Solid angle, 3D integrals, Gauss's Theorem, and a Delta Function

We define the solid angle, subtended at a point P by a surface area S, to be

$$
\begin{equation*}
\Omega=\int_{S} \frac{\mathbf{r} \cdot \mathbf{d S}(\mathbf{r})}{r^{3}} \tag{7.1}
\end{equation*}
$$

In this integral, $\mathbf{d S}$ is chosen on the side of S that typically makes $\mathbf{r} \cdot \mathbf{d S}$ positive, as shown in Figure 7.1.

With this definition we can show that Ω depends only on the position of P with respect to the perimeter of S, because different surfaces S and S^{\prime} that have the same perimeter will subtend the same solid angle (provided P does not lie inside the closed surface formed by S and S^{\prime}).

We are claiming here that

$$
\begin{equation*}
\Omega=\int_{S} \frac{\mathbf{r} \cdot \mathbf{d S}(\mathbf{r})}{r^{3}}=\int_{S^{\prime}} \frac{\mathbf{r} \cdot \mathbf{d S}^{\prime}(\mathbf{r})}{r^{3}} \tag{7.2}
\end{equation*}
$$

To prove this last result, consider the closed surface Σ formed by S and S^{\prime}. Typically, one of the vectors $\mathbf{d S}$ and $\mathbf{d} \mathbf{S}^{\prime}$ will point out of Σ, and the other will point into Σ. As drawn in Figure 7.2, $\mathbf{d S}$ points in and $\mathbf{d} \mathbf{S}^{\prime}$ points out. If the direction of $\mathbf{d} \boldsymbol{\Sigma}$ is defined everywhere to point out of the closed surface Σ, it follows that

$$
\int_{\Sigma} \frac{\mathbf{r} \cdot \mathbf{d} \Sigma}{r^{3}}=\int_{S^{\prime}} \frac{\mathbf{r} \cdot \mathbf{d} \mathbf{S}^{\prime}}{r^{3}}-\int_{S} \frac{\mathbf{r} \cdot \mathbf{d S}}{r^{3}}
$$

But, by Gauss's theorem,

$$
\int_{\Sigma} \frac{\mathbf{r} \cdot \mathbf{d} \boldsymbol{\Sigma}}{r^{3}}=\int_{V} \nabla \cdot\left(\frac{\mathbf{r}}{r^{3}}\right) d V
$$

where V is the volume inside the closed surface Σ, and the point P lies outside V.
It is easy to show (see Box 7.1) that $\nabla \cdot\left(\frac{\mathbf{r}}{r^{3}}\right)$ is zero everywhere inside V, hence $\int_{\Sigma} \frac{\mathbf{r} \cdot \mathbf{d} \boldsymbol{\Sigma}}{r^{3}}=0$, and we can indeed use either S or S^{\prime} in the definition of Ω.

FIGURE 7.1
This crudely illustrates a 3D relationship between the point P and the surface S. In general neither the surface nor its perimeter lies in a plane.
Ω is also equal to the area on the unit sphere (i.e., a sphere with unit radius, centered on P) cut by the straight lines from P to the perimeter of S. To see this, let S^{\prime} be the surface shown in Figure 7.3 and let A be the area cut on the unit sphere.

Then since $\Omega=\int_{S^{\prime}} \frac{\mathbf{r} \cdot \mathbf{d} \mathbf{S}^{\prime}}{r^{3}}$ from (7.2), and S^{\prime} is made up of area A plus a surface for which \mathbf{r} and $\mathbf{d} \mathbf{S}^{\prime}$ are perpendicular, it follows that $\Omega=\int_{A} \frac{\mathbf{r} \cdot \mathbf{d A}}{r^{3}}$. But we can simplify further, since \mathbf{r} is a unit vector on A, and is normal to $\mathbf{d A}$. We find

$$
\begin{equation*}
\Omega=\int_{A} d A=A \tag{7.3}
\end{equation*}
$$

It is interesting next to see what happens if instead of choosing two surfaces S and S^{\prime} as in Figure 7.2, we choose S and $S^{\prime \prime}$ as in Figure 7.4. The two surfaces still form a closed surface, but now with P inside. We still take Σ (the sum of two surfaces, here S and $S^{\prime \prime}$) as the closed surface, but now $\mathbf{d} \boldsymbol{\Sigma}, \mathbf{d S}$, and $\mathbf{d} \mathbf{S}^{\prime \prime}$ are all outward-pointing vectors.

Recall from (7.3) that $\Omega=\int_{S} \frac{\mathbf{r} \cdot \mathbf{d S}}{r^{3}}=A$, where A is the area cut on the unit sphere. The total spherical area is 4π, so $\int_{S^{\prime \prime}} \frac{\mathbf{r} \cdot \mathbf{d S}^{\prime \prime}}{r^{3}}=4 \pi-A$, and $\int_{S}+\int_{S^{\prime \prime}}=\int_{\Sigma}=4 \pi$. But it is still true that $\int_{\Sigma}=\int_{V} \nabla \cdot\left(\frac{\mathbf{r}}{r^{3}}\right) d V$, so why is this last integral not zero, as in the previous analysis when P was outside V ? And why is it not zero, given the results developed in Box 7.1?

The reason is that the proof of $\nabla \cdot\left(\frac{\mathbf{r}}{r^{3}}\right)=0$, given in Box 7.1, fails at the place where $r=0$, i.e. at the point P itself.

figure 7.2

Two surfaces, \mathbf{S} and \mathbf{S}^{\prime}, with the same perimeter.

We have now proved two very important properties of the expression $\nabla \cdot\left(\frac{\mathbf{r}}{r^{3}}\right)$. It is zero everywhere except at $r=0$ (as shown in Box 7.1). And the volume integral $\int_{V} \nabla \cdot\left(\frac{\mathbf{r}}{r^{3}}\right) d V$ is either zero or 4π, depending on whether the point P lies outside or inside the volume. Therefore the integrand must be a delta function. In fact, it must be 4π times the standard Dirac delta function in three-dimensional space.

The mathematical units in which a solid angle Ω is measured are called "tteradians" (compare with radians, the mathematical units for ordinary angle). The solid angle representing the totality of all directions away from a point is 4π steradians (compare with the value 2π radians for the ordinary angle corresponding to all directions away from a point in a plane). The steradian is physically a dimensionless unit (just as radians and degrees are dimensionless).

Finally, note that $\nabla \cdot\left(\frac{\mathbf{r}}{r^{3}}\right)=-\nabla^{2}\left(\frac{1}{r}\right)$. We have therefore shown by our discussion of solid angles that

$$
\nabla^{2}\left(\frac{1}{r}\right)=-4 \pi \delta(\mathbf{r})
$$

BOX 7.1

Two properties of a particular vector related to gravitation

At the heart of our discussion of solid angle is the vector

$$
\frac{\mathbf{r}}{r^{3}}
$$

First we shall evaluate the divergence of this vector, and then we'll relate the vector to the gradient of a scalar.

Provided $r \neq 0$, we can write

$$
\begin{align*}
\nabla \cdot\left(\frac{\mathbf{r}}{r^{3}}\right) & =\frac{\partial}{\partial x_{i}}\left(\frac{x_{i}}{r^{3}}\right) \\
& =\frac{3}{r^{3}}-3 \frac{x_{i}}{r^{4}} \frac{\partial r}{\partial x_{i}} \tag{1}
\end{align*}
$$

But $r^{2}=x_{j} x_{j}$, and differentiating this result with respect to x_{i} we obtain $2 r \frac{\partial r}{\partial x_{i}}=$ $2 x_{j} \frac{\partial x_{j}}{\partial x_{i}}=2 x_{j} \delta_{i j}=2 x_{i}$, and hence

$$
\begin{equation*}
\frac{\partial r}{\partial x_{i}}=\frac{x_{i}}{r} \tag{2}
\end{equation*}
$$

It follows from (1) and (2) that

$$
\begin{equation*}
\nabla \cdot\left(\frac{\mathbf{r}}{r^{3}}\right)=\frac{3}{r^{3}}-3 \frac{x_{i}}{r^{4}} \frac{x_{i}}{r}=\frac{3}{r^{3}}-3 \frac{r^{2}}{r^{5}}=0 . \tag{3}
\end{equation*}
$$

Next, we can note that the vector $\frac{\mathbf{r}}{r^{3}}$ is related to the gradient of the scalar $\frac{1}{r}$. This follows because, using components in a cartesian system,

$$
\left.\nabla\left(\frac{1}{r}\right)\right|_{i}=\frac{\partial}{\partial x_{i}}\left(\frac{1}{r}\right)=-\frac{1}{r^{2}} \frac{\partial r}{\partial x_{i}}=-\frac{x_{i}}{r^{3}}=-\left.\frac{\mathbf{r}}{r^{3}}\right|_{i}
$$

and so

$$
\begin{equation*}
-\frac{\mathbf{r}}{r^{3}}=\nabla\left(\frac{1}{r}\right) . \tag{4}
\end{equation*}
$$

Note that $\frac{\mathbf{r}}{r^{3}}=\frac{\text { unit vector in the direction of } r \text { increasing }}{r^{2}}$. Therefore, in the context of gravity theory, we can recognize the vector $-\frac{\mathbf{r}}{r^{3}}$ as having magnitude and direction like those of an inverse square law for an attractive force between two particles a distance \mathbf{r} apart. Equation (4) gives the associated potential.

Putting the results (3) and (4) together, we find that

$$
\begin{equation*}
\nabla^{2}\left(\frac{1}{r}\right)=0 \quad \text { provided } \quad r \neq 0 \tag{5}
\end{equation*}
$$

FIGURE 7.3
Solid angle is shown as an area A projected from S onto part of the unit sphere. The area S^{\prime} is made up from area A plus the part of a cone between the perimeter of A and the perimeter of S.
where $\delta(\mathbf{r})$ is the three-dimensional Dirac delta function.
More generally,

$$
\nabla^{2}\left(\frac{1}{|\mathbf{x}-\xi|}\right)=-4 \pi \delta(\mathbf{x}-\xi)
$$

Problems

7.1 What is the solid angle subtended by the blackboard in Schermerhorn Room 555 in the following cases: (a) at the eye of a person in the middle of the main row where people sit; (b) at the eye of a person in a far corner of the room; and (c) at the eye of a myopic (short-sighted) instructor with his or her nose right up against the board? (Give approximate answers, in steradians.)

FIGURE 7.4
P is now inside the closed surface formed by \mathbf{S} and $\mathbf{S}^{\prime \prime}$ (which share a common perimeter).

