sedimentary components, with high sedimentation rates leading to
relatively greater preservation (see discussion below). We regressed opal fluxes against the linear sedimenta-
tion rate (LSR) within each core to gain a first-order understanding of the relationship between the two. The r2

value for the correlation between opal flux and LSR in core GC49 was by far the greatest (0.78), while the other
three cores all showed r2 values below 0.5 (GC27= 0.01; GC37 = 0.48; GC68 = 0.41). This suggests that we need
to interpret the records from the three cores from the modern upwelling region with an awareness of the
effects of changing sedimentation rates, most especially core GC49.

5. Discussion
5.1. Millennial-Scale Events

Our records of opal and Corg flux are consistent with much of the previous work on theWest Africanmonsoon
and upwelling systems on both orbital and millennial timescales, and the latitudinal transect allows us to
document the spatial fingerprint of past changes. Broadly, the cores show in-phase variability in biogenic
sediment fluxes from 19 to 27°N over the past 20,000 years. During HS1 cores GC68 and GC37 show distinct
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peaks in opal and Corg fluxes, and core GC49 shows increased Corg fluxes and opal fluxes relative to the late
Holocene. All three cores are near the region of maximum modern upwelling, and the HS1 peaks represent
fluxes 50% greater than late Holocene values. Foraminiferal and diatom assemblages from nearby cores indi-
cate increased upwelling (and upwelling-derived productivity) during HS1, and bulk geochemical data also sug-
gest increased biogenic fluxes to the sediment [Mulitza et al., 2008; Romero et al., 2008; Zarriess and Mackensen,
2010]. Alkenone-based SST reconstructions during HS1 show the lowest temperatures over the last 25 kyr with
the exception of the YD [Romero et al., 2008]. Dust fluxes to the sediment in this region were also greater during
HS1 [Adkins et al., 2006; Jullien et al., 2007; Just et al., 2012;McGee et al., 2013]. Increased dust and biogenic sedi-
ment fluxes and decreased SSTs along the northwest African margin during HS1 occurred in association with

Figure 3. The ratio of opal:CaCO3 in cores (a) GC68, GC49, GC37, and GC27, including the SST record from GeoB7926-2
plotted on a reversed axis [Romero et al., 2008]. (b) The gradient (difference) in opal flux between three cores and GC68.
The distance between cores (in degrees latitude) is noted next to each pair of cores.
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widespread evidence for drying in tropical and subtropical Africa [Stager et al., 2011] and a southward shift of
the Atlantic ITCZ and Sahel-Sahara boundary [Collins et al., 2013; Peterson et al., 2000].

During the Younger Dryas we observe increased opal fluxes in cores GC37, GC49, and GC68 and elevated Corg
fluxes relative to coretop values in the same three cores. This increase in biogenic sedimentation is also found
in nearby core ODP 658C [Adkins et al., 2006] and is consistent with nearby data suggesting an increase in
upwelling-derived biological productivity [Romero et al., 2008]. Decreased SSTs (see Figure F33a [Romero et al.,
2008; Zhao et al., 1995; Zhao et al., 2000]) are also observed at this time. This increase in upwelling again
occurs in association with increased dust fluxes [Adkins et al., 2006; McGee et al., 2013] and hydrological evi-
dence of a weakening of the West African monsoon such as reduced river discharge [Weldeab et al., 2007].

The HS1 and YD cooling events are thus each marked by increased biogenic sedimentation, decreased SSTs, and
increased dust fluxes. Individually, each of these changes can be difficult to interpret, and none requires increased
surface winds on its own. Increased biogenic fluxes can result from increases in the nutrient content of upwelled
waters rather than increased upwelling, as discussed in section 5.3. Decreased SSTs duringmillennial-scale events
may result from an increase in the advection of cool North Atlantic waters via the Canary current [deMenocal et al.,
2000a; Zhao et al., 1995]. Likewise, dust flux increases may result from decreases in source area precipitation and
vegetation [e.g., Rea, 1994; Mahowald et al., 2006] rather than increased wind strength.

Taken together, however, the strongly correlated increases in productivity and dust deposition and decreases
in SSTs during millennial-scale cooling events are best explained by a common driver: strengthened north-
easterly surface winds. Modern climate data (section 2) suggest that this covariability is most likely related
to a strengthening and/or southward displacement of the Atlantic subtropical high in winter and spring in
association with a southward displacement of the Atlantic ITCZ, leading to stronger northeasterly trade winds
along the margin. Our data suggest that this trade wind intensification extended at least from 19 to 27°N,
with greatest intensification at the southern end of this transect.

Beyond being the most parsimonious interpretation of the data, this conclusion is also supported by modern
observations and model results highlighting the sensitivity of dust fluxes and upwelling to wind strength
(section 2.2). High-speed wind events (“gustiness” as described byMcGee et al. [2010]) are of particular impor-
tance due to the nonlinear dependence of both dust emissions and upwelling to wind speed. Modern data
show a strong correlation between gustiness and dust emissions, both globally [Engelstaedter and
Washington, 2007b] and in North Africa [Engelstaedter and Washington, 2007a; Todd et al., 2007]. While upwel-
ling is usually discussed in terms of wind strength, gustiness plays an important role here as well. Since
surface Ekman transport is directly proportional to wind stress, and wind stress is roughly proportional to
the square of wind speed, strong winds have a much larger effect on upwelling. Furthermore, ecological
modeling has shown that ideal conditions for biological productivity result not from sustained strong winds
but from periodic increases in wind speed interspersed with periods of relaxation [Yokomizo et al., 2010]. We
therefore interpret the concurrent increases in opal, Corg, and dust fluxes, and decreases in SSTs to be consis-
tent with strengthened trade wind-driven upwelling during HS1 and the YD.

Trade wind intensification during HS1 and the YD provides important confirmation of model simulations of
North Atlantic cooling events. Cooling at higher latitudes drives advection of anomalously cold, dry air by the
climatological winds, leading to increased surface pressure in the North Atlantic subtropical high and over
the continent [Liu et al., 2014; Zhang and Delworth, 2005]; these pressure changes increase northeasterly wind
strength both along the coast and over central North Africa. A separate North Atlantic cooling simulation that
included prognostic dust emissions found that the southward shift of the ITCZ coupled with wind strength
played a leading role in increasing dust mobilization and transport, while aridity played a minor role in
increasing dust fluxes in northwest Africa [Murphy et al., 2014]. Importantly, these anomalous near-surface
northeasterly winds appear to be a primary driver of drying in the Sahel in response to North Atlantic cooling,
as they advect low-moist static energy air from higher latitudes. The resulting “ventilation” of the monsoon
region causes a reduction of summer monsoon strength and a southward shift of monsoon precipitation
[Liu et al., 2014].

5.2. The African Humid Period

The three cores between 19 and 27°N show results consistent with significantly decreased wind strength dur-
ing the African Humid Period. Cores GC37, GC49, and GC68 all exhibit minima in opal and Corg fluxes during
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this time. Decreased paleoproductivity during the AHP is also documented at numerous nearby sites [Adkins
et al., 2006; deMenocal et al., 2000a; deMenocal et al., 2000b; Romero et al., 2008; Zarriess and Mackensen, 2010].
Alkenone data indicate increased SSTs at and near ODP658C during the AHP [Romero et al., 2008; Zhao et al.,
1995; Zhao et al., 2000], again consistent with decreased upwelling intensity.

Previously published data from cores GC37, GC49, and GC68 and from ODP658C show that the AHP is also
marked by dust flux minima [Adkins et al., 2006; McGee et al., 2013]. As in the discussion of millennial-scale
cold events above (section 5.1), the correspondence between biogenic sediment fluxes, SSTs, and dust fluxes
is most easily explained by a change in surface wind strength. Dust fluxes may have been further reduced by
changes in source area aridity, as lake level and pollen evidence indicates that soil moisture and vegetation
density were significantly higher in the Sahara and Sahel during the AHP [e.g., Bartlein et al., 2011; Hoelzmann
et al., 1998]. However, even under the higher precipitation rates of the AHP, it is likely that wind strength
would have been a primary determinant of dune activity and thus coarse-grained dust emissions [Roskin
et al., 2011; Tsoar, 2005].

The collapse of biogenic and dust fluxes and rise in SSTs during the AHP thus points to a dramatic reduc-
tion of winter northeasterly trade winds. Modern winter wind variability along the margin tracks the
strength of the North Atlantic subtropical high (section 2.2). During the AHP, weaker winter winds may
have resulted from a weakening or northward displacement of this high. Most modeling and data-based
studies suggest a stronger subtropical high (more positive NAO) during the early Holocene [e.g.,
Gladstone et al., 2005; Mauri et al., 2014; Wanner et al., 2008]. Walczak et al. [2015] conclude based on
a compilation of paleoclimate data from western Europe that the subtropical high was located substan-
tially farther north during the early Holocene and that the high has shifted south during the middle to
late Holocene. Our data suggest that if the high was not weaker in the early Holocene, its northward dis-
placement was large enough to substantially reduce northeasterly wind strength along the northwest
African margin.

Modeling studies simulating the response of North African climate to orbital precession suggest that the
strengthening of the West African summer monsoon is accompanied by westerly (on-land) wind anomalies
that advect moisture into the central Sahara [Battisti et al., 2014; Patricola and Cook, 2007]. Though these
models focus on the wind response during boreal summer, they also suggest that northeasterly winds are
reduced along at least the southern portion of our transect in response to stronger summer insolation.

Although the precessional forcing of the termination of the AHP was gradual, several studies have shown that
the climate response during this transition was abrupt. Opal and dust fluxes in core ODP 658C show abrupt,
synchronous increases at the termination of the AHP [Adkins et al., 2006; deMenocal et al., 2000b]. A sea sur-
face salinity reconstruction in the Gulf of Guinea reflecting Niger River discharge shows a similarly abrupt
transition, suggesting that changes in total precipitation and river runoff in the core of the rain belt occurred
rapidly [Weldeab et al., 2007]. A persistent question has been whether or not these abrupt changes show any
systematic difference in timing with latitude, as might be predicted from the gradual change in the latitude of
maximum summer insolation over time.McGee et al. [2013] addressed this question using bioturbation mod-
eling to determine the timing of the transitions into and out of the AHP using the same cores presented here.
They showed that the transition out of the AHP is consistent with simultaneous, abrupt changes in dust flux
between 19°N and 27°N. This suggests that vegetation-albedo feedbacks and sea surface temperature moist-
ure feedbacks [Claussen et al., 1999; deMenocal et al., 2000b] were operating rapidly on relatively large spatial
scales; our data suggest that these abrupt transitions affected surface trade wind strength in addition to
precipitation. In the central and eastern Sahara there is evidence for more gradual transitions out of the
humid period between 3 and 7 ka [Kropelin et al., 2008; Weldeab et al., 2014], whereas for the Horn of
Africa and East Africa the transition appears to be abrupt near 5 ka [Tierney and deMenocal, 2013]. A recent
compilation of African hydrologic reconstructions by Shanahan et al. [2015] suggests that, while local
decreases in precipitation were abrupt at the end of the AHP, the location of these local decreases occurred
first in the north and moved gradually southward over time. While the age models of all four cores do not
enable us to confirm this spatial trend, our data show that in the region of maximum modern upwelling
(e.g., core GC68) increased opal and Corg fluxes were abrupt and simultaneous with increased dust fluxes.
This suggests that in addition to the abrupt hydrologic responses outlined by Shanahan and coauthors, there
was an abrupt strengthening of northeasterly winds in the area of maximum modern upwelling at ~5 ka.
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5.3. Influences of Upwelling Strength and Water Nutrient Content on Biogenic Fluxes

Opal (and Corg) fluxes in this region are strongly influenced by the strength of trade wind-driven upwelling
[Adkins et al., 2006], with additional contributions from changes in the nutrient content of upwelled water
masses [Romero et al., 2008]. Paleodust fluxes have also been shown to be strongly influenced by wind
strength and gustiness and to correlate with the position of the ITCZ [McGee et al., 2010; Murphy et al.,
2014], with an uncertain contribution from changes in precipitation and vegetation in the Sahara. This study
is unique in that it combines 230Th normalization and biogenic fluxes with previously published dust fluxes in
the same north-south transect of cores. As such, we can directly compare eolian and biogenic fluxes from the
same samples and compare how fluxes change along the margin. While both biogenic and dust fluxes are
each affected by multiple drivers, they have one primary driver in common: wind strength and gustiness,
as primarily determined by the strength and position of the ITCZ. Therefore, when biogenic fluxes and dust
fluxes change with similar magnitude and timing, as they do in our cores, we suggest that changes in wind
strength are a major driver of these changes, with precipitation and ocean nutrients playing a smaller role.

To gain a first-order understanding of changes in nutrient supply along the margin, we look at the ratio of
opal flux to CaCO3 flux (Figure 3a). While acknowledging that both burial flux indicators are altered by
unknown loss terms due to remineralization and preservation, the broad trends may be used to examine
the causes of the observed biogenic flux changes. The ratio of opal to carbonate is a nonquantitative indica-
tor of the degree to which diatoms outcompete coccolithophorids for nutrients, and it is particularly useful in
distinguishing periods of relatively high (or low) opal flux from periods when all biogenic fluxes increase or
decrease more uniformly. Diatoms compete more effectively for other nutrients in areas with increased Si:N
ratios in the upwelled water, such as the Southern Ocean, and in nutrient-rich coastal upwelling zones such
as the African margin [Egge and Aksnes, 1992; Ragueneau et al., 2000]. Therefore, higher opal:CaCO3 ratios are
usually interpreted as an indication of increased Si supply, whether in total or relative to N, and may be inter-
preted as an indication of the increased importance of seasonal upwelling blooms to overall biogenic export.

To differentiate between the effects of increased upwelling strength and changes in the nutrient content of
upwelled water, we can compare changes in opal:CaCO3 over time with the alkenone-based SST record from
nearby core GeoB7926-2 (Figure 3a) [Romero et al., 2008]. We observe that high opal:CaCO3 ratios during HS1
and the YD are accompanied by low SSTs and that low opal:CaCO3 ratios during the AHP coincide with the
period of highest SSTs throughout the record. When considered alongside evidence for increased dust fluxes
during HS1 and the YD and decreased dust fluxes during the AHP [Adkins et al., 2006; Jullien et al., 2007;McGee
et al., 2013; Tjallingii et al., 2008; Zarriess and Mackensen, 2010], these data suggest that changes in the
strength of upwelling were a strong driver of the observed changes in primary productivity. We suggest that
while changes in productivity may have been secondarily affected by changes in the nutrient context of
upwelled water, these changes were either covarying (increased nutrient content with increased upwelling
and vice versa) or not large enough in the opposite direction to make a difference.

We cannot rule out the possibility of changes in upwelled nutrient concentration, however, particularly if
changes in water mass formation and therefore nutrient content are linked to the same changes in atmo-
spheric circulation responsible for strengthened trade winds. Previous work suggests increased export of
Si-rich southern-sourced intermediate waters during HS1 and the YD due to a southward shift in the
Southern Hemisphere Westerlies and increased overturning in the Southern Ocean during these events
[Anderson et al., 2009; Hendry et al., 2012]. Indeed, silicic acid concentrations reconstructed from the silicon
isotopic composition of sponge spicules suggest increased Si availability at 1400m water depth in the wes-
tern midlatitude Atlantic during HS1 [Hendry et al., 2014], as well as elevated Si concentrations during HS1
and the YD at 1000m in the midlatitude south Atlantic [Hendry et al., 2012]. The magnitude of the changes
is somewhat larger in the South Atlantic, particularly during the YD, consistent with the interpretation that
the nutrients originated in the Southern Ocean. A silicon isotope record from the African margin would be
a valuable contribution to the literature as it would further clarify the role of changing silicic acid concentration
on diatom productivity through time.

Alternatively, Romero et al. [2008] suggest that the slowdown in Atlantic meridional overturning circulation
during HS1 may have caused the Canary Current to detach from the shelf farther north, allowing the upwel-
ling of relatively nutrient-rich SACW over a greater area than today. Romero and coauthors do not rule out the
possibility that intensified trade winds resulted in stronger upwelling overall, and SST in the Romero record
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decreases simultaneously with an increase in opal % and the number of diatom valves per gram, suggesting a
strong upwelling component.Meckler et al. [2013] observe peaks in Si/Al ratios in ODP 658 during glacial ter-
minations over the past ~600 ka. They interpret these data as evidence that a decrease in the production of
glacial North Atlantic intermediate water allowed upward mixing of Si-rich southern-sourced deep water
during these transitions. Finally, Gallego-Torres et al. [2014] observe increased Mo/Al and U/Al ratios at
2500m water depth on the African Margin during HS1 and the YD. They interpret these redox-sensitive
metals as evidence for oxygen depletion as the result of reduced North Atlantic Deep Water formation and
subsequently reduced ventilation at the core site, in combination with increased surface productivity.
Therefore, while the covariation of opal and Corg with dust fluxes in our cores suggests a strong wind-driven
upwelling component, we cannot rule out the possibility that increased biogenic fluxes during HS1 and the
YD reflect a combination of changes in wind strength and nutrient supply, which is in turn partially driven by
both local and remote changes in ocean circulation.

5.4. Meridional Opal Flux Gradient Changes

We can utilize the large latitudinal range of these cores to examine changes in the north-south gradient of
opal flux over time. This gradient can be interpreted as a nonquantitative proxy for the relative strength of
upwelling along the margin over time and can help to constrain the timing and magnitude of latitudinal
changes in wind strength. Because the four cores are sampled at different temporal resolutions, opal data
were interpolated and resampled every 1 ka using the piecewise linear integration interpolation in
AnalySeries 2.0 [Paillard et al., 1996]. We then calculated the difference between each core and core GC68,
the core with the highest opal fluxes, at each time point (Figure 3b). In order to ensure that differences were
not simply due to the increased relative importance of bioturbation in cores with lower sedimentation rates,
we ran the same analysis with bins of 1.5 ka, 2 ka, and 3 ka (not shown). While the absolute values of the
difference in flux between cores changed (as expected), the general latitudinal trends over time did not.

We observe two general patterns. First, the gradients (differences) between GC68 and the three other cores
all increase during HS1 and the YD and show minima during the AHP. Second, the magnitude of the
increased gradients during HS1 and the YD scales with the difference in latitude between the two cores. In
other words, during the YD the difference in opal flux between southernmost site GC68 (19°N) and northern-
most site GC27 (31°N) is greater than the difference between GC68 (19°N) and GC37 (27°N), which is greater
than the difference between GC68 (19°N) and GC49 (23°N). Both observations are consistent with a south-
ward shift in the area of strongest trade winds during HS1 and the YD, which would have increased upwelling
at southern sites relatively more than northern ones. This is also consistent with previous work reconstructing
the upwelling filament position and geometry during abrupt cooling events. A paleoproductivity reconstruc-
tion from 20°N (between southernmost cores GC68 and GC49) has been interpreted as evidence for a larger
filament positioned farther from shore, greatly increasing diatom flux to the seafloor and also the abundance
of upwelling-favorable taxa [Romero et al., 2008]. Farther north, a record from Cape Yubi (27°N, between cores
GC27 and GC37) shows evidence for increased upwelling due to the position of the ITCZ during abrupt cool-
ing events but not evidence for the intense filament formation inferred farther south [Holzwarth et al., 2010].
This likely explains why, even though we see increased opal and Corg fluxes in all cores during the YD
(Figure 2), the flux gradient between northern and southern cores is also greatest at this time.

In contrast to periods of abrupt climate change, the gradients between our four cores are consistent with a
weakening of the trade winds during the AHP but not necessarily a northward shift in the area of strongest
upwelling. Rather, we see that the difference in opal flux between the northernmost core and the southern-
most core reach zero at this time as opal fluxes in all cores decrease to minimum values. The northernmost
core (GC27; 31°N) is in a region of low modern upwelling, while the southernmost core (GC68; 19°N) is in an
area of strong winter and spring upwelling [Mittelstaedt, 1991]. The lack of a strong north-south productivity
gradient along the margin at these latitudes is consistent with much of what is known about atmospheric
circulation during the AHP, when modeling results suggest that meridional winds and upwelling strength
were reduced during all seasons along the northwest African margin [Liu et al., 2007]. Our data show that this
change in trade wind strength significantly reduced upwelling-derived productivity along nearly the entire
northwest African margin during the AHP, extending from south of Cape Blanc throughout the area of max-
imum and continuous modern upwelling to the north. This is consistent with weakened offshore spreading
of the upwelling filament [Romero et al., 2008], even as the length of the filament gradually increased to the
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North throughout the later portion of the AHP due to a combination of sea level rise (and its effect on coastal
morphology) and movement of the trade winds [Holzwarth et al., 2010].

Lastly, our combined dust and opal flux data can be used to constrain the paleoclimatic origin of gradual or
abrupt sediment flux changes in these northwest African cores. The close correlation between eolian and
paleoproductivity flux proxies within and between all cores suggests a common physical mechanism—trade
wind speed and orientation. While each core records consistent changes in these proxies throughout the
deglacial sequence, the synchronous shifts between the mineral eolian fluxes and the biogenic opal and Corg
fluxes are best explained by changes in the direction or competence of surface trade winds [Engelstaedter and
Washington, 2007b; McGee et al., 2010; McGee et al., 2013]. This would apply to evidence for both abrupt and
gradual paleoclimate changes in cores with sedimentation rates high enough to overcoming smoothing effects
due to bioturbation [McGee et al., 2013].

6. Conclusion

Opal and Corg fluxes in a transect of four cores along the northwest African margin show synchronous changes
during both abrupt and orbitally forced climatic events. Decreased biogenic fluxes in all cores during the AHP
are consistent with reduced wind-driven upwelling due to weakened trade winds and a northward shift in the
ITCZ. The collapse of the gradient in opal flux between cores suggests that rather than a northward shift in the
area of maximum upwelling, however, the entire margin between at least 19°N and 27°N experienced reduced
upwelling. Decreased dust fluxes in the same cores during the AHP [McGee et al., 2013] support the conclusion
that wind strength was indeed reduced along the entire transect at this time.

We observe peaks in opal flux during HS1 and the YD in cores GC68 and GC37 and a peak in both opal and
Corg fluxes during the YD in core GC49. The peaks in biogenic fluxes in each core are coincident with peaks in
dust flux of similar relative magnitude [McGee et al., 2013]; these peaks also occur simultaneously with SST
minima observed in a nearby core [Romero et al., 2008]. The maximum latitudinal gradients in opal flux occur
during HS1 and the YD, as the southern cores experienced relatively greater increases in opal flux than cores
farther to the north. These data provide strong support for a strengthening and a southward shift in the
position of the trade winds during periods of abrupt cooling in the North Atlantic, which would have
increased wind-driven upwelling along much of the coast but increased upwelling at southern sites relatively
more than northern ones. This is consistent withmodels that show increased northeasterly winds between 15
and 25°N along the African Margin during abrupt North Atlantic coolings [Liu et al., 2014].

Our data add to a growing body of evidence that shows that the African monsoon and associated coastal
upwelling system are highly sensitive to both gradual changes in orbital forcing and abrupt climate change
in the North Atlantic. The African margin continues to provide an excellent archive for terrigenous and bio-
genic proxies alike and is a valuable resource in reconstructing changes in this complex climate regime.
These results and others may also serve as the basis for testing and improving the atmospheric response
to both orbital forcing and abrupt North Atlantic cooling in global and regional climate models.
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