VOLUME 77, NUMBER 5 PHYSICAL REVIEW LETTERS 29 ULy 1996

Slip Complexity in a Crustal-Plane Model of an Earthquake Fault

Christopher R. Myer$,Bruce E. Shaw,and J. S. Langér
ICornell Theory Center, Cornell University, Ithaca, New York 14853
2Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York 10964
3Department of Physics, University of California Santa Barbara, Santa Barbara, California 93106
(Received 30 June 1995

We study numerically the behavior of a two-dimensional elastic plate (a crustal plane) that terminates
along one of its edges at a fault boundary. Slip-weakening friction at the boundary, inertial dynamics
in the bulk, and uniform slow loading via elastic coupling to a substrate combine to produce a complex,
deterministically chaotic sequence of slipping events. We observe a power-law distribution of small
events and an excess of large events. For the small events, the moments scale with rupture length in a
manner that is consistent with seismological observations. For the large events, rupture occurs in the
form of narrow propagating pulses. [S0031-9007(96)00703-X]

PACS numbers: 91.30.Bi, 03.40.Dz, 05.45.+b, 64.60.Ht

The discovery of dynamic complexity in the uniform, elasticity in the crustal plane. Like the one-dimensional
one-dimensional Burridge-Knopoff (BK) model of an models, our two-dimensional model is still a caricature of
earthquake fault [1,2] has brought new urgency to soméhe physically realistic situation, but it brings us a large
guestions about models of seismic sources. Perhaptep closer to an understanding of the dynamic behavior
the most pressing of these questions concerns the rotd this class of systems. It remains unrealistic in at least
of elasticity in the crustal plane—an ingredient thattwo respects, both of which are dictated by computational
is necessarily missing in any one-dimensional modefeasibility. First, our crustal plane is an elastic plate that
but which must be important for an understanding ofmoves only normal to itself and is coupled elastically
the dynamics of slipping events. Off-fault elasticity is to a rigid substrate. In this way, we obtain an essential
relevant to many features of real earthquake faults such asmplification of our equations of motion and retain a very
stress concentrations at rupture fronts, long-range elastimportant dynamic time scale associated with coupling
interactions, and seismic radiation. between the top and bottom of the crust; but we lose

Previous studies [3—7] indicate the following: The the long-range behavior of true elasticity for very slow
completely uniform, one-dimensional BK model, with motions. Because we are interested primarily in source
velocity-weakening stick-slip friction, is a deterministi- dynamics, we find this to be an acceptable compromise.
cally chaotic dynamical system that exhibits a broad rang&econd, as in the one-dimensional models, we use an
of earthquake-like events. The frequency-magnitude diseverly simplified mechanism for producing a stress drop
tribution for these events includes a scaling region ofat the initiation of rupture. We believe that this is an
small localized events that is qualitatively similar to adequate approximation for an ordinary fracture on a
a Gutenberg-Richter (GR) law [8], and a region ofsmooth fault with a nucleation length roughly the same
large delocalized events whose frequency exceeds thas our mesh size, but we cannot prove this without
of the extrapolated GR law and which account for most ofvery extensive computation. (For an opposite point of
the moment release. The large events propagate along thizw, see [10].) Again, we emphasize that this length
fault at roughly the sound speed in the form of “Heatonscale appears to be an irrelevant parameter insofar as
pulses” [9]. In order to be well posed mathematically,the observable, large-scale properties are concerned. Our
the model requires a cutoff or ead hocmechanism for main conclusions are that the crucial features listed in
initiating rupture at very small length scales. The questhe preceding paragraph are indeed preserved in the new
tions of whether such mechanisms imply inherent disimodel, and that we are discovering a substantial degree of
creteness of these models and whether that discretenessijversality in these systems.
in turn, implies the need for small-scale heterogeneity in Our elastic plate occupies the> 0 half of the(x, y)
realistic fault models are beyond the scope of this invesplane (the “crustal plane”) and terminates at a fault on the
tigation. The important point is that the large-scale prop«x axis (see Fig. 1). It is easiest to visualize the fault [the
erties—complexity of large events and existence of a GRx, z) plane] as moving downward at the loading speed
regime—are independent of the discretization length ow with respect to the plate when it is stuck, and exerting
the heterogeneity scale, and therefore appear to be robusactions on the edge of the plate via a stick-slip friction
features of this class of models. force. In a rough sense, we are modeling a vertical

Our purpose in the investigations reported here hadip-slip fault. Throughout the plate, the dimensionless
been to test the above features of the one-dimensionaluation of motion for the displacement field(x, y, )

BK models in a two-dimensional model that includesis a massive wave equation:
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PU _ PU N P’U U+ vt ) weakening friction when heat dissipation is relatively fast
at? 9x2 dy? ' [13]. Volume expansion provides a mechanism for dissi-

Here, U is measured in units of a slipping distance Pation of pore pressure on the rupture time scale [14], a
(of order meters) that is determined by the coupling td'™Me scale intermediate between these two extremes. This

the substrate and the maximum drop in friction duringSu99ests thatsome mixture of slip- and velocity-weakening
slip. The loading rater is measured in units of the effects is relevant to earthquakes. We have examined both

corresponding slipping speed (of ordeysec); thusy < types of friction laws in this two-dimensional model and
1. The position variables, y are expressed in units of have found basically the same behavior in both cases. A

a length (of order 10 km) that we identify roughly as sgcorjd reason.for considering_only the slip yveakening i_n
the thickness of the seismogenic zone, i.e., the distandbis discussion is that, as explained below, it is mathemati-
between the plate and the substrate. Accordingly, our unfally better behaved in the continuum limit. _
of ¢ is the time taken for a sound wave to traverse this | Nne form of slip-weakening friction that we use is
distance (of order sec). _[[=o, (S — So)]  aS/or =0,

The forces on the right-hand side of (1) are the two- o = {¢(S — So) — (1) aS/ar >0, (3)
dimensional elastic strain gradients and the coupling to .
the moving substrate;r — U. The latter term produces wit
an un_realistip exponential deca}y Qf static strain_gradients, d(S — So) =[1 + ay(S — So)] " (4)
but without it we would be missing the restoring force .
that produces the characteristic period for large, uniforn{i€’e: the function S(x,7) = Ulx,0,1) denotes the
crustal motions. In a fully three-dimensional model with displacement of the crust along the faulfy(x) =
tensor rather than scalar elasticity, this period WouIdU[x’O’ to(x)] |s_the va_llue ofS at _the beginning Of. an
appear as a low-frequency cutoff for Rayleigh waves o vent, ando(x) is t_h_e time when SI.'p starts at the pomt
the fault plane. quation (3) specifies the stick-slip nature of the friction;

To complete the model, we write the boundary conditionit resists motion up to a threshold and decreases continu-
aty = 0 in the form ’ ously once slipping starts. Note th&tx) — So(x) is the

total slip atx starting from the beginning of an event, as is
U/ayly=0 = P, (2)  consistent with the relatively slow rate of heat dissipation
where® is the stick-slip friction that provides the traction in our physical picture of slip weakening. In a complex
on the fault surface. Here we depart from our previousvent, the material at a point may slip and restick
practice and use a slip-weakening rather than a velocitymore than once, bup continues to decrease throughout
weakening version of the friction law. One reason for do-this motion according to (3). Once the event is over,
ing this is that, in our opinion, the slip-weakening modelthe fault reheals, and the slipping threshold is reset to
is at least a partially correct representation of the failurep (0) = 1 everywhere.
mechanism that occurs on real faults. In a scenario pro- The term (¢) is our special approximation for the
posed by Sibson [11], frictional heating raises the temrapid but continuous drop in strength that occurs when a
perature and pressure of pore fluids, thereby reducing th@aterial changes from sticking to slipping. In this work,
effective normal stress and friction. This scenario leadsve have used
to slip-weakening friction when heat dissipation is slow

compared to the rupture time scale [12,13], and to velocity- g(t) = {‘T(I - )T =)/ <1,

- ‘—-tyr=1. ©

so that & increases linearly with time once the fault
becomes unstuck, up to a maximum valmever a time
scale 7, and is reset to zero when the fault resticks.
The time ¢, is measured from the last unsticking and,
unlike Sy, is reset during an event if the fault resticks and
then slips again. This difference arises from our physical
picture of the two terms, witt§ — S, arising from the
built up heating effects, and arising from transitions
from sticking to slipping. Wherr depends only on time,

as in (5), and is small compared to the changedin
due to slip weakening, the large events are found to be
independent ofr. We also observe that, when we take
small compared to the event time scale, the stress drops in

FIG. 1. The displacement field/(x,y) in an example of a e gmall events scale with and are independent of
fully stuck configuration. The variable is the distance along Th i I tri in th i
the fault, andy is the distance perpendicular to the fault. The 'Nere are two overall symmetries in the equations
fault boundary is ther axis, along which the frictional stresses Which allow subtraction of a constant frof and over-

are applied. all multiplication by another constant. These symmetries
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have been used to set to unity both the maximum sticksizes. Figure 1 shows a typical displacement fiéld
ing friction and the maximum drop in friction due to slip in a fully stuck configuration. The displacements are
weakening. The reduction of frictiosh with slip S — Sy  inhomogeneously locked by the friction on the fault, and
in (4) is the source of the crucial instability that leads todecay exponentially into the bulk over length scales of
slip complexity, and the slip-weakening parametgrde-  order unity.
termines the strength of this instability. Fey large com- Figure 2 shows a sequence of stuck configurations at
pared to unity we see a generic complex behavior. Wehe fault boundary as the plate moves forward. Note
have usedy; = 3 throughout the computations describedthat there are many small events (most of which are
here. The exact functional form ap also appears to not visible) and fewer large ones, but almost all of the
be unimportant. forward motion occurs in the large events. One way to
In the velocity-weakening case, the sp— Sy in (4)  characterize this complexity is to look at the differential
would be replaced by the slip rat¢'/dz, anda; would be  distributionR of event magnitudeg = log;oM, which is
replaced by, sayg,. The velocity-weakening model as shown in Fig. 3. The momeni/ is the total slip on the
defined in this way fails to have a well-defined continuumfault during an event:
limit. The difficulty can be understood by examining the
linear growth rates for sinusoidal deformations on the M = [[Sf(x) — So(x)]dx, (8)
fault surface during slipping in the frictional weakening

regime. For a perturbation of the forti ~ exp(ikx —  where S, and S; are the initial and final configurations.
ky + Qt), we find that Just as in the one-dimensional cases, J8¢u) has a
K = ay, Q=+Va?-k-1 (6) straight-line scaling or power-law region with negative
for slip weakening, and islopeb =~ lt for_?rr]nall elven;[;, fandtha dlst|n|<|:t peal; fqr the
arge events. The value df for the small events is a
k=a,Q,  0=VE+D/eg -1 @ robust feature of our dynamic models, holding for both
for velocity weakening. There is no apparent problem insjip and velocity weakening, and in lower dimensions as
going to a continuum limit for the case of slip-weakeningwell. (However, the medium events are exponentially
friction; the smallest wavelengths remain marginallysyppressed in the one-dimensional slip-weakening model,
stable. In contrast, for velocity weakening, the smallesperhaps because the dynamic instability is weakest in that
wavelengths are strongly unstable. A viscous forcease.) We also show in Fig. 3 that these distributions are
of the form 7 a°S/9°x3: cures this difficulty in the insensitive to changes in the grid spacings. Of course,
one-dimensional BK model [5,6] and is also useful in dgs we decreaséx, we add new small-scale events to
related two-dimensional model of ordinary fracture [15]. the bottom of the distribution. Aside from this effect,
In our numerical integrations, we have used a finitethe curves lie on top of one another to within our
difference scheme with a variety of grid spacings. Westatistical uncertainty. We have also checked that there
have performed our numerical integrations using a finitejs no appreciable dependence of these distributions on the

rectangular grid of physical sizé, by L, and grid dimensions of the systent, andL,.
spacingséx and 6y. We impose periodic boundary

conditions in thex direction (along the fault) and a 19.0
zero-normal-derivative (Neumann) condition along the
boundary aty = L,. Because the plate is necessarily
finite in they direction, we need to minimize the extent to
which elastic waves reflect back upon the fault from the
system’s outer edge at= L,. To accomplish this, we
have added a layer of viscous damping to the equation of
motion (1) near the outer edge of the fory)V2aU /ot,

with 7 (y) rising smoothly from zero af = 3L,/4 and
saturating at a value of 0.5 at the outer boundary. Our 15.0
finite-difference scheme steps forward in time using an

explicit Euler method which is first-order accurate in the

time stepdt. Spatial derivatives, both in the bulk and on

the boundary, are accurate @((5x)?,(8y)?). In all of

the calculations reported here we have used 0.2 and 1305 200 200 0.0
o = 0.03. (This value ofe- may be unrealistically small
but is convenient for clarifying the distinction between

17.0

S(x,t)

X

large and small events in these limited simulations.) FIG. 2. A sequence of stuck configurations of the displace-
Beginning from an arbitrary nonuniform initial configu- ment at the fault boundary. The area between subsequent con-
9 9 y 9 figurations is the momem of an event. The lattice parameters

ration, our system evolves into a statistically steady statg§sed in this figure aréx = 0.15, 8y = 0.075, L, = 60, and
with a rough configuration and a wide range of eventL, = 3.75.
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FIG. 3. The differential magnitude distribution and a demon-F|G. 4. The moment\ as a function of the slip-zone size

stration showing that these results are insensitive to changes iR, The dots indicate individual events. The lower two dashed
the grid spacing. R(u) is the number of events with magni- |ines have slope 2; the upper two lines have sloperl= 0.03

tudes betweeru and u + du per unit fault loading per unit  sets the stress drop of the small events.
fault length. The three curves differ only in their grid spacings

as shown.L, = 60 andL, = 3.75 for all curves. Also plotted
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