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CHAPTER 7
Solid angle, 3D integrals, Gauss’s

Theorem, and a Delta Function

We define the solid angle, subtended at a point P by a surface area S, to be

� =
∫

S

r · dS(r)
r3

. (7.1)

In this integral, dS is chosen on the side of S that typically makes r · dS positive, as shown
in Figure 7.1.

With this definition we can show that � depends only on the position of P with respect
to the perimeter of S, because different surfaces S and S′ that have the same perimeter will
subtend the same solid angle (provided P does not lie inside the closed surface formed by
S and S′).

We are claiming here that

� =
∫

S

r · dS(r)
r3

=
∫

S′

r · dS′(r)
r3

. (7.2)

To prove this last result, consider the closed surface � formed by S and S′. Typically,
one of the vectors dS and dS′ will point out of �, and the other will point into �. As drawn
in Figure 7.2, dS points in and dS′ points out. If the direction of d�� is defined everywhere
to point out of the closed surface �, it follows that

∫
�

r · d��

r3
=

∫
S′

r · dS′

r3
−

∫
S

r · dS
r3

.

But, by Gauss’s theorem,

∫
�

r · d��

r3
=

∫
V

∇ ·
(

r
r3

)
dV,

where V is the volume inside the closed surface �, and the point P lies outside V .

It is easy to show (see Box 7.1) that ∇ ·
(

r
r3

)
is zero everywhere inside V , hence

∫
�

r · d��

r3
= 0, and we can indeed use either S or S′ in the definition of �.
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FIGURE 7.1
This crudely illustrates a 3D relationship between the point P and the surface S. In general neither
the surface nor its perimeter lies in a plane.

� is also equal to the area on the unit sphere (i.e., a sphere with unit radius, centered
on P) cut by the straight lines from P to the perimeter of S. To see this, let S′ be the surface
shown in Figure 7.3 and let A be the area cut on the unit sphere.

Then since � = ∫
S′

r · dS′

r3
from (7.2), and S′ is made up of area A plus a surface

for which r and dS′ are perpendicular, it follows that � = ∫
A

r · dA
r3

. But we can simplify
further, since r is a unit vector on A, and is normal to dA. We find

� =
∫

A
d A = A. (7.3)

It is interesting next to see what happens if instead of choosing two surfaces S and S′

as in Figure 7.2, we choose S and S′′ as in Figure 7.4. The two surfaces still form a closed
surface, but now with P inside. We still take � (the sum of two surfaces, here S and S′′) as
the closed surface, but now d��, dS, and dS′′ are all outward-pointing vectors.

Recall from (7.3) that � = ∫
S

r · dS
r3

= A, where A is the area cut on the unit sphere.

The total spherical area is 4π , so
∫

S′′
r · dS′′

r3
= 4π − A, and

∫
S + ∫

S′′ = ∫
�

= 4π . But it is

still true that
∫
�

= ∫
V ∇ ·

(
r
r3

)
dV , so why is this last integral not zero, as in the previous

analysis when P was outside V ? And why is it not zero, given the results developed in
Box 7.1?

The reason is that the proof of ∇ ·
(

r
r3

)
= 0, given in Box 7.1, fails at the place where

r = 0, i.e. at the point P itself.
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FIGURE 7.2
Two surfaces, S and S′, with the same perimeter.

We have now proved two very important properties of the expression ∇ ·
(

r
r3

)
. It is zero

everywhere except at r = 0 (as shown in Box 7.1). And the volume integral
∫

V ∇ ·
(

r
r3

)
dV

is either zero or 4π , depending on whether the point P lies outside or inside the volume.
Therefore the integrand must be a delta function. In fact, it must be 4π times the standard
Dirac delta function in three-dimensional space.

The mathematical units in which a solid angle � is measured are called “steradians”
(compare with radians, the mathematical units for ordinary angle). The solid angle repre-
senting the totality of all directions away from a point is 4π steradians (compare with the
value 2π radians for the ordinary angle corresponding to all directions away from a point
in a plane). The steradian is physically a dimensionless unit (just as radians and degrees are
dimensionless).

Finally, note that ∇ ·
(

r
r3

)
= −∇2

(
1

r

)
. We have therefore shown by our discussion

of solid angles that

∇2
(

1

r

)
= −4πδ(r),
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BOX 7.1
Two properties of a particular vector related to gravitation

At the heart of our discussion of solid angle is the vector

r
r3

.

First we shall evaluate the divergence of this vector, and then we’ll relate the vector to the
gradient of a scalar.

Provided r �= 0, we can write

∇ ·
(

r
r3

)
= ∂

∂xi

(
xi

r3

)

= 3

r3
− 3

xi

r4

∂r

∂xi
. (1)

But r2 = x j x j , and differentiating this result with respect to xi we obtain 2r
∂r

∂xi
=

2x j
∂x j

∂xi
= 2x jδi j = 2xi , and hence

∂r

∂xi
= xi

r
. (2)

It follows from (1) and (2) that

∇ ·
(

r
r3

)
= 3

r3
− 3

xi

r4

xi

r
= 3

r3
− 3

r2

r5
= 0. (3)

Next, we can note that the vector
r
r3

is related to the gradient of the scalar
1

r
. This

follows because, using components in a cartesian system,

∇
(

1

r

) ∣∣∣∣∣
i

= ∂

∂xi

(
1

r

)
= − 1

r2

∂r

∂xi
= − xi

r3
= − r

r3

∣∣∣∣∣
i

,

and so

− r
r3

= ∇
(

1

r

)
. (4)

Note that
r
r3

= unit vector in the direction of r increasing

r2
. Therefore, in the context of

gravity theory, we can recognize the vector − r
r3

as having magnitude and direction like
those of an inverse square law for an attractive force between two particles a distance r
apart. Equation (4) gives the associated potential.

Putting the results (3) and (4) together, we find that

∇2
(

1

r

)
= 0 provided r �= 0. (5)
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Problems 127

area A

FIGURE 7.3
Solid angle is shown as an area A projected from S onto part of the unit sphere. The area S′ is made
up from area A plus the part of a cone between the perimeter of A and the perimeter of S.

where δ(r) is the three-dimensional Dirac delta function.
More generally,

∇2
(

1

|x − ξξ |
)

= −4πδ(x − ξξ).

Problems

7.1 What is the solid angle subtended by the blackboard in Schermerhorn Room 555
in the following cases: (a) at the eye of a person in the middle of the main row
where people sit; (b) at the eye of a person in a far corner of the room; and (c) at
the eye of a myopic (short-sighted) instructor with his or her nose right up against
the board? (Give approximate answers, in steradians.)
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P

surface S

surface S

FIGURE 7.4
P is now inside the closed surface formed by S and S′′ (which share a common perimeter).
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