
CHAPTER 8
Lagrange Multipliers, and Two

Applications in the Study of Shear
Fracture

This chapter describes the use of Lagrange multipliers to find maxima and minima of a
function of a set of variables, in the case that the variables cannot freely take on any value,
but are subject to one or more additional constraints.

The basic method is given, followed by two applications in the study of shear stress at
a point in a generally stressed solid. Thus, we shall answer the questions:

(i) What is the plane of maximum shear stress? (See Section 8.2.)

(ii) What is the plane of maximum Coulomb stress? (See Section 8.3.)

8.1 The Basic Method

First let’s consider

Problem A: how do we solve for the values of (x1, x2, . . .) that give maximum values
of a function G = G(x1, x2, . . .), subject to the constraint that H(x1, x2, . . .) = 0?

The constraint is sometimes called a side condition. An example in three dimensions
would be the requirement that x is a unit vector. Then the side condition would be
H(x1, x2, x3) = (x2

1 + x2
2 + x2

3) − 1.
Note an example of Problem A for two dimensions shown in Figure 8.1 in which there

is an obvious graphical solution. We simply find the extreme values of G, as x moves over
the ellipse ax2

1 + 2bx1x2 + cx2
2 = 1. Later, we can check if the extrema are maxima or

minima.
It is apparent from Figure 8.1 that the solutions we want are the points where the

contours of G are tangential to the curve H = 0. These are points marked as P and Q in
the Figure. Other points on H = 0, between P and Q, lie between these extrema. If G is a
more complicated function of (x1, x2) then there may be more than two extreme values of
G as x1 and x2 vary on the ellipse. But, any maximum of G (subject to the side condition
H = 0) must be one of them.

This graphical presentation of properties of the solution enables us to set up a different
calculus problem, which we can call Problem B, which is easy to solve directly, and which
has the same solutions as Problem A. In this way we can solve Problem A indirectly.
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Q

P

contours of G
H  = 0

FIGURE 8.1
This shows a two-dimensional example of the main idea behind the method of Lagrange multipliers.
Each point of the diagram represents a value of the vector x = (x1, x2). The set of points for
which H(x) = 0 in this case is an ellipse (and if we were using an independent variable such as
x = (x1, x2, x3) or n = (n1, n2, n3) with three scalar variables, then H = 0 would be a surface such
as a sphere). Seven contour lines for G are shown. On each of them, G is equal to a constant. The
constant varies from one contour to another.

Thus, at points P and Q in Figure 8.1, note that the normals to the contours of G are
parallel to the normals of the ellipse (i.e. the direction of the vector whose components are
∂G

∂xi
is parallel to the direction whose components are

∂ H

∂xi
(i = 1, 2). So, the points P and

Q have x values that satisfy

∂G

∂xi
+ λ

∂ H

∂xi
= 0 (i = 1, 2) (8.1)

for some value of λ. This result suggests setting up, instead of Problem A, the following

Problem B: for fixed λ, how do we find values of x that maximize the function
F(x) = G(x) + λH(x)? In general the solutions will depend on λ. We can write them
as x = x(λ). Choose the value of λ for which H(x(λ)) = 0.

To solve Problem B in the case of m variables xi (i = 1, 2, . . . , m), we set up m + 1
equations in m + 1 unknowns:

∂G

∂xi
+ λ

∂ H

∂xi
= 0 (i = 1, 2, . . . , m), and H = 0.

We claim that the solution to Problem B is also a solution to Problem A.
The (initially) unknown constant λ is called a Lagrange multiplier.
More generally, there may be several side conditions Hj(x) = 0 ( j = 1, 2, . . . , n) as

well as a large number, m, of independent variables (x1, x2, x3, x4, . . .). The extrema of a
function G(x), subject to these n side conditions, is found by working with n Lagrange

multipliers. The solution is found from the m conditions for extrema of G +
n∑

j=1
λ j H j ,

namely (8.1) for i = 1, 2, . . . , m, and then choosing the n Lagrange multipliers λ j so that
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δ S
n

F T= δ

Sδ
x

FIGURE 8.2
This shows an area element centered on x, with scalar magnitude δS and direction given by the
normal vector n; and the associated traction vector T. The traction is “force per unit area,” and
the total surface force acting across the area element is δF ∝ δS. The traction is the constant of
proportionality between δF and δS. As shown in Figure 1.4, δS may be part of an internal surface.
In this chapter we are using σσ for the stress tensor, which is a common notation. In Chapter 1 we
used ττ . We showed in equation (1.18) and Section 1.1.1 that Ti = τi jn j , so in the present chapter the
corresponding result is Ti = σi jn j .

Hj = 0 for all j . This gives n more equations, for a total of m + n equations for the m + n
unknowns.

8.2 Application to Finding Planes of Maximum Shear Stress

In a stress field with principal stresses σ1, σ2, σ3, we use the principal axes of stress as
coordinate axes. The usual rule Ti = σi jn j , relating traction vector and normal vector, then
reduces to T = (σ1n1, σ2n2, σ3n3); and the normal stress σn = σi jnin j (see equation (1.19))
is given in this case by σ1n2

1 + σ2n2
2 + σ3n2

3.
Resolving T into its normal (σn) and tangential (σt) components, the shear stress (σt)

is therefore given as a function of components of n by

σ 2
t = T · T − σ 2

n = σ 2
1 n2

1 + σ 2
2 n2

2 + σ 2
3 n2

3 − (σ1n2
1 + σ2n2

2 + σ3n2
3)

2. (8.2)

From the discussion of “Problem A” and “Problem B” in the previous section, we
see now that the problem of finding maxima in σ 2

t as n varies, subject to the constraint
n2

1 + n2
2 + n3

3 = 1, is equivalent to the problem of maximizing F = σ 2
t + λ(n2

1 + n2
2 + n2

3)

as each of (n1, n2, n3) vary independently, and then imposing n2
1 + n2

2 + n3
3 = 1.

To find the planes of maximum shear stress, we therefore have four equations for the
three unknown scalar components of n, and the unknown Lagrange multiplier λ:

1

2

∂ F

∂n1
= σ 2

1 n1(1 − 2n2
1) − 2σ1σ2n1n2

2 − 2σ1σ3n1n2
3 + λn1 = 0,
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plus two more such equations from
∂ F

∂n2
= 0,

∂ F

∂n3
= 0, plus the side condition

n2
1 + n2

2 + n3
3 = 1 (8.3)

.
From these four equations we can find

σ1n1[+(n2
2 + n2

3 − n2
1)σ1 − 2n2

2σ2 − 2n2
3σ3] = −λn1,

σ2n2[−2n2
1σ1 + (n2

3 + n2
1 − n2

2)σ2 − 2n2
3σ3] = −λn2,

and

σ3n3[−2n2
1σ1 − 2n2

2σ2 + (n2
1 + n2

2 − n2
3)σ3] = −λn3.

There are three different solutions for n, and these are

{n1 = 0, n2
2 = n2

3 = 1

2
, λ = σ2σ3} (8.4)

or

{n2 = 0, n3
2 = n2

1 = 1

2
, λ = σ3σ1} (8.5)

or

{n3 = 0, n1
2 = n2

2 = 1

2
, λ = σ1σ2}. (8.6)

For each of these three solutions, we can go back to find the value of σ 2
t at each extremum.

Our formula (8.2) for σ 2
t gives the following values:

σ 2
t = [

1

2
(σ2 − σ3)]

2, (for 8.4)

σ 2
t = [

1

2
(σ3 − σ1)]

2, (for 8.5)

σ 2
t = [

1

2
(σ1 − σ2)]

2. (for 8.6)

If the principal stresses σ1, σ2, and σ3 are all different, then one of the three extrema
will be greater than the others. If we number axes so that

σ3 < σ2 < σ1 < 0 (all compressions), (8.7)

then the maximum shear stress has magnitude 1
2 (σ1 − σ3) corresponding to solution (8.5).

We might call this the“greatest maximum” or the “global maximum.” The other two
maxima are lower in value. Sometimes, they are called “local maxima.” Each of the three
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FIGURE 8.3
Planes of greatest shear stress.

solutions (8.4) – (8.6) consists of a pair of planes, mutually at right angles. The particular
solution which gives the greatest maximum is shown in Figure 8.3.

Note that the pair of planes of greatest shear stress contain the intermediate stress axis,
and both planes lie at 45◦ to the directions of greatest and least principal stress.

8.3 The Effect of Friction

The plane that will eventually fail as stresses gradually increase, is not necessarily one of
the two planes that has the greatest value of shear stress. Resistance to failure will come in
part from a frictional force, which is proportional to normal stress (Coulomb’s law). Thus,
fault planes are more likely to develop on planes for which the difference between σt and
µσn is maximized. Here µ is a “coefficient of friction,” and has value around unity for most
material, including rock surfaces.

The only question remaining (in setting up a Lagrange multiplier problem) is whether
we want extrema of σt + µσn, or σt − µσn (as n varies). Especially, this is tricky if we
are careful about thinking of traction and (compressive) pressure having opposite signs. To
explain this, we again consider the case that all principal stresses are compressional, and
the ordering of principal axes is as given by (8.7).

Figure 8.4 then shows a plane lying in the intermediate direction; so n2 = 0. In this
case, σ 2

t = σ 2
1 n2

1 + σ 2
3 n2

3 − (σ1n2
1 + σ3n2

3)
2. Thus we can find a quite simple formula for the

shear stress. It is given by

σ 2
t = n2

1n2
3(σ1 − σ3)

2 (using n2
1 + n2

3 = 1). (8.8)
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FIGURE 8.4
A plane S containing the direction of the intermediate principal stress is shown. Its normal lies in the
plane of the greatest and least compressive stresses, and equation (8.8) gives the shear stress on the
plane S or different values of n = (n1, 0, n3) = (cos θ, 0, sin θ).

The forces per unit area on the block shown in Figure 8.5 are positive in the tangential
and normal directions there shown, and so the quantity to be maximized is |σt | − µ|σn|,
which is |σt | + µσn. (Note that σn = σ1n2

1 + σ2n2
2 + σ3n2

3 and so σn is negative for com-
pressive principal stresses.)

Hence, we wish to maximize the expression

G =
√

σ 2
1 n2

1 + σ 2
2 n2

2 + σ 2
3 n2

3 − (σ1n2
1 + σ2n2

2 + σ3n2
3)

2 + µ(σ1n2
1 + σ2n2

2 + σ3n2
3).

Introducing a Lagrange multiplier, we form G + λ(n2
1 + n2

2 + n2
3) = F and get 3

equations from
∂ F

∂ni
= 0 (i = 1, 2, 3). These are:

σ1n1[+(n2
2 + n2

3 − n2
1)σ1 − 2n2

2σ2 − 2n2
3σ3] + 2µσ1σtn1 = −2λn1σ1

σ2n2[−2n2
1σ1 + (n2

3 + n2
1 − n2

2)σ2 − 2n2
3σ3] + 2µσ2σtn2 = −2λn2σt

σ3n3[−2n2
1σ1 − 2n2

2σ2 + (n2
1 + n2

2 − n2
3)σ3] + 2µσ3σtn3 = −2λn3σt .

(8.9)

If n2 = 0, then σt = n1n3(σ1 − σ3). From the first and third of the last set of three equations,

(n2
3 − n2

1)σ1 − 2n2
3σ3 + 2µn1n3(σ1 − σ3) = −2λ

σ1
n1n3(σ3 − σ1)

−2n2
1σ1 + (n2

1 − n2
3)σ3 + 2µn1n3(σ1 − σ3) = −2λ

σ3
n1n3(σ3 − σ1).

(8.10)
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FIGURE 8.5
To obtain an intuitive appreciation of the friction stress, a block is shown, held in place by frictional
forces on an inclined plane. If the block is pushed to move in a way similar to motion on the fault
shown in Figure 8.5, then it is subject to two tangential forces. One, is the shear stress |σt |. The other,
is frictional resistance to shearing motion, which can reach up to µ|σn| in the opposite direction.

From (8.10) we can eliminate λ to find

(n2
3 − n2

1)(σ3 − σ1)
2 = −2µn1n3(σ3 − σ1)

2

and hence we find that

µ−1 = 2n1n3

n2
1 − n2

3

. (8.11)

This last result can be turned into a straightforward trigonometrical equation for n, if
we are given a value for µ. To see this, we note that n2 = 0 and use the complementary
angles θ and ψ of Figure 8.4, tan θ = n1

n3
and tan ψ = n3

n1
. It then follows from (8.11) that

tan 2ψ = 2 tan ψ

1 − tan2 ψ
= 1

µ
. (8.12)

As an example: if µ = 1, then 2ψ = 45◦. So ψ = 22 1
2
◦
(θ = 67 1

2
◦
), and the plane is

only 22 1
2
◦

from the greatest compressive direction. The angle is much less than the 45◦ we
found for the plane of maximum shear stress (see Section 8.2), because now we are taking
friction into account and the frictional stress (which tends to prevent fault slip) is reduced by
having a smaller angle between the fracture plane and the direction of greatest compressive
stress.
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