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Prediction of large events on a dynamical model of a fault
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Abstract. We present results for long-term and intermediate-term prediction algorithms
applied to a simple mechanical model of a fault. The long-term techniques we consider
include the slip-predictable and time-predictable methods and prediction based upon the
distribution of repeat times between large events. Neither the slip-predictable nor time-
predictable method works well on our model. In comparison, the time interval method
is much more effective and is used here to establish a benchmark for predictability. We
consider intermediate-term prediction techniques which employ pattern recognition to
identify seismic precursors. These methods are found to be significantly more effective
at predicting coming large events than methods based on recurrence intervals. The
performances of four specific precursors are compared using a quality function @, which
is similar to functions used in linear cost-benefit analysis. When the quality function
equally weights (1) the benefit of a successful prediction, (2) the cost of maintaining
alerts, and (3) the cost of false alarms, we find that Q is optimized in algorithms based
on the most conventional precursors when alarms occupy 10-20% of the mean recurrence
_interval and approximately 90% of the events are successfully predicted. The measure
Q is further used to explore optimization questions such as variation in the space, time,
and magnitude windows used in the pattern recognition algorithms. Finally, we study the
intrinsic uncertainties associated with seismicity catalogs of restricted lengths. In particular,
we test the hypothesis that many shorter catalogs are as effective as one long catalog in
determining algorithm parameters, and we find that the hypothesis is valid for the model

when the catalogs are of the order of the mean recurrence interval.

1. Introduction

Prediction of the occurrence of large earthquakes
within a narrow space-time window on a fault has
proven to be a difficult problem for several reasons: 1)
timescales over which reliable and detailed seismolog-
ical records are available are often small compared to
recurrence times within a fault zone, 2) complexity of
fault geometry and dynamics leads to great variability
in premonitory phenomena, 3) initiating mechanisms
for large events are not completely understood (which
inhibits the determination of the relative importance of
various precursors), and 4) knowledge of the strain dis-
tribution and yield points along faults is insufficient to
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" indicate the locations of future epicenters. The above

make it difficult not only to predict well but also to de-
termine how inherently predictable the system is and to
find optimal forecasting methods.

With relatively little certain knowledge concerning
Earth’s fault system, one must be concerned with op-
timizing prediction using the data at hand as well as
objectively evaluating the quality of the predictions
that are made. In seismology, these goals cannot be
met using seismicity catalogs alone, because they rep-
resent only a brief record of the system relative to the
timescale of the seismic cycle. One possible path for-
ward 1s through the use of artificial catalogs to compare
methods of forecasting, since one may numerically gen-
erate a wealth of statistics for them and also have the
ability to vary system parameters. These features allow
for algorithm development and the study of optimiza-
tion procedures to an extent which is not possible for
real catalogs. Volumes of literature have been published
documenting possible precursory phenomena and event
distributions, yet little is written on how best to use
such information. It is with respect to this question
of optimal use of available information that synthetic
catalogs may prove most useful.
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In this paper we present results for long-term and
intermediate-term prediction algorithms applied to cat-
alogs generated from a dynamical model of a fault.
Our objective is not to prove that a particular model
will quantitatively duplicate the complex seismicity pat-
terns observed on real faults. Instead, this study will
address issues related to algorithm optimization and the
intrinsic limitations of algorithms given the sparsity of
data for Earth. We consider long-term prediction tech-
niques, such as the time-predictable and slip-predictable
algorithms, which are based solely on characteristics of
the most recent large event. In a similar spirit, we also
make predictions based on the distribution of time in-
tervals between large events, which can be determined
to arbitrary accuracy on a model such as that which
will be considered here. However, the principal results
of this paper involve intermediate-term prediction tech-
niques analogous to those which have been developed
by Keilis-Borok and Rotwain [1990] and Keilis-Borok
and Kossobokov [1990] and have recently been the ob-
ject of much attention (see, for example, Healey et al.
[1992]). The aim of these algorithms is to provide an
objective means for assessing the probabilities of large
earthquakes based on a collection of precursor func-
tions, the values of which are determined by regional
small and medium size events. The precursor functions
include overall activity, rate of change of activity, and
clustering of events, and they are evaluated in coarse
grained space-time windows. Simple pattern recogni-
tion techniques are used to establish threshold levels
for signaling an alert.

On the model we consider the simplest versions of
the algorithms using only single precursors and find
that they do perform better than long-term prediction
techniques. However, for the most standard precursors,
such as the level of seismic activity, the algorithms still
require the alarms to be on for a significant fraction of
the mean repeat time (of the order of 10-20%). This
still leaves open the possibility that algorithms which
utilize a combination of precursors will be more effec-
tive. In addition, we will introduce a new precursor
function, which is related to the degree to which seismic-
ity extends throughout the region, which significantly
outperforms the others measures, and leads to reliable
predictions on a timescale of the order of 3-5% of the
mean repeat time, ‘

For the purposes of prediction studies, it is impor-
tant to distinguish the two main types of artificial cata-
logs, each of which provides a means to a different end.
First, there are purely statistical catalogs, which are
constructed to satisfy certain statistical constraints ob-
served in real catalogs, such as consistency with the
Gutenberg-Richter law, Omori’s law, and/or spatio—
temporal clustering. However, because these catalogs
are otherwise random, as a test for predictability they
are most useful as lower bounds on the effectiveness of
an algorithm [Dieterich, 1992; Minster and Williams,
1993]. A good algorithm should detect some inherent
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correlation which has not been put in by hand and thus,
if such correlations exist on Earth, the algorithm should
do better on real catalogs than it does on any statisti-
cally generated catalog.

In contrast, one can consider artificial catalogs gen-
erated by dynamical models as we do here. We will
use the model-generated catalogs as a means to the end
of algorithm optimization, letting the physical mecha-
nisms guide us in determining which properties of the
catalogs-are important for prediction. Here, unlike the
purely statistical catalogs, no features are a priori built
in. Our goal is to identify features which are generic to
a class of physical models and discover how those fea-
tures function in prediction algorithms which may be
easily adapted to different fault systems worldwide.

The model which we consider is a one-dimensional
homogeneous model for a fault which has recently been
studied in a variety of contexts including the statis-
tical analysis of intrinsic scaling laws [Carlson et al.,
1991] and applications to dynamical fracture [Langer
and Tang, 1991; Langer, 1992]. The model is a good
candidate for studies of seismic phenomena not only be-
cause the physical basis for the generated seismicity is
sound (the dynamics depend upon a stick-slip, velocity-
weakening friction law) but also because its fundamen-
tal statistical features are reminiscent of behavior which
is observed for real earthquakes. For example, the mag-
nitude versus frequency distribution is similar to what is
observed for a single fault or narrow fault zone [Carlson
and Langer, 1989a, b], and the model generates moment
spectra similar to those inferred from seismographic ob-
servations [Shaw, 1993a]. Our model has the advantage
of requiring no fine-tuning of parameters. In particu-
lar, there is a minimal number of input parameters, all
of which are physically meaningful, yet with respect to
which the qualitative catalog features are robust over a
wide range of values. Another important feature of the
model is its simplicity, which allows us to numerically
generate data equivalent to millions of years of seismic
activity with perfect detection of events, so that we are
able to evaluate quantitatively the success of algorithms
in a manner that is impossible for real catalogs.

The model studied here is a particularly good can-
didate for studies of predictability. It is determinis-
tically chaotic and hence technically unpredictable at
long enough times. Furthermore, the model exhibits a
sharp distinction between small and large events. The
smaller, more numerous events tend to cluster in the
neighborhood of an epicenter of a future large event
[Shaw et al., 1992]. This local increase in activity is
a generic precursor in the model and is the primary
statistical basis for predictability at shorter timescales.
While the analogous behavior is much less systematic
for Earth [Kanamori, 1981], a similar rise in regional
activity has been observed on some occasions prior to
large events and is one of the signals used for predic-
tion in the algorithms such as CN and M8 which were
introduced and studied by Keilis-Borok and Rotwain
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[1990] and Keilis-Borok and Kossobokov {1990]. How-
ever, unrealistically, the model we consider does not ex-
hibit aftershocks, which play an important role in the
CN and M8 algorithms. Thus, instead of testing these
algorithms explicitly, here we will be testing the more
general pattern recognition techniques on which they
are based. Methods for generating aftershocks within
the model are being studied, however, and will be con-
sidered in the context of prediction in future work. An-
other significant shortcoming of the model catalog is the
absence of a source of noisy background events which
are clearly present in real catalogs.

Because the behavior of the model is relatively sys-
tematic compared to Earth, we expect to be able to pre-
dict events on the model better than on the real system.
However, that is to the point: to establish predictabil-
ity limits for these nonlinear dynamical models and to
optimize on a “clean” system. We hope that the things
we learn by doing so will shed light on the roles of vari-
ous phenomena occurring during the preparatory period
for a large event and allow us to distinguish correctly
between meaningful causal premonitory characteristics
and misleading happenstance trends.

The organization of the paper is as follows. In sec-
tion 2 relevant characteristics of the uniform Burridge-
Knopoff (UBK) model are reviewed. This includes de-
scriptions of pertinent length and time scales which play
a role in the model’s predictability. In section 3 we
introduce the quality function @, which is the means
by which we evaluate the success of the algorithms. In
section 4 we present results for long-term prediction, in-
cluding the slip-predictable model, the time-predictable
model, and prediction based upon recurrence intervals.
Section 5 contains our results for prediction based upon
intermediate-term precursors. The forecasting method
is outlined and applied to individual activity-based pre-
cursor functions on the model. Section 6 discusses the
robustness of our results with respect to variation of
the algorithm and catalog parameters, including varia-
tions in catalog length. Section 7 gives a summary and
addresses outstanding problems.

2. Relevant Model Characteristics

In the finite difference approximation, the model con-
sidered here is one of a class first applied to earthquake
dynamics by Burridge and Knopoff [1967]. It was rein-
troduced in its simplest form and analyzed in a modern
context by Carlson and Langer [1989a, b]. The one-
dimensional uniform Burridge-Knopoff (UBK) model
represents the motion of one side of a lateral fault which
is driven by a slow shear deformation relative to the
other side of the fault and which is subject to a velocity—
weakening slip-stick friction law at the interface. The
system consists of N blocks. Each block is coupled to
its nearest neighbors with coil springs representing the
linear elastic response of the system to compressional
deformations. A leaf spring attaches each block to a
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fixed upper surface and represents the linear elastic re-
sponse of the system to shear deformations. The blocks
are constrained to move on the surface of the sliding
plate. The system is loaded slowly by moving the lower
plate at a velocity v until one of the blocks exceeds the
frictional threshold. That block then begins to slide,
dissipating energy as determined by the friction law.
The initially negative slope of the friction law leads to
the essential dynamical instability which maintains the
complexity of the series of events over arbitrarily long
time periods. An event is considered over when all of
the blocks have come to rest.

In the continuum limit the partial differential equa-
tion describing the motion is

o?U 8%y

—BFZW—U—(}S[—E?}-FUt (1)
where U(s, t) is the displacement measured with respect
to the fixed upper plate as a function of position s and
time ¢. The dimensionless time ¢, has been scaled by the
characteristic slip time for a (homogeneous) large event.
Displacements U have been scaled by the correspond-
ing characteristic slip distance. In equation (1), lengths
s are measured in units of a stiffness length which is
given by the distance a sound wave travels (of the order
of 10 km in the Earth) in the characteristic slip time
At = 1. The finite difference version of equation (1),
which we solve numerically in this paper, gives the seis-
mological model of Burridge and Knopoff [1967]. We
refer to it as the uniform Burridge-Knopoff model to
emphasize the fact that all of the material parameters
are uniform along the model fault, that is, there are no
built-in inhomogeneities. The small length scale given
by the equilibrium block spacing 1/¢ plays an impor-
tant role in the dynamics of the UBK model (see, for
example, Langer and Tang [1991]). Recent measure-
ments of microearthquakes suggest that there may be
a small-scale cutoff in Earth as well. In particular, the
measurements of changes in the distribution of sizes of
very small events [Malin et aol., 1989; Aki, 1987] and
measurements which suggest that the smallest earth-
quakes may have a nearly constant rupture area (see,
for example, Bakun et al. [1976] and Archuletta et al.
[1982]) lead to a small length cutoff ranging from meters
to a few hundred meters. Thus in units of the charac-
teristic stiffness length (10 km) realistic values of £ are
of the order of 102 to 10%, i.e., a large number. Here we
will take £ = 10 for numerical convenience. Carison et
al. [1991] considered the scaling as a function of £ The
parameter » in (1) is the dimensionless pulling speed,
given by the ratio of the risetime to the loading period
between large events. Realistic values of v are thus 1078
or less. Here we will take v to be small enough to pre-
serve the separation of time scales between individual
events and the loading mechanism. For technical rea-
sons when we do this it is convenient to introduce the
small parameter ¢ into the velocity-weakening friction
law which we will take to be
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o) = { (1-0)/{1+[20z/(1-0)]}, 2>0.

Here o replaces v in setting the scale for the displace-
ment of the smallest events, and we can set v = 0 while
the blocks slip. The friction parameter « is the ratio of
the characteristic slipping speed to the speed at which
the friction is reduced by half the difference between the
threshold value and the value it attains at high speeds.
It is difficult, if not impossible, to determine realistic
values of a from laboratory measurements. For a wide
range of o the behavior of the UBK model is not par-
ticularly sensitive to the exact value. Throughout this
paper we will take ¢« = 3 which is in this range. As
pointed out by Vasconcelos et al. [1992] and by Carl-
son et al. [1991], for & small enough the behavior does
change substantially, though we believe that this regime
is less appropriate to seismic studies. The results which
we present in this paper are relevant in the regime where
£ is large, o is small, and « is large enough to generate
the generic behavior.

As previously mentioned, the UBK model is homo-
geneous in its material properties. We observe complex
behavior as a consequence of a dynamical instability as-
sociated with the friction law. Beginning with a small
heterogeneity in the initial condition, we evolve the sys-
tem through several loading cycles until it reaches a
statistically steady state, at which point the statistical
properties are independent of the initial conditions. In
Figure 1 we plot a small fraction (both in space and
time) of the catalog which will be used in this paper,
which begins after the initial transient period. For each
event, a line segment is drawn through all of the blocks
that slip, and a cross marks the position of the epicenter
for each large event. While there are clear correlations
at shorter timescales, because of the underlying homo-
geneity of the UBK model the long time average of the
locations of epicenters of large events is independent of
position; that is, an event could happen anywhere with
equal probability.

The behavior of this system is found to resemble that
of an earthquake fault in several important respects.
Defining the seismic moment M to be the total slip
during an event:

z =0,

(2)

M= §U(s)ds ~ (3)

event

and the magnitude 4 = In M, for wide ranges of the
above parameter values, for small to medium size events
the UBK model generates frequency-magnitude distri-
butions described by the Gutenberg—Richter relation
D(p) = Ae~*. Here D(u)du is the frequency of occur-
rence of events in the magnitude interval [u, u+ dp] per
unit length per unit time (see Figure 2). As longas a is
sufficiently large (o > 2.5), we obtain b = 1 robustly in
this region. In contrast, the largest events follow a dif-
ferent distribution indicating an overfrequency of these
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Figure 1. Sample catalog for the uniform Burridge-
Knopoff (UBK) model. Time is measured relative to the
inverse loading speed. A line segment is drawn through
blocks which slip during an event, and a cross marks the
position of the epicenter of each large event. Individual
events have spatially irregular slip (not shown). Figure
la represents only a fraction of the full catalog, and Fig-
ure 1b is an expansion of the precursory activity for one
the large events in Pigure la. Unless explicitly stated
otherwise, the numerical results will be for a system of
size N = 8192, with £ = 10, o = 0.01 and o = 3. The
full catalog consists of 114,000 events, 1848 of which are
large events and corresponds to a total displacement of
tv = 6U = 122.

events relative to the frequency extrapolated from the
distribution of small events. The large events are re-
sponsible for nearly all of the moment release in the
UBK model. The overfrequency implies that there will
be a characteristic repeat time between large events, as
discussed by Carlson [1991], which can be exploited for
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the purposes of long term prediction. The change in
behavior between the small and large events is charac-
terized by the length £ = 2/aIn(4¢2/c). Carlson and
Langer [1989b] showed that events which are triggered
in regions of size less than £ tend to remain localized,
that is, the slip pulses which are generated will decay
rapidly when they encounter regions which are far from
threshold. In contrast, when the initial triggering zone
is larger than £, the slip pulses will tend to propa-
gate much farther. The length scale € coincides well
with the upper bound on the clustering of small events
such as those illustrated in Figure 1, and the associ-
ated crossover magnitude i = In(2/a) coincides with
the minimum in the magnitude versus frequency distri-
bution (Fig. 2). The smaller events smooth the spatial
configuration on length scales less than £, preparing a
triggering region for a large roughening event. This
leads to spatio-temporal clustering of small-scale activ-
ity along the fault prior to a large event, as reported by
Show et al. [1992]. While this systematic increase in
activity is a key feature leading to the relative success
of the intermediate-terrn prediction algorithms on the
UBK model, this observation alone is not sufficient to
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Figure 2. Log frequency In[D(p)] versus magnitude
Iz for the uniform Burridge-Knopoff model. (,u,)a,p.
is the number of events per unit length per unit time
(measured in units of the inverse loading speed) in the
magnitude range (g, 4 + du]. The small events satisfy
the Gutenberg-~Richter law with b = 1, while the large
events occur at an excess rate. The crossove;between
small and large events is denoted by ji = InM, where

M= 2/a. The peak in the large events distribution

corresponds roughly to a rupture length £* ~ 10€, well
below the system size. The magnitude p* associated
with such events is indicated. In the corresponding
integrated distribution the peak is replaced by a flat
shoulder. We plot the differential distribution because
it clearly illustrates the crossover f.
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determine whether ultimately the UBK model will be
more or less predictable than Earth.

Throughout this work we distinguish between “small”
premonitory events and the “large” events we wish to
forecast. This distinction can be made precisely in the
UBK model: small events are taken to be those for
which p < i while large events have p > ji. While the
existence of a sharp feature is useful to obtain quanti-
tative results, the relatively small number of events of
size near fi compared to events of lesser or greater mag-
nitude implies that our results will not depend strongly
on the exact criterion for the crossover that is used.
This division is certainly much less precise in real data.
It is interesting to note that when data from an indi-
vidual fault or narrow fault zone are considered, as in
the UBK model, an overfrequency of large events is ob-
served [Wesnousky et al., 1983; Schwartz and Copper-
smith, 1984; Davison and Scholz, 1985]. In these cases
typical magnitudes of the large events and geodetic
measurements of the plate rates can be used to estimate
the recurrence time interval and to make long-term pre-
dictions. In comparison, data accumulated over a broad
region typically do not show an overfrequency of large
events. This is a consequence of the fact that faults
of different sizes contribute to regional seismicity. In
this case, results by Pacheco et al. [1992] suggest a
bend, or change in b value reflecting an underfrequency
of large events, in the magnitude versus frequency dis-
tribution of California seismicity at roughly magnitude
6, which coincides with estimates of the magnitude of
events which just span the full depth of the seismogenic
zone. These types of regional seismicity catalogs are
typically used in intermediate-term algorithms such as
CN and MS.

Simplifications which are inherent in the UBK model
used here are its low dimensionality, single fault dy-
namics, and lack of aftershocks. Systems of interact-
ing faults and different fault geometries may ultimately
prove interesting but would be most effectively repre-
sented in the context of a fully two-dimensional elastic
medium. Studies of a homogeneous two-dimensional
model are currently under way. In addition, Shew
[1993b] has proposed an aftershock mechanism which
will lead to additional precursory phenomena. Ulti-
mately, we plan to study other models in the context of
prediction as well.

3. Evaluation of Forecasting Algorithms

In a spatially extended dynamical system, a predic-
tion typically consists of a projection, based on the cur-
rent status of the system, of the time and location of
a coming event. The forecasts which are made in seis-
mology are necessarily less precise and involve relatively
long time scales. Rather than predicting how far in the
future an event is likely to take place, one forecasts
the likelihood of an event occurring between now and
the end of some alarm period. In algorithms CN and
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M8 one signals an alert or time of increased prbba,bility
(TIP) to forecast a large event in a specified region in
space and time. The TIP begins when the algorithm
detects that the system is in a state of readiness, and,
in order to minimize the cost associated with signaling

an alarm, one must wait as long as possible prior to the
event before turning on the alarm.

In this context it is worth noting that there is a tech-
pical distinction between algorithms CN and M8 and
the intermediate-term prediction algorithms which we
will consider here. In CN and M8 the alarm duration
is initially fixed to be a specific time interval, typically
5 years. After this period has passed, the status of the
region is reevaluated, and a decision is made regarding
whether or not to extend the alert. In contrast, after
each event we reevaluate the status of the alarms, and
the average alarm duration is determined by the thresh-
old for signaling an alert. In a model such as the UBK
model, where the precursor functions tend to increase
monotonically in the neighborhood of the epicenter of
a future large event, alarms will typically (but not al-
ways) stay on until a large event has occurred.

With this in mind we now discuss methods for eval-
uating the long-term and intermediate-term prediction
algorithms which will be considered in subsequent sec-
tions. While the choice of a specific function for such
evaluation is to a large degree based on public policy
rather than mathematics or physics, the decision is es-
sential to algorithm optimization.

The success curve, which is defined to be the frac-
tion of events predicted versus the fraction of time an
alert is on, provides one m'ea.ningful way to evaluate an
algorithm. Here each point on the success curve corre-
sponds to a different value of the threshold for signal-
ing an alert. Such curves are useful to compare differ-
ent methods of forecasting and thus will be considered
extensively in the remainder of the paper (see, for ex-
ample, Figures 6 and 8). However, in order to set the
threshold that will ultimately be used, one must define
a function on such a curve which will select a particular
vilue of the threshold over the others. One function
twhich is commonly considered in the context of algo-
rithms CN and M8 is called the success ratio which is
defined at each point orn the success curve to be

__ fraction of large events predicted

(9)

Thus S specifies the gain relative to purely random pre-
diction, for which § = 1.

Using S as a measure of the quality of predictions has
some inherent complications, as pointed out by Molchan
[1991] in the context of some time interval distribu-
tions. For example, when the alarm time decreases
more rapidly than the number of events predicted, S
diverges as the alarm time and the fraction of events
predicted approach zero. We often observe this behav-
ior in S when intermediate-term algorithms are applied
to the UBK model. “Algorithm optimization becomes
an ill-defined problem in this case.

fraction of time the TIP is on
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To solve this problem, we introduce a quality func-
tion @ which will be used to optimize the intermediate-
term algorithms. The specific choice of a @ function
is somewhat arbitrary. Desired features of the Q func-
tion are that (1) it should be as simple as possible, with
meaningful parameters, so that policy decisions are eas-
ily mapped onto parameter settings, (2) the definition
should be flexible enough that alternative considera-
tions can easily be incorporated, (3) it should provide a
clear measure of when an algorithm is performing well
with respect to some simple base measure such as ran-
dom prediction or doing nothing, (4) it should avoid the
pathological behavior as alarm time goes to zero which
we observe in S, and (5) the definition should be robust
to small changes in algorithm parameters so that deter-
mining a maximum value of Q is not an overly delicate
procedure.

To satisfy the above criteria, we define Q in its most
general form to be

N
Q=) A, (5)
i=1

where the A; are constant coefficients. For the purposes
of this paper we define Q such that the p; are the prob-
abilities of a set of outcomes with 0 < p; < 1. The
probability based function Q in equation (5) is a stan-
dard linear measure. Except near the extreme values of
pi its performance is similar to an analogous product-
based function of the form IIp;%. In our analysis we
choose to use a sum rather than a product to preserve
the symmetry between using the siccess or failure rate
of a given outcome, i.e., p; — (1—p;) and 4; — —A4;, is
preserved in Q (addlng or subtracting a constant from
Q is irrelevant). Alternatively, one might consider a
rate based function-Q = Qg similar to (5), but where
the p; are rates measured relative to the overall rate of
large events. From a public policy point of view, the
rate-based function @g is potentially the most useful
since Qg may be interpreted as a cost-benefit function,
and the coeflicients can be set according to the relative
costs of the set of possible outcomes. Linear cost-benefit
functions have also been used in algorithms applied to
real catalogs [Molchan and Kagan, 1992]. For our pur-
poses the behaviors of the probability- and rate-based
functions are entirely similar.

There are three outcomes which we will include in
Q: we define p; to be the fraction of large events suc-
cessfully predicted, p; to be the fraction of the total
observation time for which alarms ate declared, and p3
to be the fraction of the total number of alarms that
are issued which turn out to be false. The penalty for
false alarms is necessary to avoid the pathological be-
havior referred to above in which the solution to the
optimization problem is ill-defined and leads to “fick-
ering” alarms which are alternately turned off and on
at very short intervals in space and time.

Finally, we consider the coefficients 4;. Since multi-
plying @ by a constant does not change our ultimate
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conclusions, we can normalize Q so that A; = 1. Thus

(6)

where the coefficient of p; is positive, since it is a bene-
fit, and the coeficients of p; and ps are negative, since
they are costs. Taking the optimal values for each of the
outcomes (i.e., successful prediction of all of the events
p1 = 1, with negligible costs p; = ps = 0) we obtain the
upper bound @ < 1. Alternatively, if one simply does
nothing then p; = p; = ps = 0, and we obtain Q = 0.
We thus use Q to say something interesting about an al-
gorithm: given the costs which have been specified, are
there outcomes of the algorithm having @ > 0; that is,
are there strategies that are better than doing nothing?

The coefficient |A;| méasures the cost of maintaining
an alarm. Clearly, as |A2] — 0 the best strategy is
to leave the alarm on all the time, in which case @ =
1 — |Az|. Similarly, as |4;| increases; eventually the
best strategy will be to do nothing, in which case @ = 0.
Here we will take |43] = 1 so that only algorithms which
do not maintain a constant state of alert will have a
charice of doing better than doing nothing at all.

The parameter |Az| sets a tolerance on the number of
false alarms that may occur. In some cases one might
be willing to tolerate quite a few false alarms, as in, for
example, the case of short term prediction, where the
relative cost of issuing a false alarm is much less than the
losses that might be spared by successfully predicting a
large earthquake. In comparison, for intermediate-term
prediction one might have a lesser tolerance for false
alarms because of the expense associated with main-
taining a state of readiness over extended time periods.
In the sections that follow we consider some of the im-
plications of different choices of this coefficient on, for
example, the optimization procedure. In most cases for
simplicity we will take |Az| = 1, and while we expect
that this value is somewhat larger than the value which.
would be used in practice, we find that even this choice
is not unreasonable, as it leads to a false alarm rate in
the intermediate-term algorithms which is comparable
to those obtained in algorithms CN and MS8.

Q = p1 — |Az|ps — |As|p3

4. Long-Term Prediction: Results Based
Upon Recurrence Intervals

Long-term prediction methods are used to estimate
earthquake hazards on a timescale of the order of tens of
years. The simplest such schemes make use of only the
magnitude or time of occurrence of the last large event
and are referred to as the time-predictable and slip-
predictable models for hazard assessment [Skimazaki
and Nakata, 1980]. Various applications of both time-
predictable [Scholz, 1985; Bakun and McEwvilly, 1984]
and slip-predictable [Kiremidjian and Anagnos, 1984]
models to real faults have been made. Historical records
and geological information are used to construct plots
of accumulated slip as a function of time for a par-
ticular fault or fault segment. The analogous plot is
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Figure 3. Cumulative slip as a function of time for a
representative patch along the fault. While the small
events are by far the most frequent, all of the visible
displacement is associated with large events. The lines
illustrate the best least squares fits to the upper and
lower corners of the staircase and thus represent fits
to the slip-predictable and time-predictable models, re-
spectively. Clearly, the sequence of events is not peri-
odic, and although neither the slip-predictable model
nor the time-predictable model works well, the time-
predictable model is somewhat better.

constructed for the UBK model in Figure 3, where the
results correspond to the accumulated slip for one rep-
resentative patch along the fault over a time interval
which is long compared to available catalogs for real
earthquakes, but short compared to the catalogs which
we consider later for the UBK model. Essentially all of
the slip is associated with large events, which is a fea-
ture that is common to both the UBK model and real
faults. In the slip-predictable scenario, the magnitude
of the coming large event is correlated with the time
since the last large event. Here the basic assumption
is that were an event to occur today it would relieve
all of the accumulated strain. When this is valid the
upper corners of the staircase in Figure 3 would fall on
a line. In the time-predictable case, the time interval
preceding the coming large event is correlated with the
magnitude of the last large event. In this case, the as-
sumption is that there is some roughly constant thresh-
old which the local stresses must achieve before a large
event will be triggered, and the system must reaccumu-
late a slip deficit comparable to that which was relieved
in the last large event before the next event will be trig-
gered. If this were valid, the lower corners of the stair-
case in Figure 3 would fall on a line. The best linear
least squares fits to both models are shown in Figure
3. The time-predictable model works somewhat bet-
ter than the slip-predictable model on this short UBK
model catalog, though neither method works well.

To confirm this more generally, in Figure 4 we test the
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Figure 4. Tests for correlations between seismic moments and time intervals for subsequent large
events. Here T} and T}, ; are the time intervals preceding large subsequent events of moment M;

and M;, 1, respectively. Pairs of events in which the epicenters lie within £ of one another are
considered. Figure 4a illustrates a test of the time-predictable model which would lead to collapse
of the data for T,y versus M; onto a line. Figure 4b illustrates a test of the slip-predictable
model which would lead to a collapse of the data for M; versus T} onto a line. In Figures 4c and
4d we test for correlations between M; and M;,; and T; and T;;1, respectively. While none of
the graphs show significant correlations, compared to the others, Figure 4a minimizes the least
squares deviation to the best linear fit, which is shown. However, our primary conclusion from
these data is that while short catalogs may sometimes suggest some correlation such as those
tested here, none of these prediction schemes is reliable even for the uniform Burridge-Knopoff
model.

time-predictable (Figure 4a) and slip-predictable (Fig-
ure 4b) models on a much longer artificial catalog. We
also test for correlations between the moments of sub-
sequent large events (Figure 4c) and subsequent time
intervals (Figure 4d). A strict adherence to either the
time-predictable or slip-predictable model would lead
to a concentration of points along a straight line in Fig-
ure 4a or 4b, respectively. The errors associated with

a linear least squares fit to the data indicate that the
strongest correlation is observed in Figure 4a which im-
plies that the time-predictable model works best. In
fact, none of the others shows any significant correla-
tion at all. In view of the threshold dynamics which
govern the UBK model, it is not surprising that the
time-predictable model better approximates the behav-
ior we observe. What is more surprising is that even in
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this case the correlation is very weak, as indicated by
the broad scatter in the data. Significantly, however, for
short enough catalogs one may find much better correla-
tion with one of the above long-term prediction models
than actually exists when a sufficient amount of data
has been taken into account. For real faults, the case is
indeterminate due to the few number of data points
available for any individual region, as well as prob-
lems associated with accurate slip calculation during
an event (see, for example, Thatcher [1984]). The most
reliable data seem to favor time-predictability, however,
and the US Geological Survey (USGS) [ WGCEP, 1988,
1990] incorporates this model into its long-term seismic
hazard estimates.

Another method of long-term prediction which has
been studied extensively in connection with real earth-
quakes is the use of probability distributions of recur-
rence times for large earthquakes on individual faults
or fault segments. The difficulty in this method lies in
determining the correct distribution, given the sparsity
of data for large events on a given fault. By combining
data from many different faults, Nishenko and Buland
[1987] obtained a reasonably good fit to a lognormal
distribution. Others [McNally and Minster, 1981] have
argued that a Weibull distribution is most appropri-
ate. While it is unlikely that the distribution will ever
be known exactly, a better understanding of the con-
straints would be useful because the hazard assessments
often rely on features which are several standard devi-
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Figure 5. Local recurrence intervals for large events
on the uniform Burridge-Knopoff model, scaled by the
mean T = 0.558/v. The figure represents the cumu-
lative distribution along with the best fits to Gaus-
sian (G), Weibull (W), and lognormal (L) distribu-
tions (shifted for convenience). Comparison of the root-
mean-square deviation for each of the fits indicates that
the Gaussian (omitting unphysical negative intervals)
provides the best fit, followed closely by the Weibull,
and, finally, by the lognormal.
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Figure 6. Success curve for time interval prediction. |
The octagons correspond to local predictions, while the
dashed line corresponds to predictions made in spatially
coarse grained windows of size 3¢ (we show the sec-
ond curve for comparison to the intermediate-term al-
gorithms). Local predictions are optimal for long-term
forecasts, and predicting 80% of the large events re-
quires that alarms be declared roughly 35% of the time.
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ations away from the mean repeat time. In fact, Davis
et al. [1989] showed that, given the sparsity of data,
and the uncertainty in the recurrence time interval dis-
tribution, large deviations can substantially alter the
estimates for future earthquake hazards.

In contrast, the corresponding distribution can be de-
termined to arbitrary accuracy for a model such as the
UBK model. This was done in the case of a short fault
(in which large events spanned the entire system) by
Carlson [1991]. The cumulative time interval distribu-
tion is illustrated in Figure 5 for the long fault catalog
that we consider here. The best fit to Gaussian (re-
stricted to positive time intervals), Weibull, and lognor-
mal distributions are shown for comparison. Both the
Gaussian and Weibull fit the distribution reasonably
well, however, the Gaussian does slightly better. This
is primarily due to the fact that the Gaussian some-
what better approximates the nonnegligible weight at
very short times in Figure 5 which arises from temporal
correlations between large events in neighboring (and,
in fact, slightly overlapping) regions. By comparison
the lognormal provides a substantially worse fit. For
the UBK model the standard deviation for each fit is of
the order of the mean repeat time, with /T ~ 0.36 for
the model. This lies between the ratio of o/T ~ 0.75
obtained by Ward [1992] for a different model and the
intrinsic spread of o/T ~ 0.21 proposed by Nishenko
and Buland [1987] based on sparse data from real faults.
Our results are comparable to the value of o/T ~ 0.4
which was ultimately used in the WGCEP [1988, 1990]
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forecasts, though there the amount in excess of 0.21
was ascribed to limited observations rather than intrin-
sic spread as in the case of the UBK model.

In order to quantitatively compare our results for
time interval prediction with the corresponding results
for the intermediate-term prediction algorithms dis-
cussed in the next sections, it is useful to evaluate this
scheme in terms of the success curve discussed in sec-
tion 3. In the most conventional method of time interval
based prediction, given some presumed distribution and
known time since the last large event, the probability
of a large event in, say, the next 30 years is estimated
[WGCEP,1988,1990]. In contrast, here we specify a
threshold time 2o since the last large event in a region
and turn on an alert, or TIP, in that region once a
time to has passed. The TIP is turned off once the
large event has occurred. For each value of {o we then
calculate the fraction of earthquakes predicted and the
fraction of time the TIP was on. In Figure 6 the resul-
tant success curve is shown. The data points correspond
to predictions which are made independently for each
position in space and may be calculated directly from
the distribution of time intervals. Because these results
are clearly an improvement over random prediction, we
expect this method ultimately will play a role in the
optimal prediction algorithm for the UBK model.

5. Intermediate-Term Prediction: The
Pattern Recognition Algorithms

Intermediate-term prediction algorithms are used to
make earthquake hazard assessments on the timescale
of 1 to 5 years. Because forecasts are made on rela-
tively short timescales compared to long-term predic-
tion, more detailed information about the local state of
the system must somehow be deduced. Regional small
and medium size events provide one possible probe. If
a fault or fault segment is near the threshold for slip-
ping then one might expect that the small scale seis-
micity would also reflect the fact that the system is
close to an instability. This sort of behavior occurs
more generally in a wide variety of complex systems.
For example, in laboratory fracture experiments, the
rate of microcrack production accelerates prior to ma-
terial failure [Mogi, 1962]. As stated previously, in the
UBK model we observe an increase in the rate of small
to medium size events prior to a large event. While a
local increase in seismicity has been observed prior to
some large earthquakes, and is in part the basis of some
intermediate-term forecasts of, for example, the Loma
Prieta earthquake [Keilis-Borok et al., 1990c], this be-
havior is much less systematic in Earth. In fact, in some
cases a local decrease in small scale seismicity, or qui-
escence, is observed prior to a large event [ Wyss, 1985],
and in others no change in the local rate of seismicity
is observed [Kanamori, 1981]. Herein lies the difficulty
of intermediate-term prediction. The complexity of the
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earth yields many different patterns so that it is diffi-
cult, perhaps impossible, to look at one specific measure
to make forecasts worldwide.

For that reason, Keilis-Borok and Rotwain [1990] and
Keilis-Borok and Kossobokov [1990] have developed pat-
tern recognition algorithms, such as CN and M8, which
can be applied to interpret objectively the seismicity
patterns in earthquake catalogs. Earlier model stud-
ies were reported by Gabrielov et al. [1990]. In these
algorithms as many as 9 different possible precursory
phenomena are considered, and each precursor casts a
vote as to whether or not an alarm should be turned
on. The hope is that if a large event is not preceded by
a signal in a particular precursor, then it might be pre-
ceded by a signal in another. Algorithms CN and M8
use seven precursor functions and yield a success ratio
(equation (4)) of roughly § = 4. In particular, roughly
80% of events are successfully predicted, when the TIPs
are on 20% of the time. In comparison, the value of §
for an individual precursor function is typically of the
order of S =2 or 3, corresponding to successful predic-
tions of only 40% to 60% when the alarm time is 20%.
While these values exceed what one would obtain for
purely random prediction S = 1, alarm times which are
a smaller fraction of the seismic cycle would be more
useful for intermediate-term predictions.

On one hand, algorithms such as CN and M8 are
the best candidates for objective means to signal alerts,
while on another, they remain somewhat speculative
because a systematic evaluation using seismicity data is
impaired due to the limited amount of available data.
In fact, Dieterich (in Healy et al. [1992]) has suggested
that instead of comparing the success of the algorithm
to purely random prediction, one should compare to the
success obtained when the TIPs are randomly set but
with a bias determined by the local rate of large events,
thus building in an -element of long term prediction.
We will see, however, for the model catalogs even in the
case of single precursor functions the intermediate-term
algorithms do perform well in comparison to long-term
prediction methods previously discussed.

The algorithms we use require precursor functions
{fi(As, At)}, where f;(As, At) is the ith precursor func-
tion, evaluated in the spatial region As (these are large
overlapping circles for Earth, and overlapping line seg-
ments in the one-dimensional UBK model which we will
take to be a distance [ apart) during a sliding time win-
dow At. Throughout this section we will take As = 3¢
and At/T = 0.36 (i.e. time windows which are 36%
of the mean recurrence interval). In section 6 we will
show that the performance of the pattern recognition
algorithms employed here are relatively insensitive to
these choices.

The statistics used to evaluate the success curve and
quality function @ (see section 3) are compiled individ-
ually within each spatial region R, then combined to
determine the cumulative result. For each R, the events
which are counted in R are those events for which the
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epicenter lies in R. A false alarm will be counted if
the alarm is turned off before the region in question
has contained the epicenter of a large event. Thus false
alarms typically arise in two fashions. For precursor
function values near threshold, occasionally an alarm
may be turned off then reinstated prior to a large event.
Alternatively, a region may experience the typical pre-
cursory upswelling of activity but then be preempted as
the epicenter by an event which is triggered in a nearby
region.

For algorithms CN and M8, precursor functions take
a discrete set of values simply referred to as high,
medium, or low. A high value (the threshold level
“high” is determined from existing catalogs) casts a vote
in the favor of issuing a TIP. In our case, a threshold
divides the precursor function into high—“on”- values
and low—“off”— values. The threshold value is set to
optimize the @ of the forecast. The most effective pre-
cursor functions will minimize the overlap between the
distribution of values taken near the time of a large
event and the set of values taken over all time. Ex-
amples of both the distribution of values just prior to
a large event and the background distribution are illus-
trated in Figure 7 for the activity precursor function fi.
Here activity is defined to be the total number of small
to medium size earthquakes, independent of magnitude,
within a space-time window (we omit single block events
for convenience).

In Figure 7 we see that f; is typically small. The
large spike at P(f1) = O reflects the extended quies-
cent period which is observed just after a large event
in the UBK model. In contrast, the conditional prob-
ability of the value of f; at the time of a large event
P(fi|large event) has very little weight at f; = 0, be-
cause the neighborhood of the epicenter nearly always
exhibits some activity just prior to a large event. In
fact, within the specified space-time window and for
the parameter values we have taken, the activity before
a large event can reach values as high as a few hun-
dred events. From Figure 7 we see that the average
activity just before a large event is, for the model pa-
rameters used here, roughly f; = 30. At that point we
observe a ratio of approximately 5 between the condi-
tional probability and the background value, suggesting
that activity should be a good precursor function.

In addition to (1) activity, we will consider the follow-

ing precursor functions: (2) rate of change of activity
f2 defined to be the slope of a linear least squares fit
to the activity as a function of time within a space-
time window, (3) fluctuations in activity fz defined
to be the root-mean-square deviation from the linear
least squares fit used in function 2, and (4) active zone
size f4 defined to be the number of blocks that have
slipped within the space-time window, independent of
how many times they have slipped. Note that this is the
only precursor which is set to zero after a large event
occurs (zeroing the activity affects the results very lit-

tle).
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Figure 7. Distribution of values of activity fi(As, At)

evaluated in space-time windows As = 3¢ and At/T =
0.36. The background distribution P(f;) and the dis-
tribution of values just prior to a large event P(fi]
large event) are illustrated. The relatively small over-
lap suggests that activity should be a reasonably good
intermediate-term precursor for the uniform Burridge-
Knopoff model.

Active zone size is a measure of the extent to which
seismicity in a given region is diffuse. It is not simply
a size or moment weighted activity measure, nor is it a
measure of clustering. Instead, it is more directly a mea-
sure of the broadening of small to moderate size events,
which leads to the development of a nucleation region
associated with a coming large event. To measure ac-
tive zone size in the Earth we might use a box counting
algorithm, in which the large spatial regions taken in
algorithms CN and M8 would be subdivided into many
smaller regions, and the number of these smaller regions
containing seismicity at or above a certain level would
define the regional active zone size. Of course, in the
Earth this measure is somewhat more complex due to
the variable complexity of fault networks in different
regions. However, properly normalized to account for
such differences, it may be worth considering because
of the exceptional performance of this measure for the
UBK model. Compared to activity (Figure 7) the signal
to background ratio is somewhat greater for active zone
size and is somewhat less for rate of change of activity
and fluctuations in activity.

Next we implement the intermediate-term prediction
algorithm individually for each of the above functions.
For each precursor we vary the threshold level for sig-
naling a TIP, and we monitor the resulting fraction of
the large events (u > fi) successfully predicted as well
as the fraction of time TIPs were on. This yields the
success curves illustrated in Figure 8. Note that for
each of the precursor functions the algorithm leads to
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Figure 8. Success curves for intermediate-term precursor functions f;(As = 3¢, At/T = 0.36).
All intermediate-term precursors outperform random prediction (solid line) and prediction based
on recurrence intervals (dashed line). Active zone size clearly outperforms the other precursors,
predicting nearly all of the large events when alarms occupy roughly 5% of the total time.

an enhancement over random prediction and a clear im-
provement over the results obtained in the last section
using long-term techniques. The activity measure fi,
which is most easily interpreted seismologically, yields
results for the UBK model which are somewhat better
than those quoted above for algorithms CN and M8, and
is a significant improvement over the results obtained
using single precursors on real catalogs. In comparison
to f1, rate of change of activity f; performs somewhat
worse, and fluctuations in activity fs performs signifi-

1.0

cantly worse. This is not too surprising in light of the
fact that in the UBK model the increase in activity is
essentially monotonic. What is more surprising is the
extent to which active zone size f4 outperforms the oth-
ers. In that case nearly all of the events are successfully
predicted when the alarms are on only 5% of the time.
The corresponding @ curves are illustrated in Figure
9. Note that the ordering of the precursors in terms of
effectiveness is the same as for the success curves.

In the UBK model the effectiveness of fs as a pre-
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Figure 9. Quality function @ = p; — p2 — p3 for the intermediate-term precursor functions
illustrated in Figure 8. Active zone size, activity, and activity rate of change all perform well
compared to doing nothing, with their @ values rising above zero by the time alarms occupy
5% of the observation period. Fluctuations in activity almost always has Q < 0, indicating that
it is a poor measure. Simulations were also performed for the cost-benefit function Qg with
Qr = p1 — p2 — p3/3 where the p; are taken to be rates, and the results were found to be similar.



PEPKE ET AL.: PREDICTION ON A MODEL FAULT

cursor can be traced to the fact that most of the en-
ergy dissipation occurs during large events. In com-
parison, small to moderate size events relieve relatively
little stress. Thus when a small event has occurred it
is a direct signal that the blocks involved are poised at
the threshold of instability. For a given region therefore
the active zone size is a more direct measure of the den-
sity of blocks that are close to threshold than activity,
although these two quantities are clearly related. One
may think of activity as being an indicator of tempo-
ral correlations in the system while active sone size is
a measure of the development of spatial correlations.
In systems for which behavior on one length scale is
correlated with behavior on a larger scale, it would be
interesting to compare and contrast the relative roles
of spatial versis temporal correlations in determining
the predictability of the system. To this end, we are
currently investigating the relative performance of mea-
sures analogous to activity and active zone size in other
models.

It remains a topic of current research to determine
the extent to which our results might be improved by
combining the different precursors. For example, ap-
propriate combinations of the precursor functions may
lead to threshold functions which result in an increase
of the number of successful predictions or a reduction
in the false alarm rate and the amount of time occu-
pied by alarms. This is illustrated in Figure 10, where
each point corresponds to the simultaneous measure-
ment of the activity fi and the rate of change of activ-
ity f; over all time (Figure 10a) and just before a large
event (Figure 10b). For the parameter values taken
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here, @ is optimized for activity fi alone when alarms
are declared for activity at or above the threshold level
F; = 12. Similarly, for rate of change of activity f;
alone at Q@ = Qnaz, alarms are declared at or above
the threshold level Fy = 120. At these values of F; and
F, the set of events which are predicted using fa is a
subset of those which are predicted using fi. However,
by comparing the background and conditional distribu-
tions, it is clear that in some cases while f; maintains
a relatively high value, f, has dropped far below the
value it takes at the time of a large event. Thus by
choosing a threshold function such that alarms are de-
clared, for example, only when the values of both activ-
ity and rate of change of activity exceed some specified
individual thresholds one might find that the number of
false alarms and the total alarm time could be reduced
while the number of successfully predicted events might
decrease very little. We are currently developing mul-
tidimensional optimization techniques with which we
may address this problem in more detail, and we hope
the results will be useful for further evaluation of the
pattern recognition algorithms CN and MS8.

6. Intermediate-Term Prediction:
Variation of Parameters

In this section we consider the question of optimizing
the pattern recognition algorithm studied in section 5.
Restricted magnitude windows will also be considered.
In particular, we maximize Q(F;, As, At, Ap), where F;
is the alarm threshold for the ith precursor function
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Figure 10. Test for independence of activity fi and rate of change of activity f;. Fach point in
Figure 10a represents simultaneous values of f; and f; at unrestricted points in time while the
values plotted in Figure 10b are just prior to a large event. These plots constitute projections
of the joint probability distributions for fi and f, analogous to those illustrated for f; in Figure
8. While the values are clearly correlated, the nonnegligible spread in the joint distribution in
Figure 10b suggests that our predictions may be enhanced through a judicious combination of

the two functions.
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fi(As, At), As and At are the space and time windows
within which the function f; is evaluated, and Au is
the magnitude window from which events are taken.
Finally, we consider stability of the maximization pro-
cedure as a function of catalog length.

Although the four-parameter optimization problem
for Q(F;, As, At, Ap) can certainly be done in a brute
force fashion, it seems sensible to maximize @ with re-
spect to F;, As, and At simultaneously in order to first
optimize the space and time windows. Then the varia-
tion of Qmax with Ap (once again allowing F; to vary)
may be studied separately. Examining such cross sec-
tions allows for the future possibility of including the
magnitude dependence within the precursor function
definitions, as is done in CN and MS.

Below we will restrict our attention to the activity
precursor fi, because it is the most easily interpreted
seismologically.

6.1. Optimization With Respect to Space and
Time Window Size

The pattern recognition algorithms CN and M8 are
typically evaluated with time windows of the order of 5
years and spatial windows of the order of 1000 km (the
specific size scales with the moment of the large event).
Once a TIP is alerted within a particular space-time
window, the system is sometimes reevaluated within the
original window on a more finely coarse grained scale.
While these secondary predictions are somewhat less re-
liable and do not work well when applied independently,
on occasion they do serve to more closely pinpoint the
target region for a coming large event.

One interesting and somewhat surprising feature of
CN and M8 is the large spatial window sizes that are
used for the primary predictions. Spatial boxes are typ-
ically set to be an order of magnitude larger than the
target event. The notion that correlations might ex-
tend over anomalously broad regions is akin to the ideas
of self-organized criticality introduced by Bak et al.,
[1987], which postulate that a large class of driven dis-
sipative systems may be attracted to dynamical states
which display large correlations reminiscent of equilib-
rium critical points and that this behavior arises due to
instabilities associated with threshold dynamics. Such
long-range correlations are typically indicated by power
law frequency spectra, like the Gutenberg-Richter law
describing fault systems. However, because statistics
associated with individual faults or narrow fault zones
do not exhibit power laws over the whole frequency—
magnitude spectrum, we do not anticipate that indi-
vidual faults should be described within the context of
a simple critical phenomena theory. ‘It is also for this
reason that we would not expect the UBK model to ex-
hibit correlations on scales as large as those used in CN
and M8.

In Figure 11 we evaluate Qmax(As, At, Ap) for the
activity precursor function fi(As, At) as a function of
the spatial As and temporal At window size. For each
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Figure 11. Optimization of space and time windows
for the activity fi. Here Quax is plotted as a function of

As and At/T. At each space and time window, Q@ has
already been optimized with respect to the threshold
value F;. The maximum with respect to As and At
is broad indicating that the algorithm is robust with
respect to variations in these parameters. Variations in
Qmax are less than 10% for time windows from ranging
from 0.2 to 0.5 of the mean recurrence interval and space

windows ranging from 2€ to 7€.

data point, the optimization with respect to threshold
level Fy has already been performed, and we include all
of the small and medium size events pmin < 1 < i, so
that Ap = i — pmin with pmia fixed at the minimum
magnitude of a two-block event (the smallest event we
have retained), in our evaluation of the activity. The
fact that the surface contains a broad maximum, with
no sharp features, is an indication that the algorithm
is reasonably robust with respect to variations in the
parameters. The fact that the maximum is roughly
L-shaped indicates that as long as either the spatial
windows or the time windows are taken to be near the
optimal size, there is reduced sensitivity to variations
in the other parameter. The optimal setting is As ~ 35
and At/T = 0.36. For these space-time windows, the
optimal activity threshold value is F; = 12, which leads
to a value of p; = 0.92 for the fraction of events suc-
cessfully predicted, with alarms on p; = 0.14 of the
time, and a ps = 0.48 rate of false alarms. The value of
Qmax 18 thus Qmax = 0.30.

The natural spatial scale for correlations in the UBK
model is £, so it is not surprising that the optimal box
size is of the order of this length. Figure 12a illustrates
a slice of an optimization surface (Figure 11) along the
spatial direction. It is clear that @ rises dramatically
up to a length close to £ then becomes less sensitive
beyond that length. In contrast, in fault models which
exhibit correlations over lengths up to the system size
one might expect the optimal spatial window setting to
scale with the size of events one is attempting to predict.
As discussed in more detail below, the coefficient |A43]
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Figure 12. Cross sections for (a) space and (b) time window optimization. Here we illustrate
the danger of an injudiciously chosen quality function Q. In each case the lower curve is simply
a cross section of the results plotted in Figure 12 (43| = 1), while the upper curve corresponds
to the results obtained when the penalty for false alarms is not included (J43] = 0). In Figure
12a the intermediate value |43] = 0.3 is included to illustrate that the size of the optimal spatial
window is sensitive to the choice of this coefficient. The fact that the upper curves (|A3| = 0) are
maximized for essentially infinitesimal space and time windows leads to an ill-defined optimization

problem.

for the false alarm penalty in Q plays an important role
in setting the tolerance for the minimum window size
for which reasonable values of @ are obtained.

The optimal time window of At/T = 0.36 is relatlvely
large, corresponding to time windows which are 36% of
the mean recurrence interval. One can see this in Figure
12b which illustrates a typical slice of the optlmlzatlon
surface (Figure 11) taken along the temporal direction.
As observed prev1ously by Shaw et al. [1992], theére is
a significant increase in the rate of change of the cu-
mulative act1v1ty after on average 2/3 of the cycle time
has passed. Because the act1v1ty increase is essentially
monotonic, and because we have made the alarm time

independent of the time window size, there is no cost for
having large time windows. As a result the optimiza-
tion over time windows is essentially picking out the
activity “tirn-on” time. Note that the optlmal time
window is felatively much longer than those employed
in algorithms CN and M8 (typically 6 years).
~The optimal spatial and temporal windows for a few
other values of the UBK model parameters were also
evaluated (specifically I = 10, = 2 and I = 8,16,a =
3) and found to be comsistent with the a.bove results
when expressed in terms of the length £ (calculated us-
ing the relevant I and « values) and the mean repeat
time.
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Finally, we emphasize that the physically relevant
spatial and temporal window sizes which are selected by
the optimization were not obtained when we attempted
to optimize the algorithm with respect to the success ra-
tio (equation (4)) or a @ function which neglects false
alarms (Asz = 0 in equation (8)). For example, in the
case of the success ratio S, as the space-time windows
were decreased S was found to increase essentially with-
out bound. The analog of this behavior for the @ which
neglects false alarms is illustrated in Figures 12a and
12b. As previously mentioned, this occurs because as
the activity threshold is increased, the alarm time goes
to zero faster than the fraction of events successfully
predicted, leading to an ill-defined optimization prob-
lem.

The incorporation of a penalty for false alarms leads
to large space-time windows and greater reliability of
the results. The optimal window size is sensitive to the
choice of the coefficient {A3|. For example, we find that
the onset of the rapid decrease in Qmayx as the spatial
window size is reduced (Figure 12a) occurs for windows
which scale approximately linearly with |As|; we esti-
mate As = 2|A3|§~. Thus the optimizationh procedure
may lead to smaller windows as the penalty for false
alarms is decreased. In fact, in Figure 12a with the
choice |A3| = 0.3, the optimal window size is less than
£, which results in preemptive false alarms being issued
within the nucleating region (of roughly size £) of the
coming large event, simply because the windows were
not taken to be large enough (i.e. the active window
did not receive credit for predicting the event since it
was too small to contain the epicenter). For this reason
|Az| ~ 1 is a natural choice for the probability based Q.

6.2. Magnitude Windows

Next we consider the effect of restricting the range
of magnitudes which is used to evaluate f;. Because
they are more frequent, small events have more reli-
able statistics. However, they also tend to swamp the
medium sized events in measures such as total activity.
By considering only events larger than specified cut-
off magnitude, we determine whether there is a statis-
tically significant increase in the moderate size events
apart from that predicted by an extrapolation of the
" increased rate of smaller events which occurs as pre-
cursory phenomena. An increased rate of medium size
events prior to a large earthquake has been observed in
certain instances in the Earth (see, for example, Sykes
and Jaume [1990]).

In Figure 13 we illustrate our results for Qmax as a
function of the lower magnitude cutoff pmin. In each
case, we use the spatial and temporal windows sizes
As = 3¢ and At/T = 0.18. In addition, the upper cut-
off ptmax = [t is fixed. Variations in pmax should not
significantly alter the results, because the total activity
is dominated by the events at the lower cutoff. From
Figure 13 it is clear that for a wide range of smaller val-
ues of fmin, @max 1§ quite insensitive to the lower mag-
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Figure 13. The effects of restricted magnitude win-
dows. Here we plot Qmax for the activity fi as a func-
tion of lower magnitude cutoff gmin. The steady rise in
Q up to fimin = —7.5 is due to the decreasing number
of false alarms. The curve plateaus near where Q is
optimized for a threshold value of one event and there-
after is governed by the probability of observing a single
event of sufficient magnitude to trigger an alarm before
the large event is initiated. The steep decline occurs
roughly when the integrated probability of observing
an event above the cutoff per unit length per unit time
is less than the probability of observing a large event.

nitude cutoff. In fact, in previous sections we have used
this feature to ignore the numerous one-block events in
our catalog. In contrast, for large values of pmin there
is eventually a sharp (linear) decline in Qmax , which is
dominated by a decrease in the number of large events
predicted. It is clear that eventually a decline must
be observed once the rate of small to moderate events
that will be counted becomes comparable to the overall
rate of large events (see Figure 2). This corresponds
to u = ~7.2 for the parameters we have chosen. The
onset of this behavior occurs for & slightly smaller, but
comparable, magnitude pmin = —7.5. This coincides
with a threshold of unity for signaling a TIP. There ap-
pears to be a slight maximum in Quax just prior to the
decline. This suggests that in the UBK model there
may be some additional precursory feature associated
with medium size events and that it may be useful to
consider the moderate size events as a precursor sepa-
rate from the small events as is done in algorithms CN
and M8. This feature is more pronounced for time win-
dows which are smaller than the optimal windows for
the activity precursor (the figure shows our results for
At/T = 0.18 rather than the window At/T = 0.36 for
optimization with respect to activity for this reason)
which reflects the fact that the largest precursory event
also typically occurs relatively close in time to the main
event.
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6.3. Variation of Catalog Length

Finally, we consider the effects of varying the length
of the catalog. Because real catalogs are short compared
to the timescale of the seismic cycle (30 years of reliable
data on small to moderate size events while the cycle
time is of the order of hundreds of years), restrictions
on catalog length may significantly constrain the ability
of any seismicity based algorithms to predict. Statistics
for many large event cycles are needed to gain reliable
information about the conditional probability distribu-
tions of precursor function values which may indicate
an imminent rupture.

For the M8 algorithm, Keilis-Borok and Kossobokov
[1990] set the parameters using catalogs from different
regions which included over 100 earthquakes of magni-
tude greater than or equal to 8.0. Thus one relevant
issue is the ergodicity of the seismological record. The
assumption is that averaging over many different earth-
quake fault realizations in space is equivalent to aver-
aging over a single fault for a much longer time. For
the UBK model this reduces to a problem of comparing
algorithm selection based upon many short-time cata-
logs with that obtained at longer times. Since the UBK
model is deterministically chaotic, it is not too surpris-
ing that we observe ergodic behavior. The interesting
question is what minimum catalog length is needed for
this ergodic hypothesis to be useful? If the minimum
length were much longer than a single cycle, one could
not hope to gain reliable predictability from any num-
ber of catalogs containing less than one cycle’s worth of
data.

In order to examine this problem for our system, we
consider the distribution Pr(Q, F1) of values of @ as
a function of the threshold Fy for an ensemble of n
catalogs as the length T of each of the catalogs is var-
ied. For each catalog length, we choose Fj in order
to maximize the average @, defined to be @ max, and
then for that value of F; we also compute the fluctua-
tions: 02(Q) = (1/n) 3o ,(QF — Q> ..)- In order for
optimization of the algorithm over many short catalogs
to be a useful procedure one must have available cat-
alogs which are sufficiently long that Qpnax attains an
acceptable value and the width ¢(Q) of the distribu-
tion is relatively small. Here, for convenience, we will
set the spatial As window to coincide with the optimal
value determined earlier in this section while we take
At/T = .18, which allows for greater range in the cat-
alog lengths which can be compared. We compute the
distribution Pr(Q, F1) by taking a single extremely long
catalog and breaking it down into groups of sequential
catalogs of shorter length ranging from the time window
size to several large event cycles.

Figure 14 illustrates our results for the maximized
mean value @, as well as the standard deviation
o(Q) as a function of catalog length T normalized by
the mean large event cycle time T. The behavior of

Q... (T/T) indicates that predictability on the UBK
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Figure 14. The effects of restricted catalog length.
The space and time windows are fixed at As = 35 and

At/T = 0.18. For each catalog length 100 catalogs were
combined and optimized with respect to the threshold

Fy, so that F; was set by the maximum average Qpay-
In Figure 14a we plot this average value as a function of
catalog length. In Figure 14b we plot the width of the
distribution of @ values (for the independent catalogs
with the threshold fixed at F4) as a function of catalog
length. The mean converges to its optimal value and the
width approaches zero once the catalog length becomes
roughly of the order of the mean recurrence interval.

model is poor overall until each short catalog on aver-
age encompasses one large event cycle. At this point
o(Q) appears to decrease much less rapidly as well.
Only minimal improvements are obtained beyond a sin-
gle large event cycle time. Note that because the fault
is sufficiently long that large events do not encompass
the entire system, when the catalogs we use extend for
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one cycle time they will typically contain several large
events. We expect that the amplitudes of Q,,,, and
o(Q) will thus depend on features such as the system
length N, though variations in N should not effect the
characteristic time for optimization, i.e. a single cycle
time.

In order for a longer catalog on an individual fault to
provide information which is not available from combin-
ing many shorter time records, the algorithm must make
use of correlations which develop on longer timescales.
The fact that the fluctuations in @ for the activity pre-
cursor die down on the timescale of a single cycle implies
that the activity measure does not contain apprecia-
ble information which is relevant on timescales longer
than the timescale over which activity builds prior to
a large event. We suspect it is the same for the other
precursors considered in section 5. If such relatively
short time correlations are dominant for seismicity on
real faults, then it is not too surprising that the pattern
recognition algorithms such as M8 may lead to some
measurable enhancement over random prediction and
long-term techniques. On the other hand, a full cycle’s
worth of data still corresponds to a much longer catalog
than is available for most regions of the Earth. Thus an
improvement in the stability of algorithms may still oc-
cur as the catalogs lengthen, especially in regions with
long repeat times.

In addition to ergodicity, the M8 algorithm assumes
self-similarity between faults in different regions so that
adjusting for the overall seismicity in an area should be
sufficient to allow transfer of an algorithm from one
fault to another. The question of self-similarity re-
lates most closely to the variation of model parameters.
While we have not yet addressed this issue in great de-
tail, as stated previously it appears that optimization
is primarily sensitive to the UBK model parameters £
and o through their determination of the length scale £
and the shape of the main events peak (for a and £ suf-
ficiently large). These can be adjusted for by variation
of the time and space windows utilized for prediction,
and hence we expect will they present no great obstacle
to combining UBK model catalogs.

7. Conclusions

We have shown how seismicity catalogs generated
from a simple deterministic model of an earthquake
fault can provide insights into the problem of predic-
tion. The ample statistics available allow for a thorough
study of both long and intermediate-term methods. Be-
low we summarize the major results presented in this

paper.
7.1. The Quality Function Q

One methodological question we have addressed is
the evaluation of the performance of a prediction algo-
rithm. For this purpose we have employed the function
@ which is a linear combination of probabilities rele-
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vant to the prediction problem (reflecting the fractions
of large events predicted, time occupied by alarms, and
false alarms) and was used here to examine optimization
questions in some detail. This function is complemen-
tary to the success curve and measures the extent to
which an algorithm is able to fulfill all of the prediction
goals (@ = 1) relative to the option of doing nothing at

all (@ =0).
7.2. Long-Term Prediction

Our results for predictability based upon the time-
predictable and slip-predictable models show that nei-
ther describes the UBK fault behavior adequately, al-
though the time-predictable case does appear slightly
better. It is interesting to note that for either model
it is possible to find good correlation over just a few
subsequent large events. At any point, however, such
a short-time “pattern” could be broken, with the next
event differing dramatically from the proposed model.
Hence these sorts of models are certainly not sufficient
when used alone for prediction on the UBK model fault.
This is significant for time-predictable models applied
to real faults where positive correlation is often based
on knowledge of only two or three events in a given fault
region.

Prediction based upon recurrence intervals of large
events was examined and performs reasonably well on
the timescales that are relevant for long-term assess-
ments, although these methods are intrinsically limited
in effectiveness by the breadth of the distribution of
recurrence times. At all times this strategy is better
than doing nothing because there are no false alarms in
the way we have chosen to implement it for the UBK
model. Clearly, this is not the case for the Earth, where,
for instance, the more complicated geometry allows the
accumulated strain to be relieved along neighboring in-
teracting faults which may not have previously hosted
such a large event.

7.3. Intermediate-Term Prediction

intermediate-term precursor functions were studied
using a pattern recognition technique similar to those
introduced and studied by Keilis-Borok and Rotwain
[1990] and Keilis-Borok and Kossobokov [1990]. Through
comparison of the success curves we find that for all
precursor functions the pattern recognition algorithms
perform significantly better than prediction based on
recurrence intervals. When the results for different
intermediate-term precursors are compared with one
another using the @ functions, it is found that @ > 0
when active zone size, activity, and activity rate of
change are each employed as individual precursors. Not
surprisingly, individual precursors are much more effec-
tive at predicting events on the UBK model than in the
Earth, and, in particular, the active zone size precursor,
which in the earth is analogous to the extent to which
seismicity is broadly distributed in space, performs re-
markably well. For this function, as well as activity
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and rate of change of activity, the results we obtain are
comparable and sometimes better, both in terms of the
success curve and the value of Quax , than those ob-
tained using the M8 algorithm which employs multiple
precursors on real seismicity data.

On a more pessimistic note, using the most standard
measure of seismicity, that is, the overall activity (with
or without restricted magnitude windows), the inter-
mediate term prediction algorithms studied here do not
lead to predictions which are as precise as we had hoped.
In particular, relative to the cycle time, the alarm time
is still much too large: of the order of 10-20% rather
than the 1-5% which is desired. Although we are in the
process of examining functions of multiple precursors,
it is not obvious that these changes will improve the
results substantially. While we suspect that because
of its simplicity and the rise in activity which clearly
precedes almost every large event, the UBK model will
ultimately be more amenable to prediction than will
the Earth, this need not a priori be so. Because of the
breadth of the distribution of activity values prior to a
large event, we suspect some other feature will be nec-
essary in order to make predictions with alarm times
which are significantly less. Thus it may ultimately be
that the heterogeneity of the earth will lead to phenom-
ena which probe a wider degree of timescales than those
which are available in the UBK model and ultimately
then also to more precise predictions.

7.4. Algorithm Optimization

In the UBK model, optimization of the @ function for
activity with respect to space and time windows leads to
selection of lengths which scale with £ and time windows
of the order of 1/3 the mean recurrence interval, which
are the length and time scales over which correlations
have been previously observed to grow prior to a large
event [Carlson and Langer, 1989b; Shaw et al., 1992].
These considerations may prove less simple when the
algorithms are applied to fault models for which there
is no break in the scaling behavior. In such models (see,
for example, Chen et al. [1991]) typically the dynamics
have no inherent length or time scale so the behavior of
Q as a function of box size may be very different.

The optimization issue perhaps most relevant to ap-
plications of the pattern recognition algorithms to the
Earth, is that of stability of prediction for independent
data (catalogs not used during the learning procedure).
In the model, we find that for activity alone, the al-
gorithm is as adequately optimized on many relatively
short catalogs (in which the length is approximately
equal to the mean repeat time) as it is on one longer
catalog (containing over 1800 large events). If in the
Earth correlations in seismicity-based precursors also
do not extend in time beyond a single cycle, this result
suggests that predictions based on algorithms such as
CN and M8 may improve over time as the available cat-
alogs become longer. While, based on the results of the
model, the timescale over which improvements might
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be expected is certainly appreciable (of the order of the
seismic cycle), our results do suggest that one need not
wait forever to obtain substantial gains.
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