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CHAPTER 2
Waves in an Isotropic Elastic Solid

Suppose that all the particles within a gas or a fluid or a solid are stationary inside a volume
V , but then undergo small internal displacements u = u(x, t) in response to applied forces
or to changes in the surface forces (tractions) applied on the surface S of the volume.

Let f be the applied force, acting (per unit volume) on particles inside V . f is a function
of space and time: f = f(x, t). Examples of body forces, are gravitational attraction, and
magnetic attraction or repulsion. Earthquake sources inside V may also be represented by
body forces, as can an instructor speaking in a classroom and sending out sound waves
through the air.

The rate of change of momentum of particles making up V equals the forces acting on
these particles:

∂

∂t

∫∫∫
V

ρ
∂u
∂t

dV =
∫∫∫

V
f dV +

∫∫
S

T(n) d S. (2.1)

Here, the volume V and surface S move with the particles, we are using a Lagrangian
description of motion, the left-hand side is

∫∫∫
V ρ ∂2u

∂t2 dV since the particl mass ρdV is not
changing with time, and T is related to n by the rules Ti = τ j in j = τi jn j (ττ is symmetric).

But ∫∫
S

An jd S =
∫∫∫

V

∂ A

∂x j
dV (2.2)

for any differentiable quantity A = A(x) (see Box 2.1).
So ∫∫

S
Ti dS =

∫∫
S
τi jn j dS =

∫∫∫
V

∂τi j

∂x j
dV =

∫∫∫
V

τi j, j dV.

It follows that we can convert all the terms in (2.1) to volume integrals, and put them on the
left-hand side as ∫∫∫

V
(ρüi − fi − τi j, j)dV = 0. (2.3)

Because this result is true for all volumes V , this integrand must be zero wherever it is

29
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30 Chapter 2 / WAVES IN AN ISOTROPIC ELASTIC SOLID

BOX 2.1
Generalization of Gauss’s Divergence Theorem

Gauss’s divergence theorem is∫∫
S

a · n dS =
∫∫∫

V
∇ · a dV (1)

for vector a. Writing this out as∫∫
S
(a1n1 + a2n2 + a3n3) dS =

∫∫∫
V

(
∂a1

∂x1
+ ∂a2

∂x2
+ ∂a3

∂x3

)
dV, (2)

this result is actually valid “term-by-term,”∫∫
S

a1n1 dS =
∫∫∫

V

∂a1

∂x1
dV, etc. (3)

The proof of all these results, (1), (2), (3), is based essentially on

f (q) − f (p) =
∫ f (q)

f (p)

d f =
∫ q

p

d f

dx
dx.

continuous (otherwise, we could surround a place where it is not zero with a small volume
that violates (2.3)). Hence

ρüi = fi + τi j, j, (2.4)

which is our first form for an equation of motion. We have not yet made any assumptions
about the relations between stress and strain, so (2.4) is a very general result. Essentially, it
says that particles within a moving deformable body have a rate of change of momentum
(mass × acceleration) that is driven by the applied body force plus the stress gradient.

2.1 Compressional and shearing motions in an isotropic elastic medium

For an isotropic elastic medium, the stress tensor ττ and the strain tensor e have components
that are related by the generalized version of Hooke’s Law:

τi j = λek,kδi j + 2µei j . (1.37 again)

Combining this result with (2.4) and the definition of strain given by (1.29), we get the
displacement equation for elastic motion in an isotropic medium. The equation can take a
number of different forms, all equivalent. Specifically, if the medium is homogeneous so
that we do not have gradients of the Lamé moduli,

ρüi = fi + λuk,k jδi j + µ(ui, j j + u j,i j)

ρüi = fi + (λ + µ)u j, j i + µui, j j

(2.5)
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2.1 Compressional and shearing motions in an isotropic elastic medium 31

volume V

surface S
T(n)

FIGURE 2.1
An elastic solid with volume V and surface S is subjected to applied tractions. Body forces f = f(x, t)
may act inside V , for example at a point where someone is singing or talking and leading to sound
waves that spread throughout the volume.

or (using vectors rather than vector components)

ρü = f + (λ + µ)∇(∇ · u) + µ∇2u.

Using the definition ∇2u = ∇(∇ · u) − ∇ × (∇ × u), this gives

ρü = f + (λ + 2µ)∇(∇ · u) − µ∇ × (∇ × u), or

ρü = f + (λ + 2µ) grad divu − µ curl curl u.
(2.6)

All of these different forms of the elastic wave equation are equally valid. But how do
they compare with simpler wave equations? We shall find that our elastic wave equation
permits two completely different types of solution — P-waves and S-waves.

First let’s find what happens if we try to find a plane wave propagating with speed c
in the x1-direction in the absence of applied forces (f = 0). That is, we try for a solution
to (2.5) or (2.6) in the form

u = u
(

t − x1

c

)
. (2.7)

Here we are also assuming that the dependence on position is via the x1-coordinate alone,
so

∇ · u = ∂u1

∂x1
and ∇ × u =

(
0, −∂u3

∂x1
,
∂u2

∂x1

)
.

From the wave equation (2.5) or (2.6) we see that
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32 Chapter 2 / WAVES IN AN ISOTROPIC ELASTIC SOLID

ρü1 = 0 + (λ + µ)u1,11 + µu1,11 = (λ + 2µ)u1,11

ρü2 = 0 + 0 + µu2,11 = µu2,11

ρü3 = 0 + 0 + µu3,11 = µu3,11.

(2.8)

The three scalar equations in (2.8) are each examples of a one-dimensional (1D) wave
equation, of the type discussed in Box 2.2. By comparison with the 1D solution discussed
in this Box we see that the u1 component of motion in (2.8) propagates as a wave having

speed c =
√

λ + 2µ

ρ
. This is the P-wave (the P standing for primary, because this the

fastest traveling wave in an elastic solid). The particle motion is in the same direction as
the direction of propagation. A wave with this property is said to be longitudinal. From
the second and third of the equations in (2.8), which are also 1D wave equations, we see

that the u2 and u3 components of motion have speed c =
√

µ

ρ
. These are examples of the

S-wave (the S standing for secondary). Because the particle motion is now perpendicular
to the direction of propagation (x1), these solutions for u2 and u3 are each examples of a
transverse wave.

2.1.1 SIMPLE EXAMPLES OF 1D WAVE PROPAGATION

We can illustrate several basic properties of P-waves and S-waves with two simple examples
that have a lot in common with plane waves traveling in three dimensions (3D).

(i) The longitudinal wave in a spring (slinky). Stretch the spring or slinky on the surface
of a smooth table, and tap the end to initiate a longitudinal (P-wave) motion that
travels down the spring. If the spring has mass m per unit length, then an element δx
of the spring has a rate of change of momentum given by (m δx)ü, where u is the
displacement in the direction of the spring (a longitudingal motion). The total applied
force is given by the difference in tension in the spring at each end of the line element,
T (x + δx) − T (x). But if the original string tension was T0 then the new tension is

T (x) = T0 + k
∂u

∂x
where k is related to Young’s modulus (see Problem 1.10: k = E×

cross-sectional area of the spring). It follows that

m
∂2u

∂t2
= ∂T

∂x
= k

∂2u

∂x2
,

a 1D wave equation with speed c =
√

k

m
.

(ii) The transverse wave in a stretched string or rope. Take a rope, preferably a few tens
of meters in length, and tie it to a support at each end so that the rope is approximately
horizontal and tightly stretched. Tap the rope near one end in a direction that is (a)
horizontal, and (b) perpendicular to the rope. A transverse wave of horizontal motion
travels the length of the rope, and the wave may be reflected at the ends (if the set-
up is working well), so that the wave goes back and forth a few times before it is
attenuated (due to friction in the rope fibers). In this case, let u be the displacement of
the rope, in the horizontal direction perpendicular to the rope (parallel to the direction
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2.1 Compressional and shearing motions in an isotropic elastic medium 33

BOX 2.2
On the most general solution of the simplest second-order wave equation

The simplest second-order wave equation for the variable φ is

1

c2

∂2φ

∂t2
= ∂2φ

∂x2
, (1)

in which there is a dependence upon only one spatial dimension (x), and time (t).
To obtain the most general solution of (1), for φ as a function of space and time, we

define two new independent variables:

ξ = t − x/c and η = t + x/c. (2)

Then

∂φ

∂x
= ∂ξ

∂x

∂φ

∂ξ
+ ∂η

∂x

∂φ

∂η
= −1

c

∂φ

∂ξ
+ 1

c

∂φ

∂η
= −1

c

(
∂

∂ξ
− ∂

∂η

)
φ and

1

c

∂φ

∂t
= 1

c

∂ξ

∂t

∂φ

∂ξ
+ 1

c

∂η

∂t

∂φ

∂η
= 1

c

∂φ

∂ξ
+ 1

c

∂φ

∂η
= 1

c

(
∂

∂ξ
+ ∂

∂η

)
φ.

So

∂2φ

∂x2
= 1

c2

(
∂

∂ξ
− ∂

∂η

) (
∂φ

∂ξ
− ∂φ

∂η

)
= 1

c2

(
∂2φ

∂ξ2
− 2

∂2φ

∂ξ ∂η
+ ∂2φ

∂η2

)
and

1

c2

∂2φ

∂t2
= 1

c2

(
∂

∂ξ
+ ∂

∂η

) (
∂φ

∂ξ
+ ∂φ

∂η

)
= 1

c2

(
∂2φ

∂ξ2
+ 2

∂2φ

∂ξ ∂η
+ ∂2φ

∂η2

)
.

The wave equation (1) therefore becomes

0 = 1

c2

∂2φ

∂t2
− ∂φ

∂x2
= 4

∂2φ

∂ξ η
.

But we can easily solve

∂

∂ξ

(
∂φ

∂η

)
= 0 (3)

as follows. First we integrate with respect to ξ to obtain
∂φ

∂η
= g(η) for some function g.

(This result is just another way of saying that
∂φ

∂η
cannot depend upon ξ — which is what

we learn from equation (3) — and therefore can depend only upon η.) Second we integrate
again, this time with respect to η, to get

φ = F(ξ) +
∫ η

g(η′) dη′

= F(ξ) + G(η)

= F(x − ct) + G(x + ct).

(4)

The wave equation (1) therefore indicates that φ must be a function of t − x/c plus a
function of t + x/c. This is the most general form of solution of the simplest wave equation
in one dimension, equation (1).
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34 Chapter 2 / WAVES IN AN ISOTROPIC ELASTIC SOLID

BOX 2.2 (continued)

When we integrate a second-order ordinary differential equation we can expect to find
that the solution in general contains two arbitrary constants. Here we have integrated a
second-order partial differential equation, and have found that the solution (4) in general
contains two arbitrary functions, of space and time in particular combinations (either t − x/c,
or t + x/c).

The wave solution itself can have any shape. (F or G are any sufficiently smooth functions
— though shortly we shall discuss the need for them to have some type of discontuity.) Note
that the wave solution of (1) propagates without change in shape (either F propagating in
one direction, or G propagating in the opposite direction). What matters, are the particular
combinations of space and time upon which F and G depend.

Another way to approach the solution of (1), is to ask if there is a more general
combination of space and time, such as t − T (x), upon which solutions φ might depend.

Substituting φ = φ(t − T (x)) into (1) and using
∂φ

∂x
= −dT

dx

∂φ

∂t
, we find

((
dT

dx

)2

− 1

c2

)
∂2φ

∂t2
− d2T

dx2

∂φ

∂t
= 0. (5)

If we think of a wave as a solution of (1) that is able to propagate non-zero values of some
physical variable (represented by φ) into a region where previously φ = 0, then we need to
consider solutions φ(x, t) that contain a discontinuity in some derivative of φ.

[If φ = 0 inside a region S of space and time, then all the derivatives of φ in that region
are zero also. But if there is no discontinuity anywhere in any derivatives of φ, then the
Taylor series expansion

φ(x + δx, t + δt) = φ(x, t) + δx
∂φ

∂x
+ δt

∂φ

∂t
+ δx2

2

∂2φ

∂x2
+ 2

δx δt

2

∂2φ

∂x ∂t
+ ∂t2

2

∂2φ

∂t2
+ . . .

implies that φ(x + δx, t + δt) = 0 if (x, t) is taken within S. But then the region S has been
expanded to include (x + δx, t + δt). All derivatives of φ are zero in the larger region. In
this situation it is impossible to bound the region in which φ is zero. The only way to obtain
non-zero values is therefore to require that some derivative of φ is non-zero.]

The Figures (a)–(c) here show an example where φ(t − T ) is the ramp function R(t − T ),

given by R(t) = 0 if t ≤ 0 and R(t) = t if 0 ≤ t . Then
∂φ

∂t
is the Heaviside step function

H(t − T ) (H(t) = 0 if t < 0, H(t) = 1 if 0 < t), and
∂2φ

∂t2
is the Dirac delta function

δ(t − T ) (δ(t) = 0 if t �= 0, but the area under δ(t) for a range of t-values where t = 0, is
unity). The Fourier spectrum of each function is also given in these Figures.

TT Tt t t
(a) (b) (c)

 R t  – T  ( )  H t  –  T( )δ
e

– i 2 ω
ωT i e ωT i e ωT i 

— —
– i ω( )

t  –  T( )

We define a wavefront as a propagating discontinuity in the solution to a wave equation.
Thus the wavefronts for our simplest wave equation, (1), can be determined as the
propagating surfaces t = T (x) in (x, t) space, across which some derivative of φ has a
discontinuity. In the case shown above with Figures (a)–(c), we can use equation (5) and
integrate the left-hand side across a small region from t = T − ε, to t = T + ε. The last
term in (5) integrates to a result proportional to ε, which is zero in the limit as ε → 0.
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2.1 Compressional and shearing motions in an isotropic elastic medium 35

BOX 2.2 (continued)

But the term
∂2φ

∂t2
in (5) integrates to a non-zero value, so its coefficient must vanish and at

last we obtain the result (
dT

dx

)2

− 1

c2
= 0.

This is the equation which determines the wavefronts of the one-dimensional wave equation
(1). In the present case the solutions are simple, for

dT

dx
= ±1

c
,

and hence T = x/c or T = −x/c (plus a constant, which will be zero if we arrange that
T = 0 at the position x = 0). The relevant combinations of space and time upon which
φ must depend are then seen to be those we chose in (2), and the interpretation of these
alternative independent variables, ξ = t − x/c and η = t + x/c, is that they are measures of
distance from a wavefront. In practice, T = T (x) is seen to be the travel time of the wave,
that is, the time it takes for the wave to reach position x . Then t − T (x) is the time after the
wavefront arrival (so that negative values of t − T give zero values of φ).

t = t1 t = t2

x xx x
1 2

To see that c is the speed of propagation of the wave φ = F , we can compare the spatial
dependence of F at two different times t = t1 and t = t2 as shown in the Figure here. A
particular feature of the wave is chosen — say, the spatial position at which it has values
that begin to depart from F = 0. (Any feature that we can track as a function of space and
time will serve as a satisfactory marker.) At t = t1 this feature is at x = x1, and at t = t2 it
is at x = x2. Because this is the same feature of the moving wave φ = F(t − x/c), a wave
that depends on space and time only in the combination t − x/c, we know that

t1 − x1/c = t2 − x2/c. (7)

in which the rope was initially tapped). If the rope has mass m per unit length, then
an element δx of the rope has a rate of change of momentum given by m δx)ü. In this
case, the original tension T0 in the rope is unchanged because the transverse motion
produces a change in rope length that is negligible (it is of order u2). The Figure here
shows the directions in which x and u are taken, and an enlarged view of the element
of the rope between x and x + δx :
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36 Chapter 2 / WAVES IN AN ISOTROPIC ELASTIC SOLID

BOX 2.2 (continued)

In the time period t2 − t1 the feature has moved a distance x2 − x1, so that the speed of
propagation is (x2 − x1)/(t2 − t1). Equation (7) then tells us that this speed, a ratio of
distance to time, is precisely c.

Finally, we may note that (1) is a combination of the simpler wave equations

1

c

∂φ

∂t
= ∂φ

∂x
and

1

c

∂φ

∂t
= −∂φ

∂x
. (6)

The first of these first-order wave equations describes a wave moving with speed c in the
x-direction, and the second a wave moving with speed −c (that is, with speed +c in the
negative x-direction).

x

x + δx

T0

T0

angle between rope and original direction = 
u

x∂
∂

u

xThis transverse wave travels in the x direction

The force applied to the mass m δx in the direction in which u is measured, is

T0
∂u

∂x

∣∣∣∣
x+δx

at one end, and −T0
∂u

∂x

∣∣∣∣
x

at the other. So

m δx
∂2u

∂t2
= T0

∂u

∂x

∣∣∣∣
x+δx

− T0
∂u

∂x

∣∣∣∣
x

and the 1D wave equation is

m
∂2u

∂t2
= T0

∂2u

∂x2
,

so that the speed is c =
√

T0

m
.

Instead of tapping the string horizontally, it could have been tapped in a direction
that is still perpendicular to the rope, but in the vertical plane. This too is a way to
initiate a transverse wave, that is independent of the horizontal transverse motions.
In general the rope can support a transverse wave that is an arbitrary mix of these
two possibilities. The polarization of the general wave, is a measure of the mix of
horizontal and vertical motions, both being transverse to the direction of propagation.

If the ends of the rope are not at the same level then the rope itself is not
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x . l

x

l

P

direction of propagation

of the wavefront (along a ray)

plane w
avefront, show

n at a particular tim
e

O

FIGURE 2.2
The position of a plane wavefront is shown at a fixed time. P is a point at position x on the wavefront.
For any such x, the value of x · l is the same since this scalar product is the perpendicular distance
from the origin of coordinates at O to the wavefront (a distance which is independent of position x
as long as it is in the wavefront).

horizontal. The first transverse motion we have discussed, above, can still be taken
in the horizontal direction which is tranverse to the rope. Such a motion is called an
SH -wave. The other transverse motion will be perpendicular to the rope, but if the
rope is no longer horizontal it will not be a purely vertical motion — although it will
lie in a vertical plane. Such a motion is called an SV -wave. The polarization of a
general transverse wave, is a measure of how much of the transverse motion is SH ,
and how much is SV .

2.1.2 THE GENERAL PLANE WAVE IN AN ISOTROPIC ELASTIC MEDIUM

Here, we shall examine solutions of the 3D wave equations (2.6) that are very similar to
those described by equation (2.7) and Section 2.1.1, but the propagation now is assumed to
be in a general direction l (a unit vector). Some of the main results of this Section are left
as an exercise (Problem 2.1).

First, we need to appreciate the defining property of a plane wave. A dependent variable
(such as displacement u or a particular stress component such as τ23) travels as a plane
wave, if values of the variable are unchanged for any point on a moving planar surface.
This planar surface propagates as a wavefront in the direction specified by the unit vector
l (see Figure 2.2). The equation of all points lying on a plane perpendicular to l is x · l =
constant. This constant, is just the perpendicular distance from the origin (where x = 0)
to the plane of interest. As the constant is changed from one value to another, a different
plane is specified. All the planes are perpendicular to l. The constant is zero, for the plane
perpendicular to l that also lies on the origin O itself. For a plane wavefront that moves

working pages for Paul Richards’ class notes; do not copy or circulate without permission from PGR 2004/9/8 22:07



38 Chapter 2 / WAVES IN AN ISOTROPIC ELASTIC SOLID

with speed c perpendicular to itself, x · l = ct . If we rewrite this as t = T (x) then we see in

this case that T = x · l
c

, which is the travel time.

A general plane wave solution to the elastic wave equation

ρü = (λ + 2µ)∇(∇ · u) − µ∇ × (∇ × u) (equation(2.6) with no body force)

can therefore be taken as

u = u
(

t − x · l
c

)
. (2.9)

We can now generalize the result given in (2.8), in which one-dimensional elastic waves
traveling in the x1-direction were obtained (both P-waves and S-waves). In the present more
general case of propagation in the l direction, with (as yet) no contraint on the direction of
particle motion (the direction of u in (2.9)), we can substitute our new form of trial solution
into (2.6). The details are best worked out by the reader (see Problem 2.1).

2.1.3 WAVEFRONTS AND RAYS

The plane wave shown in Figure 2.2 will move to a new position at a later time. Figure 2.3a
shows the same plane wavefront at a number of different times. This system of wavefronts
is an example of the wavefront equation t = T (x) in which t is given five different values,
and for each t value the set of x values solving t = T (x gives the position of the wavefront
at that t value. In other words, these values of x all share the same travel time. As the travel
time increases, the wavefront moves to a new position. Orthogonal to the moving wavefront,
is the set of rays. In the case of a plane wavefront, the rays are parallel to each other.

Figure 2.3b shows a completely different wavefront, namely an expanding spherical
wavefront. This too is a wavefront governed by the equation t = T (x, but now a three-
dimensional wave equation applies, for example

1

c2

∂2φ

∂t2
= ∇2φ, (2.10)

and a trial solution is sought in the form

φ(x, t) = A(x)P ((t − T (x)) . (2.11)

With this form of solution, again we seek a propagating discontinuity given by t = T (x).
The factor P(t − T ) represents the “pulse shape” of the wave, and the factor A(x) governs
the change is amplitude with different position. This factor was missing for the plane wave
solutions we have looked at previously, because for them the wave propagated without
change in amplitude. In the example of a spherical wave shown in Figure 2.3b, we would
expect the amplitude to decrease as the wavefront expands. The term A(x) in (2.11) is
sometimes called the geometrical spreading factor. Usually, it is not possible to get an
exact solution to (2.10) in the form (2.11). But this form of trial solution is adequate for
finding the propagating discontinuities associated with the wave equation (2.10) (see the
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Different wavefront positio
ns (th

e

same wavefront, at different tim
es)

D
ifferent rays

A system of spherical wavefronts, and radial 
rays (still orthogonal to the wavefronts)

l

(a) (b)

FIGURE 2.3
(a) On the left, is shown a propagating plane wavefront. Its position is indicated at five different
times. Orthogonal to the system of wavefronts, is the system of rays. In this plane-wave example,
the direction l is constant along the ray, and has the same value for all rays. (b) On the right, is
shown another system of wavefronts, in this case an expanding spherical wavefront shown at eight
different times. Again the rays are an orthogonal system, and again these are straight line rays
(because the medium os homogeneous, with a fixed value of the propagation speed c). But now the
rays themselves are not parallel.

discussion in Box 2.3). Fortunately, in the case of a spherical wavefront expanding in a
homogeneous isotropic medium, it is possible to find an exact solution to (2.10) in the

form (2.11). Noting that the radial derivatives in ∇2φ are
1

r2

∂

∂r

(
r2 ∂φ

∂r

)
= 1

r

∂2(rφ)

∂r2
, we

see that the product rφ satisfies the one dimensional wave equation

1

c2

∂2(rφ)

∂t2
= ∂2(rφ)

∂r2
(2.12)

provided the solution is spherically symmetric (so that the spatial dependence in only on
the radial coordinate).

From the knowledge of solutions to the 1D wave equation gained in Box 2.2, it follows
that the solution of (2.12) has the form

φ(x, t) = 1

r
P

(
t − r

c

)
. (2.13)

This is an exact result, having the form of solution given in (2.11). The geometrical spreading

factor is simply
1

r
. The wavefront equation, which in general takes the form t = T (x), in

this case is just t = r

c
.

[Note to PGR: add here a discussion, with new Figure, showing wavefronts and rays in an
example for which c = c(x).]
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40 Chapter 2 / WAVES IN AN ISOTROPIC ELASTIC SOLID

BOX 2.3
On finding approximate solutions to the 3D wave equation

If we substitute the trial solution (2.11) into the wave equation (2.10), we can get an exact
solution if A, T, and P satisfy(

(∇T )2 − 1

c2

)
P̈(t − T ) −

(
∇2T + 2

∇ A · ∇T

A

)
Ṗ(t − T ) + ∇2 A

A
P(t − T ) = 0. (1)

If we seek a solution φ = A(x)P(t − T (x) that has a propagating discontinuity given by
the wavefront equation t = T (x), then the three terms of the above equation have different
orders of discontinuity, with the term in P̈ being the strongest, then the Ṗ term, and finally
the P term. The strongest term is removed by requiring that

(∇T )2 = 1

c2
. (2)

By requiring that the term in (1) in Ṗ also have a zero coefficient, we obtain an equation
for the geometrical spreading factor A, namely

∇2T + 2
∇ A · ∇T

A
= 0. (3)

In general the final term, proportional to P(t − T ), will not be zero. The net result is that
with T a solution of (2) and then A a solution of (3), the trial form φ = A(x)P(t − T (x)

can be a useful approximate solution to
1

c2

∂2φ

∂t2
= ∇2φ.

2.1.4 A GENERAL METHOD FOR SOLVING THE 3D WAVE EQUATION IN A HOMOGE-

NEOUS MEDIUM

In Sections 2.1.1 and 2.1.2 we discussed the plane wave solution. Here, we shall find that
such solutions can be used to build up more general solutions (for example, the waves from
a point sources). The overall approach we shall develop, is related to the use of integral
transforms to solve wave propagation problems.

Thus, a general method for solving

1

c2

∂2φ

∂t2
= ∇2φ (2.10 again)

is to try for a solution φ = φ(x, t) in the special form

φ = �(x)T (t) (2.14)

in which the dependences on x and t come from different factors. This is the method of
“separation of variables,” and once we find a system of such solutions we can sum over the
system and generate more general solutions, that do not factorize into separate dependences
on space and time.
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2.1 Compressional and shearing motions in an isotropic elastic medium 41

BOX 2.4
On eigenvalues and eigenfunctions associated with ordinary differential equations

First, we note that the original partial differentiation with respect to t in (2.10) has become
an ordinary differentiation in (2.15) and (2.16). Second, it is of interest that any of the
functions eiωt , e−iωt , cos ωt , and sin ωt can be thought of as eigenfunctions of the operator
d2

dt2
. That is, as functions of t they have the special property that double differentiation has

the same effect as multiplying by a scalar −(ω2):

d2T

dt2
= −ω2T . (1)

So we can think of −(ω2) as an eigenvalue by analogy with the algebra problem described
in Box 1.2, namely

A · x = λx. (2)

This equation in general cannot have non-trivial solutions for the eigenvector, unless λ

takes on special discrete values. A similar result often follows for the eigenvalues ω of
(1). The discrete values of ω may come from a requirement that T is zero at two different
values of t , or from similar spatial boundary conditions that give discrete values of the
wavenumbers used in equations (2.21), hence constraining ω to discrete values by this
same equation (2.21).

From (2.14) substituted into (2.10) we obtain
1

c2
�(x) T̈ (t) = (∇2�

)
T (t) and hence

∇2�

�
= 1

c2

T̈

T
(2.15)

which has the form f (t) = g(t). It follows that each side is a constant, since no variability
with respect to x or t is allowed. [Note that we have previously introduced constants, and
then allowed them to take different values and in this sense to become variables. We’ll
be doing this here also. When we say each side of (2.15) is a constant, we mean that this
“constant” is independent of x and t .] If we say that each side of (2.15) is the constant −k2,
then

d2T

dT 2
+ k2c2T = 0 (2.16)

and if ω = kc then T (t) must be a linear combination of eiωt and e−iωt (or of cos ωt and
sin ωt). We write this result as

T = e±iωt . (2.17)

The separated solution of (2.10) is now φ = �(x, ω)e±iωt , where
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42 Chapter 2 / WAVES IN AN ISOTROPIC ELASTIC SOLID

∇2� + ω2

c2
� = 0. (2.18)

If we were to sum over such solutions, for example in the form

φ(x, t) = 1

2π

∫
�(x, ω)e−iωt dω (2.19)

then we see there is a relation between the method of separation of variables, and the use of
Fourier transforms. (In (2.19), ω ranges over all values so we have dropped the ± sign.) The
solution φ(x, t) here has been written as a linear combination (a summation, or in this case
an integration), of separated solutions �T . In equation (2.19), the factor � in the integrand
must satisfy equation (2.18) in order for φ to satisfy the scalar wave equation (2.10).

We can keep on going with the method of separation of variables — separating out the
dependences on x1, x2, and x3 via an assumption that

�(x) = X1(x1)X2(x2)X3(x3).

Then from (2.18) we find

X ′′
1

X1
+ X ′′

2

X2
+ X ′′

3

X3
+ ω2

c2
= 0 (2.20)

in which primes are used to denote spatial differentiation with respect to the appropriate

argument (for example, X ′
2 = d X2

dx2
). Because (2.20) has the form f (x1) + g(x2) + h(x3) +

ω2

c2
= 0, each of the four terms must be a constant. Say

X ′′
1

X1
= −k2

1 and
X ′′

2

X2
= −k2

2. We also

have
X ′′

3

X3
= −k2

3 but now the choice of this last constant in terms of ω, k1, and k2, must

satisfy

k2
1 + x2

2 + k2
3 = k2 = ω2

c2
. (2.21)

This equation is a relation, equivalent to the original wave equation (2.10), between the four
separation constants k1, k2, k3, and ω. The fully separated solution has the form

φ(x, t) = e±ik1x1e±ik2x2e±ik3x3e±iωt . (2.22)

If we wish, then without loss of generality we can drop the ± symbols as long as we
recognize that the separation constants can take any values (subject to the contraint given
by (2.21)). Or we can mix the constants in (2.22), some with plus signs and some with
negative, so that for example

φ(x, t) = ei(k1x1+k2x2+k3x3−ωt) = ei(k·x−ωt) (2.23)

is a 3D wave equation solution for any constants ω and k = (k1, k2, k3) such that

working pages for Paul Richards’ class notes; do not copy or circulate without permission from PGR 2004/9/8 22:07



2.1 Compressional and shearing motions in an isotropic elastic medium 43

k · k = ω2

c2
. (2.21 again)

Note that (2.23) has the form of a plane wave φ = F

(
t − x · l

c

)
if we make the identification

l
c

= k
ω

, or l = c

ω
k. The symbol l defined in this way is indeed a unit vector, because of (2.21).

k is the wavenumber vector.
We can generalize (2.19) above, by noting that a linear combination of solutions (2.23)

in the form

φ(x, t) = 1

(2π)3

∫∫∫
X3(k1, k2, x3, ω) ei(k1x1+k2x2−ωt) dk1 dk2 dω (2.24)

(where
∂2X3

∂x2
3

+ k2
3 X3 = 0 and k2

3 = ω2

c2
− k2

1 − k2
2) provides a solution to the three-

dimensional wave equation (2.10). Since X3 ∝ e±ik3x3, the integrand of (2.24) is a plane
wave.

Our overall conclusion of this Section, is that the method of separation of variables
applied in a cartesian system of coordinates yields a plane wave solution. Each factor
in (2.22) is an eigenfunction of a second order ordinary differential operator, as discussed in
Box 2.4. And by linear combination of such separated solutions (in particular, by integration
over plane waves, as in (2.24)) we can generate solutions to the 3D wave equation that in
general are not separated solutions.

2.1.5 THE INTERACTION OF A PLANE WAVE WITH A PLANAR INTERFACE BETWEEN

TWO DIFFERENT HOMOGENEOUS MEDIA: ACOUSTIC WAVES

First, we shall examine the case of an acoustic wave in a fluid, incident upon a planar
interface. Later we shall find that plane waves generalize from those we have considered so
far, to a type of wave in which amplitude decays exponentially with distance in a particular
direction.

For a plane wave propagating in a fluid, rigidity is zero and the stress tensor is isotropic
(τi j = −Pδi j). So the wave equation ρüi = τi j, j becomes ρü = −∇ P and Hooke’s law
τi j = λ∇ · uδi j + 2µei j reduces to −P = λ∇ · u. Since rigidity is zero there are no shear
waves. The P-waves in a fluid that we are discussing here, are often called acoustic waves.
They provide the method by which whales communicate in the oceans (where sound can
travel for thousands of kilometers), and of course by which people communicate with sound
waves in air. The study of acoustic waves has been extensively pursued, in the context of
hunting for submarines. Oceanographers and seismologists use acoustic waves to study the
ocean floor, and structures within the oceanic crust. Infrasound waves in the atmosphere
are part of a developing technology to study winds at high altitude, and to monitor for
meteorites, bolides, manmade explosions, and supersonic planes and space shuttles.

The wave equation (2.6) reduces in this case to ρü = λ∇2u since µ = 0, but it is easier
to quantify wave propagation in a fluid by analysing the pressure field P , because then we
can work with a scalar rather than a vector as the dependent variable. It is easy to show (can
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Incident wave Reflected wave

Transmitted wave

i

i

1

2

*i1

x

x

A B

C

1

3

x3 = 0
ρ c1 1

ρ c2 2

FIGURE 2.4
Two homogeneous fluids, with densities and wave speeds ρi , ci(i = 1, 2), have a planar interface
which is chosen as the plane x3 = 0. An incident plane wave in the upper medium travels in the plane
x2 = 0 and is incident upon the interface with ray direction given by the angle i1. The reflected wave
(making an angle i∗

1) and transmitted wave (angle i2) are also shown. Wave amplitudes are A, B, and
C . The reflection and transmission coefficients are B/A and C/A respectively.

you do it?) that the scalar wave equation for pressure is

1

c2

∂2 P

∂t2
= ∇2 P where c =

√
λ

ρ
. (2.25)

Each of the three plane waves shown in Figure 2.4 has a pressure field given by

P(x, t) = F

(
t − x · l

ci

)
where i = 1 for the upper medium and i = 2 for the lower medium.

The unit vector l is different for each of the three waves, being l = (sin i1, 0, cos i1) for the
incident wave, l = (sin i∗

1 , 0, − cos i∗
1) for the reflected wave, and l = (sin i2, 0, cos i2) for

the transmitted wave. If we use the approach indicated in the previous Section, in which the
dependencies on (x1, x2, x3, t) are handled by separate factors as in ei(k·x−ωt) with l = c

ω
k,

then we can take the incident wave as

P inc = Ae
iω

(
sin i1

c1
x1+ cos i1

c1
x3−t

)
. (2.26)

The reflected wave is

P refl = Be
iω

(
sin i∗

1
c1

x1−
cos i∗

1
c1

x3−t

)
, (2.27)

and the transmitted wave is

P trans = Ce
iω

(
sin i2

c2
x1+ cos i2

c2
x3−t

)
. (2.28)

This is an example of linear wave propagation, so that we expect the amplitudes B and C of
the scattered waves (reflected, transmitted) will increase in proportion to A, if the incident
amplitude A is increased. The ratios B/A and C/A have yet to be determined along with
the unknown angles i∗

1 and i2.
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To solve for these unknowns we must use boundary conditions at the interface x3 = 0.
Across this surface, the vertical displacement u3 must be continuous (otherwise a cavity
would open up, or the two fluids would be driven to occupy the same volume). Also the total
pressure field must be continuous (otherwise, a very thin disc of material with its upper face
in medium 1 and its lower face in medium 2 would be subjected to a net force, and it would
acquire an infinite acceleration). From ρü = −∇ P , the first boundary condition translates

into a requirement that
1

ρ

∂ P

∂x3
has the same value just above the interface (in medium 1), as

its value just below the interface (in medium 2). That is,

iω

ρ1


A

cos i1

c1
e

iω

(
sin i1

c1
x1−t

)
− B

cos i∗
1

c1
e

iω

(
sin i∗

1
c1

x1−t

)
 = iω

ρ2
C

cos i2

c2
e

iω

(
sin i2

c2
x1−t

)
.(2.29)

The second boundary condition (continuity of pressure) is simpler, namely

Ae
iω

(
sin i1

c1
x1−t

)
+ Be

iω

(
sin i∗

1
c1

x1−t

)
= Ce

iω

(
sin i2

c2
x1−t

)
. (2.30)

Both (2.29) and (2.30) apply for all values of x1 and t . It follows that

sin i1

c1
= sin i∗

1

c1
= sin i2

c2
. (2.31)

This result, known as Snell’s law, essentially says that the component of wavenumber k
taken along the interface, is the same for each of the scattered waves (two, in this case), as
it is for the incident wave. The angle of reflection, i∗

1 equals the incident angle i1, and the
transmission angle i2 is simply related to i1. In optics where there is a similar result, it is
more common to work with refractive index than wave speed. Since refractive index n is
inversely proportional to speed c, Snell’s law has the form n1 sin i1 = n2 sin i2 in optics.

Because of Snell’s law, all the exponentials in equations (2.29) and (2.30) are the same
and can be cancelled out leaving the following two equations for the ratio B/A and C/A:

cos i1

ρ1c1
(A − B) = cos i2

ρ2c2
C and A + B = C,

which are easily solved to give

B

A
=

cos i1

ρ1c1
− cos i2

ρ2c2
cos i1

ρ1c1
+ cos i2

ρ2c2

, and
C

A
=

2
cos i1

ρ1c1
cos i1

ρ1c1
+ cos i2

ρ2c2

. (2.32)

The product ρc which appears here repeatedly (evaluated for the upper and lower media) is
the impedance of a fluid. Impedance is essentially the ratio of pressure to particle velocity.
Impedance is high, if high pressure leads only to small particle velocity. Impedance is low,
if the particle motion is large even at low pressure.

Note that the reflection coefficient B/A and the transmission coefficient C/A are both
real, if angles i1 and i2 exist in the range from 0◦ to 90◦. If i1 = 0 then i2 = 0, and the
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coefficients reduce to

B

A
= ρ2c2 − ρ1c1

ρ2c2 + ρ1c1
and

C

A
= ρ2c2

ρ2c2 + ρ1c1
.

For a free surface, where there is just one fluid and the pressure is zero at the surface of a
half space, an incident pressure wave is reflected back with B/A = −1, or B = −A. (Take
ρ2 = 0 in the above equation to see this — the result is true also for general angles of
incidence, as can be shown from (2.32).) So the reflected wave of pressure has exactly the
same amplitude (but the opposite sign) of the incident pressure. This is why the pressure
from the two waves, taken together, cancels out, to give zero pressure at the free surface
itself.

2.1.6 EVANESCENT WAVES

Having obtained algebraic formulas for the reflection and transmission coefficients of an
acoustic wave in (2.32), we ask what will happen if the incident angle i1 is increased to an

angle large enough to prevent a simple solution i2 being given by Snell’s law,
sin i2

c2
= sin i1

c1
.

This situation can easily arise if c2 > c1, for which Snell’s law usually implies that i2 > i1,
as shown in Figure 2.4. The essence of this latter Figure is repeated in Figure 2.5. The

transmitted angle i2 is shown in this case as being less than 90◦, but if
sin i1

c1
>

1

c2
then we

can no longer find a real angle i2 because then sin i2 > 1. In such cases, there exist waves
in the lower medium that exponentially grow or exponentially decay with depth.

In cases such that p > 1
c2

, the transmitted wave of (2.28) becomes

Ceiω(px1−t) e
iω

√
1

c2
2

−p2 x3

= Ce
−ω

√
p2− 1

c2
2

x3

eiω(px1−t). (2.33)

When interpreting the first square root, on the left-hand side of (2.33), we have made the

choice
√

1
c2

2
− p2 = +i

√
p2 − 1

c2
2

because this gives a negative exponential on the right-hand

side of (2.33), and then the wave decays with depth below the interface at x3 = 0. This is an

example of an evanescent wave. If we had made the other choice,
√

1
c2

2
− p2 = −i

√
p2 − 1

c2
2
,

then we would obtain an exponentially growing wave. Although both waves are solutions of
the wave equation, in practice we are usually more interested in the exponentially decaying
solutions because they satisfy the condition that no radiation be transmitted to great depths.

It is a convenience if we assign a new label, p, to the value of
sin i1

c1
= sin i2

c2
used in

Snell’s law. This quantity, sometimes called the ray parameter, is the same for all three
rays shown in Figure 2.5. All of the algebraic manipulations we did in going from (2.26)

to (2.32) are still valid in the case p >
1

c2
and sin i2 > 1, provided we interpret

sin i2

c2
as p,

and
cos i2

c2
as

√
1

c2
2

− p2 = i

√
p2 − 1

c2
2

.

Proceeding further with the choice of square root made in (2.33), we can go to (2.32)

and find for p >
1

c2
that now
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narrow angle reflection

i

i

1
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c1

c2

p = 
sin i

c
1

1

= 
sin i

c
2

2

<   
1

c2

FIGURE 2.5
Narrow angle incidence upon a planar interface: p <

1

c2
. A transmitted wave exists, propagating

away from the interface.

critical reflection

i1c1

c2

p = 
sin i

c
1

1

= 
sin i

c
2

2

=   
1

c2

i 2 =   90
o

90
o

FIGURE 2.6
Critical incidence upon a planar interface: p = 1

c2
. The transmitted wave in the lower (faster)

medium, propagates parallel to the interface.

B

A
=

cos i1

ρ1c1
− i

ρ2

√
p2 − 1

c2
2

cos i1

ρ1c1
+ i

ρ2

√
p2 − 1

c2
2

. (2.34)

Because this expression has the form

B

A
= a − ib

a + ib
with real values of a and b

it follows that ∣∣∣∣ B

A

∣∣∣∣ = 1.

A similar example of wide-angle incidence (Figure 2.7 with c1 = the speed of light in
glass, and c2 = speed of light in air) in optics is called total internal reflection, and there
is little interest in the evanescent wave below the boundary because ω is so high that the
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wide angle reflection

i1
c1

c2

p = 
sin i

c
1

1

= 
sin i

c
2

2

>   
1

c2

i 2 =   ?

evanescent wave

FIGURE 2.7
Wide angle incidence upon a planar interface: p >

1

c2
. The transmitted wave has an amplitude that

decays exponentially with distance from the interface.

exponentially decaying transmitted wave (2.33) has little importance. For example, this is
the situation in the use of total internal reflection in a pair of binoculars (i1 = 45◦, medium 1
is glass, and refractive index of glass = speed of light in a vacuum ÷ speed of light in glass ∼
1.5, so that p >

1

c2
). But in many other fields, including geophysics, the evanescent waves

are very important. They represent a class of waves, sometimes called inhomogeneous
waves, that satisfy the wave equation with horizontal oscillation and vertical decay of
amplitude. In terms of the “unit vector” l = (l1, 0, l3), we still have l2

1 + l2
3 = 1 and we still

have l = (sin i2, 0, ± cos i2). But now l1 = sin i2 > 1 and l3 = ± cos i2 is imaginary.

2.1.7 THE INTERACTION OF A PLANE WAVE WITH THE “FREE SURFACE” OF AN

ELASTIC HALF-SPACE

Here we shall consider plane P-waves and plane SV -waves, incident from below upon the
planar free surface of an elastic solid as shown in Figure 2.8.

By “free surface”, we mean a surface that has no traction. Taking the surface to
be horizontal, and the x3-axis as the depth direction, this means that the stress tensor
components τ31, τ32, and τ33 are all zero on x3 = 0.

In Figure 2.8, if we assume the incident P-wave has a displacement with unit amplitude
and frequency ω, its displacement is given by

incident P-wave, of unit displacement = (sin i, 0, − cos i)eiω
(

px1− cos i
α x3−t

)
. (2.35)

The only significant difference between this expression and (2.26), is that (2.35) is a vector
instead of a scalar. (The first term on the right-hand side of (2.35) is a unit vector in the
longitudinal direction corresponding to the incident P-wave wavefront.)

In order to determine what waves are reflected from the free surface at x3 = 0, and with
what amplitude, we need to take account of the boundary conditions. For a free surface, there
is no constraint on displacement. But x3 = 0 is a traction-free surface, so τ31 = τ32 = τ33 = 0
on x3 = 0. If we allow for a P-wave reflection, its form will be
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i i

j

x

x

x   = 0

incident P

reflected SV

reflected P

1

3

31 32 33

3

τ    = τ    = τ    = 0  on  x   = 03

FIGURE 2.8
A plane P-wave is shown, incident upwards upon the free surface of an elastic half-space. Taking
this surface as the plane x3 = 0, with the x3-axis as the depth direction, and the x1 axis as the
horizontal direction containing the horizontal component of the P-wave motion, it follows that the
key boundary conditions are τ31 = 0 and τ33 = 0 on x3 = 0. (While it is also true that τ32 = 0 on
x3 = 0, this latter condition is trivially satisfied because τ32 is not excited by the incident wave, and
remains zero everywhere.) Rays are shown in grey, the position of wavefronts is shown as heavy
black lines perpendicular to the rays, and short lines with small arrows indicate the directions of
particle motion (longitudinal for the two P-waves, and transverse for the S-wave). Because the
transverse component of S in this case lies in a vertical plane, the reflected S-wave is polarized as
SV , using terminology introduced at the end of Section 2.1.1.

reflected P-wave = Ṕ P̀ (sin i, 0, cos i)eiω
(

px1+ cos i
α x3−t

)
. (2.36)

Note here that the phase of the wave increases in the longitudinal direction given by unit
vector l = (sin i, 0, + cos i), which is also the direction of particle motion (because this is
a P-wave).

For both the incident wave (2.35) and the reflected wave (2.36), it is easy to use
τi j = λ∇δi j + µ(ui, j + u j,i) to conclude that neither wave perturbs the τ32 component
of stress, and both waves perturb the τ31 and τ33 components. It follows that if the only
reflected wave is the P-wave described in (2.36), we can satisfy the requirement that τ32 = 0
on x3 = 0. (In fact, (2.35) and (2.36) have τ32 = 0 everywhere.) But we cannot satisfy both
τ31 = 0 and τ33 = 0 on x3 = 0. To satisfy both these scalar boundary conditions, we need
to allow for another reflected wave, namely the reflected S-wave shown in Figure 2.8. Its
displacement is given by

reflected SV -wave = Ṕ S̀ (cos j, 0, − sin j)eiω
(

px1+ cos j
β

x3−t
)
. (2.37)

The terms in the exponential here are chosen to make this wave travel downwards at an

angle j determined by
cos j

β
= cos i

α
= p (an extension of Snell’s law to cover different

wave types). And, the displacement here has a vector direction which is transverse. Because
the particle motion in the incident and reflected P-waves is confined to the x1–x3 plane,
S-wave motion can be expected to be confined to this same plane. So, the S-wave has SV
polarization (see Section 2.1.1), with no displacement component in the x2 direction in the
present problem, and no excitation of the τ32 component of stress.
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Equations (2.36) and (2.37) introduce a notation for the reflection coefficients of the
reflected waves, namely Ṕ P̀ and Ṕ S̀, that in miniature indicates which wave is incident,
and which is reflected. Aki and Richards (1980, 2002) use this notation to analyse in detail
all 16 possibilities if P-waves are incident from above or below, upon the planar interface
between two different solid elastic half-spaces, and each incident wave generates upgoing
and downgoing P- and S-waves in each half-space.

To apply the two non-trivial boundary conditions, which are given in terms of stress
components, we need to evaluate the relevant stresses in terms of displacements (2.36)
and (2.37) using the general stress–strain relation (1.37) in an isotropic solid. Thus, since

τ31 = µ

(
∂u3

∂x1
+ ∂u1

∂x3

)
, some algebra turns the boundary condition τ31 = 0 on x3 = 0 into

the first relation between Ṕ P̀ and Ṕ S̀. It is

2βp cos i Ṕ P̀ + (1 − 2β2 p2) Ṕ S̀ = 2βp cos i. (2.38)

And since τ33 = λ∇ · u + 2µ
∂u3

∂x3
, the boundary condition τ33 = 0 on x3 = 0 provides the

second relation (after more algebra) as

α(1 − 2β2 p2) Ṕ P̀ − 2β2 p cos j Ṕ S̀ = −α(1 − 2β2 p2). (2.39)

At last, in (2.38) and (2.39) we have two equations for the two unknown reflection
coefficients. The solutions are

Ṕ P̀ =
−

(
1

β2
− 2p2

)2

+ 4p2 cos i

α

cos j

β

+
(

1

β2
− 2p2

)2

+ 4p2 cos i

α

cos j

β

, (2.40)

and

Ṕ S̀ =
4
α

β
p

cos i

α

(
1

β2
− 2p2

)
(

1

β2
− 2p2

)2

+ 4p2 cos i

α

cos j

β

. (2.41)

2.1.8 RAYLEIGH WAVES

In Section 2.1.6 we showed that evanescent waves, or inhomogeneous waves, can exist as
solutions of the acoustic wave equation. These acoustic P-waves propagate horizontally
(the x1 direction) with a phase factor given by eiω(px1−t), and they decay exponentially with
depth x3. Their horizontal speed is 1/p.

More than a hundred years ago, Lord Rayleigh showed that it is possible to have a pair of
evanescent waves, one of P-wave type, the other an SV -wave, which when added together
can satisfy the free surface boundary conditions. But this coupled solution, a superposition
of P and SV , can occur only when the constant p takes a special value.

To analyse this possibility, we can write (2.36) and (2.37) in the notation that is more
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2.1 Compressional and shearing motions in an isotropic elastic medium 51

appropriate when
1

α
<

1

β
< p. (Another way to state these inequalities, is to say that p

is the ray parameter for a wave that travels horizontally with a speed that is slower than
a horizontally-propagating P-wave, and slower also than a horizontally-propagating S-
wave.) Since the angles i and j of Section 2.1.7 and Figure 2.8 cannot be given real values,
we make the following interpretations:

(sin i, 0, cos i)eiω
(

px1+ cos i
α x3−t

)
= (αp, 0, i

√
α2 p2 − 1) e

−ω

√
p2− 1

α2 x3
eiω(px1−t),

and (2.42)

(cos j, 0, − sin j)eiω
(

px1+ cos j
β

x3−t
)
= (i

√
β2 p2 − 1, 0, −βp) e

−ω

√
p2− 1

β2 x3
eiω(px1−t).

Because the x3 component of each of these inhomogeneous waves has a phase that
is greater than the x1 component by 90◦ (see the right-hand sides of both the first and
second of equations (2.42)), the particle motion of each of the two waves is elliptical (see
Problem 2.6).

Suppose now that we form a linear combination of the P- and SV -waves given in (2.42),
and see if the combined waves can be made to satisfy both of the non-trivial boundary
conditions τ31 = τ33 = 0 of a free surface. If we take P̀ times the first of (2.42) and add it
to S̀ times the second of (2.42), then

2pαβi

√
p2 − 1

α2
P̀ + (1 − 2β2 p2) S̀ = 0 (from τ31 = 0 on x3 = 0), (2.43)

and

(1 − 2β2 p2) P̀ − 2β3 pi

α

√
p2 − 1

β2
S̀ = 0 (from τ33 = 0 on x3 = 0). (2.44)

(We choose the notation P̀ and S̀ for the coefficients of the two waves, because these
constants symbolize the amounts of the downgoing P- and SV -waves that we are combining,
in the case that p is small and it is natural to work with the left-hand sides of the two
equations in (2.43). When p is large, so that the right-hand sides of equations (2.43) are
more appropriate and the waves exponentially decay with depth, then P̀ and S̀V determine
how much of each decaying solution is present in the combination.)

In general it is not possible to satisfy both these equations at once, unless P̀ = S̀ = 0.
(Essentially, they are two equations for the ratio between P̀ and S̀.) But they can both be
satisfied with non-trivial values of P̀ and S̀ if the determinant of coefficients vanishes. This
requires that R(p) = 0, where

R(p) ≡
(

1

β2
− 2p2

)2

− 4p2

√
p2 − 1

α2

√
p2 − 1

β2

=
(

1

β2
− 2p2

)2

+ 4p2 cos i

α

cos j

β
.

(2.45)
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52 Chapter 2 / WAVES IN AN ISOTROPIC ELASTIC SOLID

This function of p2 has just one zero (for positive imaginary “cosines”), which is real and
positive. Since the corresponding positive value of p is slightly (4–14%) greater than 1/β

for all elastic solids, it is indeed possible for a coupled pair of inhomogeneous waves, P
and SV , to propagate along the free surface of a half-space. Such a surface wave is named
for Rayleigh, who described its main properties in 1885. (Lord Rayleigh had enormous
scientific accomplishments in the application of mathematical methods to learn for the first
time about fundamental properties of acoustic waves, elastic waves, and non-linear motions
including convection. He was awarded the Nobel Prize in physics for his discovery of argon
in the Earth’s atmosphere.)

When an earthquake or an underground explosion occurs, the seismic body waves such
as P and S spread throughout the three-dimensional volume of the Earth’s interior. In the
simplest case of a homogeneous medium, the wavefronts of these body waves are expanding

spheres, and the amplitude decreases with distance r like
1

r
(see, for example, (2.13)). But

the Rayleigh wave spreads only over the Earth’s surface, expanding like a circle rather
than a sphere, and therefore does not attenuate so rapidly. In fact, surface-wave amplitudes

attenuate with distance like
1√
r

. This means that the ratio of surface-wave amplitude to

body-wave amplitude increases like
√

r with distance r from the seismic source, so that the
surface waves become progressively stronger and stronger relative to body waves.

Suggestions for Further Reading

Menke, William, and Dallas Abbott. Geophysical Theory, New York: Columbia University
Press, 1990 (pp 253–260 for properties of plane waves in a fluid, and pp 326–330 for
plane waves in an elastic solid).

Aki, Keiiti, and Paul G. Richards. Quantitative Seismology, second edition, Sausalito,
California: University Science Books, 2002 (Chapter 5, for plane waves and their
interaction with a plane boundary).

Problems

2.1 Show that when the general plane wave trial solution (2.9) is substituted into (2.6),
the vector wave equation in the absence of body forces becomes

ρü = λ + 2µ

c2
(ü · l)l − µ

c2
l × (l × ü).

Taking the scalar product and the vector product of this result with l (that is, l · . . .
and l × . . .), show that (

ρ − λ + 2µ

c2

)
ü · l = 0

and (
ρ − µ

c2

)
ü × l = 0.
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[The last three equations are valid for any plane wave in the form (2.9). So, up to
this point, don’t make any assumptions about whether the wave is longitudinal or
transverse in the derivations.]

From the last two equations show that either c2 = λ + 2µ

ρ
and ü × l = 0,

or c2 = µ

ρ
and ü · l = 0. Show finally that the plane wave travels with speed

c =
√

λ + 2µ

ρ
and has motion parallel to l and is therefore longitudinal (this is

the plane P-wave); or the plane wave travels with speed c =
√

µ

ρ
and has motion

perpendicular to l so that it is transverse (this is the plane S-wave). There are no
other types of elastic plane wave in an isotropic homogenous medium.

2.2 If an elastic displacement satisfies the vector equation (2.6), and if this displacement
and the body force are represented by potentials so that u = ∇φ + ∇ψψ (with
∇ · ψψ = 0) and f = ∇� + ∇�� (with ∇ · �� = 0), show that (2.6) becomes a third-
order partial differential equation. Show that separate fourth-order equations for
φ and ψψ can be written in the form

∇2[ρφ̈ − (λ + 2µ)∇2φ − �] = 0

and

∇2[ρψ̈ψ − µ∇2ψψ − ��] = 0.

[To generate a solution of (2.6), note that it is sufficient to require φ and
ψψ to satisfy the simpler second-order equations ρφ̈ − (λ + 2µ)∇2φ = � and
ρψ̈ψ − µ∇2ψψ = ��, because such solutions also satisfy the third-order differential
equation mentioned above. But is it true that all possible displacement solutions
u to (2.6) can be generated by potentials φ and ψψ that satisfy these second-order
wave equations? Fortunately the answer here is “yes,” though a proof was not
given for more than 100 years after it was assumed to be true. It follows that only
second-order equations for φ and ψψ are needed, in order to generate all possible
solutions u.]

Show from u = ∇φ + ∇ψψ (with ∇ · ψψ = 0) that the potential φ generates
a displacement which is irrotational (has zero curl); and that the potential ψψ

generates a displacement which is divergence-free (no volume change). [Thus the

P-wave, in addition to having the characteristic speed c =
√

λ + 2µ

ρ
and being

longitudinal, is also irrotational but carries a change in volume; and the S-wave, in

addition to having the characteristic speed c =
√

µ

ρ
and being transverse, is also

divergence-free (sometimes called equivoluminal) but carries a change in particle
rotation. P-wave motion is sometimes called compressional, entailing dilatation
or rarefaction as well as compression. An S-wave entails shearing motion.]

2.3 For the problem of a plane wave incident upon the interface between two fluids
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Incident SH wave
Reflected SH wave

Transmitted SH wave
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FIGURE 2.9
The three S waves shown here have horizontal particle motions (thus giving SH motion).

(see Section 2.1.5 and Figure 2.4), show that in general the horizontal component
of displacement is discontinuous across the interface.

For the fluids shown in Figure 2.4, ρ2 > ρ1 for stability. If also c2 > c1, then
show that the bulk modulus (defined in Problem 1.6) of the lower fluid is greater
than that of the upper one.

What types of physical phenomena might result from the discontinuity in
horizontal displacement?

2.4 Prove the statement made following (2.32), that “Impedance is essentially the
ratio of pressure to particle velocity.”

2.5 Suppose that an SH wave is incident from below, upon the surface x3 = 0 as shown
in Figure 2.9.

a) What are the two boundary conditions needed, to determine the two coefficients
Ś Ś (transmission) and Ś S̀ (reflection)?

b) Show that the displacement

u = (0, uinc
2 , 0) where uinc

2 = e
iω

(
sin j2
β2

x1− cos j2
β2

x3−t

)
= e

iω

(
px1− cos j2

β2
x3−t

)

is a satisfactory form for the incident wave (i.e., show that u given by these
formulas is a plane SH wave, propagating in the correct direction and with unit
amplitude).

c) Write down the corresponding formulas for the transmitted u2 component,
which can be called utrans

2 , and the reflected component, urefl
2 .

d) Show that the two coefficients in this problem are given by

Ś Ś = 2ρ2β2 cos j2
ρ1β1 cos j1 + ρ2β2 cos j2

and Ś S̀ = −ρ1β1 cos j1 − ρ2β2 cos j2
ρ1β1 cos j1 + ρ2β2 cos j2

.

e) If x3 = 0 is a free surface, on which τ32 = 0, then there is no transmitted wave.
Show in this case that the particle motion of the free surface itself is double the
particle motion in the incident wave.
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2.6 Show from the left-hand sides of (2.42) that for each of these two waves, P and SV ,

the particle motion is linear when p <
1

α
<

1

β
. [By “linear”, we mean the particles

move in a line, with their x1 and x3 components either in phase, or exactly out of
phase (by 180◦). So, for a homogeneous P-wave or SV -wave, the particles move
in straight lines — longitudinal or transverse. The whole point of this problem,
given below, is to make the point that particle motion for inhomogeneous waves
is not linear.]

The right-hand sides of equations (2.42) give the form of both P- and SV -

waves when their horizontal speed
1

p
is so slow that the waves decay exponentially

with depth x3. Conventionally we express the wave by taking the real part of these
equations. Show for the inhomogeneous P-wave described by the right-hand side
of (2.42) that the particle motions (u1, 0, u3) satisfy

u2
1

α2 p2
+ u2

3

α2 p2 − 1
= e

−2ω

√
p2− 1

α2 x3

and hence that the particle motion in an inhomogeneous P-wave is elliptical.
What is the corresponding result for the inhomogeneous SV -wave, derived

from the second of (2.42)?

2.7 If λ = µ, show that the Rayleigh wave function R(p) given in (2.45) is zero if
1

p2β2
= 2 or 2 ± 2√

3
.

Which of these possibilities can provide a coupled inhomogeneous P-wave
and SV -wave?
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