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Slip Complexity in a Crustal-Plane Model of an Earthquake Fault
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We study numerically the behavior of a two-dimensional elastic plate (a crustal plane) that term
along one of its edges at a fault boundary. Slip-weakening friction at the boundary, inertial dyn
in the bulk, and uniform slow loading via elastic coupling to a substrate combine to produce a com
deterministically chaotic sequence of slipping events. We observe a power-law distribution of
events and an excess of large events. For the small events, the moments scale with rupture len
manner that is consistent with seismological observations. For the large events, rupture occurs
form of narrow propagating pulses. [S0031-9007(96)00703-X]
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The discovery of dynamic complexity in the uniform
one-dimensional Burridge-Knopoff (BK) model of a
earthquake fault [1,2] has brought new urgency to so
questions about models of seismic sources. Perh
the most pressing of these questions concerns the
of elasticity in the crustal plane—an ingredient th
is necessarily missing in any one-dimensional mo
but which must be important for an understanding
the dynamics of slipping events. Off-fault elasticity
relevant to many features of real earthquake faults suc
stress concentrations at rupture fronts, long-range ela
interactions, and seismic radiation.

Previous studies [3–7] indicate the following: Th
completely uniform, one-dimensional BK model, wi
velocity-weakening stick-slip friction, is a determinis
cally chaotic dynamical system that exhibits a broad ra
of earthquake-like events. The frequency-magnitude
tribution for these events includes a scaling region
small localized events that is qualitatively similar
a Gutenberg-Richter (GR) law [8], and a region
large delocalized events whose frequency exceeds
of the extrapolated GR law and which account for mos
the moment release. The large events propagate alon
fault at roughly the sound speed in the form of “Heat
pulses” [9]. In order to be well posed mathematica
the model requires a cutoff or anad hocmechanism for
initiating rupture at very small length scales. The qu
tions of whether such mechanisms imply inherent d
creteness of these models and whether that discrete
in turn, implies the need for small-scale heterogeneity
realistic fault models are beyond the scope of this inv
tigation. The important point is that the large-scale pr
erties—complexity of large events and existence of a
regime—are independent of the discretization length
the heterogeneity scale, and therefore appear to be ro
features of this class of models.

Our purpose in the investigations reported here
been to test the above features of the one-dimensi
BK models in a two-dimensional model that includ
0031-9007y96y77(5)y972(4)$10.00
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elasticity in the crustal plane. Like the one-dimension
models, our two-dimensional model is still a caricature
the physically realistic situation, but it brings us a lar
step closer to an understanding of the dynamic beha
of this class of systems. It remains unrealistic in at le
two respects, both of which are dictated by computatio
feasibility. First, our crustal plane is an elastic plate th
moves only normal to itself and is coupled elastica
to a rigid substrate. In this way, we obtain an essen
simplification of our equations of motion and retain a ve
important dynamic time scale associated with coupli
between the top and bottom of the crust; but we lo
the long-range behavior of true elasticity for very slo
motions. Because we are interested primarily in sou
dynamics, we find this to be an acceptable comprom
Second, as in the one-dimensional models, we use
overly simplified mechanism for producing a stress dr
at the initiation of rupture. We believe that this is a
adequate approximation for an ordinary fracture on
smooth fault with a nucleation length roughly the sam
as our mesh size, but we cannot prove this witho
very extensive computation. (For an opposite point
view, see [10].) Again, we emphasize that this leng
scale appears to be an irrelevant parameter insofa
the observable, large-scale properties are concerned.
main conclusions are that the crucial features listed
the preceding paragraph are indeed preserved in the
model, and that we are discovering a substantial degre
universality in these systems.

Our elastic plate occupies they . 0 half of the sx, yd
plane (the “crustal plane”) and terminates at a fault on
x axis (see Fig. 1). It is easiest to visualize the fault [t
sx, zd plane] as moving downward at the loading spe
n with respect to the plate when it is stuck, and exerti
tractions on the edge of the plate via a stick-slip frictio
force. In a rough sense, we are modeling a verti
dip-slip fault. Throughout the plate, the dimensionle
equation of motion for the displacement fieldUsx, y, td
is a massive wave equation:
© 1996 The American Physical Society



VOLUME 77, NUMBER 5 P H Y S I C A L R E V I E W L E T T E R S 29 JULY 1996

c

n

f
s
n

u
h

o

s
n
e
r

it
u
o

o

n
u
i
o
e

u

m

w
it

h
s

st
si-
], a
This
ing
both
d

. A
in

ati-

n;
inu-

is
ion

x

ut
er,
t to

e
n a
k,

lt

s.
d,
nd
ical

,

be

s in

ns

ies
≠2U
≠t2 

≠2U
≠x2 1

≠2U
≠y2 2 U 1 nt . (1)

Here, U is measured in units of a slipping distan
(of order meters) that is determined by the coupling
the substrate and the maximum drop in friction duri
slip. The loading raten is measured in units of the
corresponding slipping speed (of ordermysec); thus,n ø

1. The position variablesx, y are expressed in units o
a length (of order 10 km) that we identify roughly a
the thickness of the seismogenic zone, i.e., the dista
between the plate and the substrate. Accordingly, our
of t is the time taken for a sound wave to traverse t
distance (of order sec).

The forces on the right-hand side of (1) are the tw
dimensional elastic strain gradients and the coupling
the moving substrate,nt 2 U. The latter term produce
an unrealistic exponential decay of static strain gradie
but without it we would be missing the restoring forc
that produces the characteristic period for large, unifo
crustal motions. In a fully three-dimensional model w
tensor rather than scalar elasticity, this period wo
appear as a low-frequency cutoff for Rayleigh waves
the fault plane.

To complete the model, we write the boundary conditi
at y  0 in the form

≠Uy≠yjy0  F , (2)

whereF is the stick-slip friction that provides the tractio
on the fault surface. Here we depart from our previo
practice and use a slip-weakening rather than a veloc
weakening version of the friction law. One reason for d
ing this is that, in our opinion, the slip-weakening mod
is at least a partially correct representation of the fail
mechanism that occurs on real faults. In a scenario p
posed by Sibson [11], frictional heating raises the te
perature and pressure of pore fluids, thereby reducing
effective normal stress and friction. This scenario lea
to slip-weakening friction when heat dissipation is slo
compared to the rupture time scale [12,13], and to veloc

FIG. 1. The displacement fieldUsx, yd in an example of a
fully stuck configuration. The variablex is the distance along
the fault, andy is the distance perpendicular to the fault. T
fault boundary is thex axis, along which the frictional stresse
are applied.
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weakening friction when heat dissipation is relatively fa
[13]. Volume expansion provides a mechanism for dis
pation of pore pressure on the rupture time scale [14
time scale intermediate between these two extremes.
suggests that some mixture of slip- and velocity-weaken
effects is relevant to earthquakes. We have examined
types of friction laws in this two-dimensional model an
have found basically the same behavior in both cases
second reason for considering only the slip weakening
this discussion is that, as explained below, it is mathem
cally better behaved in the continuum limit.

The form of slip-weakening friction that we use is

F 

Ω
f2`, fsS 2 S0dg ≠Sy≠t  0 ,
fsS 2 S0d 2 s̃std ≠Sy≠t . 0 , (3)

with

fsS 2 S0d  f1 1 assS 2 S0dg21 . (4)

Here, the function Ssx, td  Usx, 0, td denotes the
displacement of the crust along the fault,S0sxd 
Ufx, 0, t0sxdg is the value ofS at the beginning of an
event, andt0sxd is the time when slip starts at the pointx.
Equation (3) specifies the stick-slip nature of the frictio
it resists motion up to a threshold and decreases cont
ously once slipping starts. Note thatSsxd 2 S0sxd is the
total slip atx starting from the beginning of an event, as
consistent with the relatively slow rate of heat dissipat
in our physical picture of slip weakening. In a comple
event, the material at a pointx may slip and restick
more than once, butf continues to decrease througho
this motion according to (3). Once the event is ov
the fault reheals, and the slipping threshold is rese
fs0d  1 everywhere.

The term s̃std is our special approximation for th
rapid but continuous drop in strength that occurs whe
material changes from sticking to slipping. In this wor
we have used

s̃std 

Ω
sst 2 tsdyt st 2 tsdyt , 1 ,
s st 2 tsdyt $ 1 , (5)

so that s̃ increases linearly with time once the fau
becomes unstuck, up to a maximum values over a time
scale t, and is reset to zero when the fault restick
The time ts is measured from the last unsticking an
unlike S0, is reset during an event if the fault resticks a
then slips again. This difference arises from our phys
picture of the two terms, withS 2 S0 arising from the
built up heating effects, and̃s arising from transitions
from sticking to slipping. Wheñs depends only on time
as in (5), and is small compared to the change inf

due to slip weakening, the large events are found to
independent ofs. We also observe that, when we taket

small compared to the event time scale, the stress drop
the small events scale withs and are independent oft.

There are two overall symmetries in the equatio
which allow subtraction of a constant fromF and over-
all multiplication by another constant. These symmetr
973
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have been used to set to unity both the maximum sti
ing friction and the maximum drop in friction due to sli
weakening. The reduction of frictionf with slip S 2 S0

in (4) is the source of the crucial instability that leads
slip complexity, and the slip-weakening parameteras de-
termines the strength of this instability. Foras large com-
pared to unity we see a generic complex behavior.
have usedas  3 throughout the computations describe
here. The exact functional form off also appears to
be unimportant.

In the velocity-weakening case, the slipS 2 S0 in (4)
would be replaced by the slip rate≠Sy≠t, andas would be
replaced by, say,ay. The velocity-weakening model a
defined in this way fails to have a well-defined continuu
limit. The difficulty can be understood by examining th
linear growth rates for sinusoidal deformations on t
fault surface during slipping in the frictional weakenin
regime. For a perturbation of the formU , expsikx 2

ky 1 Vtd, we find that

k  as, V 
p

a2
s 2 k2 2 1 (6)

for slip weakening, and

k  ayV, V 
p

sk2 1 1dysa2
y 2 1d (7)

for velocity weakening. There is no apparent problem
going to a continuum limit for the case of slip-weakenin
friction; the smallest wavelengths remain margina
stable. In contrast, for velocity weakening, the small
wavelengths are strongly unstable. A viscous for
of the form h ≠3Sy≠2x≠t cures this difficulty in the
one-dimensional BK model [5,6] and is also useful in
related two-dimensional model of ordinary fracture [15]

In our numerical integrations, we have used a fini
difference scheme with a variety of grid spacings. W
have performed our numerical integrations using a fin
rectangular grid of physical sizeLx by Ly and grid
spacingsdx and dy. We impose periodic boundar
conditions in thex direction (along the fault) and a
zero-normal-derivative (Neumann) condition along t
boundary aty  Ly. Because the plate is necessar
finite in they direction, we need to minimize the extent
which elastic waves reflect back upon the fault from t
system’s outer edge aty  Ly . To accomplish this, we
have added a layer of viscous damping to the equation
motion (1) near the outer edge of the formhsyd,2≠Uy≠t,
with hsyd rising smoothly from zero aty  3Lyy4 and
saturating at a value of 0.5 at the outer boundary. O
finite-difference scheme steps forward in time using
explicit Euler method which is first-order accurate in th
time stepdt. Spatial derivatives, both in the bulk and o
the boundary, are accurate toOssssdxd2, sdyd2ddd. In all of
the calculations reported here we have usedt  0.2 and
s  0.03. (This value ofs may be unrealistically smal
but is convenient for clarifying the distinction betwee
large and small events in these limited simulations.)

Beginning from an arbitrary nonuniform initial configu
ration, our system evolves into a statistically steady st
with a rough configuration and a wide range of eve
974
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sizes. Figure 1 shows a typical displacement fieldU
in a fully stuck configuration. The displacements a
inhomogeneously locked by the friction on the fault, a
decay exponentially into the bulk over length scales
order unity.

Figure 2 shows a sequence of stuck configurations
the fault boundary as the plate moves forward. No
that there are many small events (most of which a
not visible) and fewer large ones, but almost all of t
forward motion occurs in the large events. One way
characterize this complexity is to look at the differenti
distributionR of event magnitudesm  log10M, which is
shown in Fig. 3. The momentM is the total slip on the
fault during an event:

M 
Z

fSf sxd 2 S0sxdg dx , (8)

whereS0 and Sf are the initial and final configurations
Just as in the one-dimensional cases, log10Rsmd has a
straight-line scaling or power-law region with negativ
slopeb ø 1 for small events, and a distinct peak for th
large events. The value ofb for the small events is a
robust feature of our dynamic models, holding for bo
slip and velocity weakening, and in lower dimensions
well. (However, the medium events are exponentia
suppressed in the one-dimensional slip-weakening mo
perhaps because the dynamic instability is weakest in
case.) We also show in Fig. 3 that these distributions
insensitive to changes in the grid spacings. Of cour
as we decreasedx, we add new small-scale events
the bottom of the distribution. Aside from this effec
the curves lie on top of one another to within o
statistical uncertainty. We have also checked that th
is no appreciable dependence of these distributions on
dimensions of the system,Lx andLy.

FIG. 2. A sequence of stuck configurations of the displa
ment at the fault boundary. The area between subsequent
figurations is the momentM of an event. The lattice paramete
used in this figure aredx  0.15, dy  0.075, Lx  60, and
Ly  3.75.
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FIG. 3. The differential magnitude distribution and a demo
stration showing that these results are insensitive to change
the grid spacing. Rsmd is the number of events with magni
tudes betweenm and m 1 dm per unit fault loading per unit
fault length. The three curves differ only in their grid spacin
as shown.Lx  60 andLy  3.75 for all curves. Also plotted
is a line of slope21.

One respect in which the two-dimensional model d
fers from the one-dimensional version is the correlati
between the momentM and the source dimensionD (the
size of the region that slips in an event). In the Ear
this correlation is well fit over a wide range of source d
mensions by an assumption of constant stress drop, w
implies that the average slip scales linearly withD.
Therefore, for our two-dimensional model, we expe
M , D2. The dashed lines in Fig. 4 indicate that w
see this behavior throughout the GR region, withM ,
sD2 for the small events. The average slipMyD con-
tinues to increase with slip-zone sizeD up to and
beyondD  1, which is our analog of the crust depth.
similar phenomenon has been reported for real ea
quakes by Scholz [16]. For the very largest events
Fig. 4, we seeM , D, which means that the averag
slip becomes independent of slip-zone size. These
delocalized events in which slip occurs in the form
propagating, self-healing pulses which fit the scenario
vocated by Heaton [9]. Analytic progress in understan
ing aspects of these pulses has been made recentl
Langer and Tang [4], Myers and Langer [5], and Lang
and Nakanishi [15]. Details of the present results will
reported elsewhere.

In conclusion, we have demonstrated that this tw
dimensional elastodynamic model with slip-weakeni
friction along a homogenous one-dimensional fa
boundary produces slip complexity. We believe th
these results support the case that inertial dynamics
frictional weakening are contributing in fundament
ways to earthquake complexity.
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FIG. 4. The momentM as a function of the slip-zone size
D. The dots indicate individual events. The lower two dash
lines have slope 2; the upper two lines have slope 1.s  0.03
sets the stress drop of the small events.
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