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[1] We examine the radiated waves emitted by events on a model fault. The model
deterministically produces a complex sequence of events, with a wide range of sizes, from
a uniform frictional instability. The spontaneous rupture events emit a rich spectrum of
radiated waves as they nucleate, propagate, and decelerate within the complex stress field
left by previous events. Two model innovations, a new driving boundary condition on the
fault and a new radiating boundary condition which allows a spatially varying prestress
away from the fault, allow us to directly measure the radiation without problems from
boundary reflections in our two-dimensional model. We quantify the radiation by first
measuring the energy spectral density and then averaging over events of a similar size to
examine the magnitude dependence. Assuming only a physics of the tractions on the fault,
we obtain a full spectra of radiated waves for a complex population of events with a wide
range of sizes. To quantify the resulting spectra, we consider two different spectral
measures. One, the peak amplitude of the spectral energy density, occurs at a period which
scales with the rupture length and corresponds with the classical corner frequency
measurement. The other, the peak amplitude of the spectral average acceleration or the
low-frequency corner in the case of a flat acceleration spectrum, occurs at a period that
scales with the duration of slip of points on the fault. The period of the peak spectral
acceleration saturates for large events. Looking at the rupture motions on the fault, we find
that this spectral behavior corresponds with the behavior of slip pulses in the model.
Intense narrow pulses of slip develop for very long rupture events. We quantify this by
measuring the mean slip duration as a function of rupture length and show that it is has the
same behavior as the peak period of spectral acceleration. Thus the duration of the slip
pulses in these ruptures is directly expressed in their radiated spectra. Moreover, we find
that these corner periods exhibit a nontrivial dependence on event magnitude for the
different frictional instabilities that we have examined, suggesting that any observed
dependence of these corner periods on earthquake magnitude might provide insight into
the frictional instability of earthquakes. INDEX TERMS: 7212 Seismology: Earthquake ground

motions and engineering; 7260 Seismology: Theory and modeling; 7209 Seismology: Earthquake dynamics

and mechanics; 7215 Seismology: Earthquake parameters; KEYWORDS: earthquakes, spectra, magnitude
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1. Introduction

[2] The waves radiated by earthquakes are perhaps the
most important earthquake behavior: they cause nearly all
the damage, and, further, they carry with them the most
intimate views of the source dynamics we have. Despite
their central importance, they remain incompletely under-
stood, as there are a number of factors complicating the
observations. First, attenuation convolves the emitted radi-
ation with uncertain path- and frequency-dependent effects.
Second, sparse measurements of infrequent large events

give poorly sampled data sets. Finally, the poorly under-
stood dynamics and the lack of good first-principles theo-
retical models to guide our understanding leave us with few
tools to help explore what we might see in the data and to
formulate new questions to ask of it.
[3] This paper presents a new tool in our search to

understand the radiation emitted by earthquakes and the
underlying physics it reflects. We present a dynamic model
capable of generating events with a wide range of sizes,
with richly complex waves emitted by the events, and a
minimum of assumptions in the model. Having assumed
only a constitutive law for the tractions on the fault, we
obtain the full spectral content of the radiated waves for a
complex population of events with a wide range of sizes.
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Averaging over events of a similar size, we measure the far-
field radiated energy spectra as a function of rupture length.
This is a quantity of fundamental importance to earthquake
hazard. We go further by exploring the dependence of the
radiated energy spectra on characteristics of the spontaneous
ruptures. Exploring a range of frictional instabilities, includ-
ing slip- and velocity-weakening friction, as well as time-
dependent friction, we find nonlinear scaling of the period
of the peak of the radiated average acceleration spectra with
magnitude. Examining the rupture motions on the fault, we
find the peak period for the radiated average acceleration
spectra scales with the mean slip duration of points on the
fault, for moderate and large events where the slip and
velocity weakening stress drop mechanisms are dominant.
These means, again, are found to scale in nontrivial ways
with event size.
[4] Pioneering work by [Haskell, 1964] generated theo-

retical curves for the radiated energy spectra from a moving
finite dislocation source, and further related the resulting
energy spectral density to fault width and slip duration. A
great amount of effort has continued this approach of
specifying source motions and calculating the resulting
radiation. While this approach has the virtue of often
allowing closed form solutions with which one can examine
the influence of various source motions, it has the limitation
of being a kinematic rather than dynamic approach, and thus
the physical relevance of the solutions and the underlying
physics which would generate such solutions remains
unresolved.
[5] Previous theoretical work on generating magnitude-

dependent radiated spectra has generally begun from
assumed scaling laws inferred from earthquake observations
[Aki, 1967; Brune, 1970] and then attempted to match them
through various combinations of assumptions about source
motions, rupture propagation, and distributions of hetero-
geneities [e.g., Hartzell et al., 1999; Tumarkin et al., 1994;
Zeng et al., 1994]. There is, however, a fundamental
limitation with this approach, which is that it does not tell
us what spectra we should expect to see. Also, given that
some controversy has developed [Boatwright and Choy,
1992; Atkinson and Silva, 1997; Haddon, 1996; Atkinson et
al., 1997; Haddon, 1997; Sokolov, 1997] over whether there
may be observed deviations from the idealized classical
spectra [Brune, 1970], a derivation of the spectra from first
principles is clearly important. Our work is new in that we
have achieved this, having had to assume only the nature of
the friction on the fault.
[6] There is a long history of work relating source

motions to radiated energy [Madariaga, 1976; Miyatake,
1980; Das and Kostrov, 1988; Olsen et al., 1997]. Our work
is new in pointing to a feature of the radiated energy which
is observable and may have a nontrivial behavior, the
magnitude dependence of the period of the peak of the
radiated average acceleration spectra, and how that may
reflect nontrivial scaling of the mean slip time with rupture
size. In previous work, additional corners in the frequency
spectra have been reported and debated [Boatwright and
Choy, 1992; Atkinson and Silva, 1997; Haddon, 1996;
Atkinson et al., 1997; Haddon, 1997; Sokolov, 1997]. A
number of possible physical origins of a second corner have
been discussed, including partial stress drops [Brune, 1970],
and various irregularities [Hartzell and Brune, 1979;

McGarr, 1981; Papageorgiou and Aki, 1983; Joyner and
Boore, 1986; Boatwright, 1988; Atkinson, 1993; Atkinson
and Silva, 2000]. Our work finds another origin: the
development of slip pulses.
[7] Finally, one significant application of our work is the

scaling of spectra radiated by large and great earthquakes.
This question has received some previous attention [Has-
kell, 1964; Papageorgiou and Aki, 1983; Atkinson and
Silva, 2000], but this work substantially extends our theo-
retical tools by generating dynamically consistent results
across the full range of sizes.
[8] The rest of the paper is organized as follows. In section

2, we discuss the model and present two model innovations
which allow us to directly measure the radiated energy, a
new loading traction on the fault, and a new radiating
boundary condition away from the fault. In section 3, we
present the measurements of the radiated energy spectra and
measurements of the source motions which explain features
of the measured radiated energy spectra. In section 4, we
discuss some further issues and recast some of the results
for better comparison with observations. Appendix A
specifies the friction used in this paper. Appendix B presents
the new radiating boundary condition. Appendix C discusses
the far-field asymptotics of the two-dimensional (2-D)
radiation.

2. The Model

[9] Because we are concerned with average properties
spanning a wide range of sizes of events, we need large
numbers of events. To obtain large numbers of events with
a high degree of spatial resolution, we study lower dimen-
sional models, which have a huge speedup numerically.
We examine a uniform scalar two-dimensional model. This
has the minimum parameterization, being uniform spatially
and being the minimum dimensionality allowing radiation.
We study this simplest model as it contains the basic
behaviors we wish to explore, has the fewest parameters
which need to be specified, and is fast enough to handle
our demanding problem. There will, of course, be quanti-
tative differences with the full three dimensional tensor
problem. We expect, however, that the qualitative effects
that we present here will nevertheless carry over to the full
case.
[10] Our model is an extension of a previous two-dimen-

sional scalar elastodynamic model [Shaw, 1997] with two
new innovations. First, we add the driving to the fault itself,
rather than to a boundary away from the fault. This allows
us to maintain the wave equation in the bulk, and the effect
of the loading of the fault by the stably sliding lower fault,
while at the same time moving the far boundary away so as
to extend the wave equation domain of the bulk. Thus rather
than a strip of the wave equation as before, we now have a
model which works in a half-space. Since we model the
bulk explicitly, in practice, we need to operate in a finite
domain. Our second innovation is a slight but important
modification of the radiating boundary conditions of Clay-
ton and Endquist [1977] so that they work with spatially
varying prestress. Together, these two innovations allow us
to measure directly the radiation emitted from the fault and
track it for a long time, with only very small perturbations
from the far radiating boundary.
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2.1. Equations for the Model

[11] In the bulk, we have the wave equation for the
displacement U

@2U

@t2
¼ r2U ; ð1Þ

where t is time, r2 = @2/@x2 + @2/@y2 is the two-
dimensional Laplacian operator for the direction x which
is taken to be parallel to the fault and y the direction
perpendicular to the fault. We use dimensionless units
throughout to minimize the number of parameters. Here we
have set the speed of sound to unity. On the fault, located at
y = 0, the tractions T balance the strain

@U

@y

����
y¼0

¼ T : ð2Þ

The tractions consist of two parts, a friction �, which we
will discuss shortly, and the coupling to the stable sliding
plate displacement

T ¼ �þ k nt � Uð Þ: ð3Þ

Here v � 1 is the slow plate velocity, and k is a coupling
constant with dimensions of inverse length scale. The
physical origin of this second coupling traction is the
connection elastically, in the full three-dimensional problem,
of the upper unstably sliding fault to the lower stably sliding
fault, which moves at the plate rate v. In collapsing the depth
dimension to go to two dimensions, this would give a stress
which would depend on the relative displacement, with a
stiffness k inversely proportional to the loaded seismogenic
zone W (a length scale of order 15 km in strike-slip
environments and 60 km in subduction zones).
[12] One approximation of this coupling term relative to

the full 3-D effect is it neglects the retarded aspect of the
interaction; here the coupling is instantaneous to the relative
displacement, rather than delayed by the time it would take
the wave to travel down and back, a time 2W/c, where c is
the wave speed. We experimented with various ways of
mimicking this retarded effect, to see if it might be impor-
tant, and it did not appear to be. One alteration we examined
was to change the U term in the traction to one with some
memory, replacing in equation (3)

U !
Z t

�1
U t0ð Þe�~g t�t0ð Þdt0; ð4Þ

so it takes a finite timescale 1=~g to adjust to its asymptotic
steady state value. The behaviors we examined did not
appear sensitive to this alteration. So, in the spirit of
minimal parameterization, we dropped it.
[13] This loading of the unstably sliding upper fault by

the stably sliding parts of the crust is an essential part of the
physics of faults. One previous two-dimensional model
incorporated it through coupling though the bottom of the
crust, giving a Klein-Gordon equation in the bulk [Myers et
al., 1996]. This has the advantage of allowing for a half-
space but the disadvantage of introducing intrinsic disper-
sion in the bulk. Another previous model incorporated it

through the coupling to a nearby (a crust depth away)
surface sliding at the plate rate [Shaw, 1997]. This has the
advantage of allowing the wave equation in the bulk, which
has the proper dispersion properties and includes the
retarded aspect of the interaction. However, it has the
disadvantage of introducing a nearby stiff boundary which
produces huge reflections and distorts the radiated field. Our
new representation of this effect through the additional
traction yields a dispersionless bulk of arbitrary width.
[14] The friction used, which is the central core of the

complex behavior of the model, has been used and pre-
sented before; thus we briefly summarize it, for complete-
ness, in Appendix A. The other boundary conditions are as
follows. Properties are completely uniform along the fault,
and to maintain this minimal situation, we use periodic
boundary conditions in the direction along the fault:

U xþ Lxð Þ ¼ U xð Þ: ð5Þ

[15] Away from the fault, we use a radiating boundary
condition during dynamic rupture. Between events, we
quench the system to a static solution with the far boundary
fixed at the plate displacement. Appendix B discusses the
motivation for treating this boundary this way, and the
innovative radiating boundary condition we have used. Its
main effect is to mimic what we would get with a distant
transparent boundary moving at the plate speed.
[16] Figure 1 illustrates the geometry of the problem, with

a solution of the displacement in the stuck configuration,
when @2U/@t2 = 0, so the bulk satisfies Laplace’s equation.

2.2. Numerical Simulation

[17] We discretize our equations, using a second-order
finite difference scheme, into lengths dx along the fault and
dy perpendicular to it. There are, necessarily, dispersion
effects at high wave numbers with finite difference approx-
imations [Alford et al., 1974]. However, by focusing our
measurements on quantities like absolute values of ampli-
tudes of the energy spectra, which do not depend on phase
information, we can push the measurements out to higher
frequencies than would normally be possible.
[18] Beginning from any nonuniform initial condition, the

system rapidly evolves to an attractor. For frictional strength-

Figure 1. Surface plot of displacement U on the fault, at
y = 0, and in the bulk, for y > 0. For this stuck static
configuration the bulk smoothly interpolates from the
boundary, being a harmonic solution of the Laplacian.
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ening, the attractor is trivially periodic. In contrast, for
frictional weakening, complex attractors can emerge. For
this friction, there is a generic large event complexity; for
long enough faults and large enough weakening a spatially-
temporally complex irregular population of aperiodic large
events is seen. There is, in addition, a relatively narrow range
of parameters over which small event complexity is also
observed [Shaw and Rice, 2000]. This small event complex-
ity, when it exists, exhibits power law distributions of event
sizes, and reflects a very richly complex attractor in that
region of parameter space. While narrow, in terms of
parameter space, the small event complexity is nevertheless
a legitimate continuum behavior [Shaw and Rice, 2000] and
not due to discreteness [Rice, 1993]. Because we are inter-
ested in exploring a wide range of event sizes, we focus our
attention on the range of parameters where small events
occur. This parameter range is where the frictional weaken-
ing is close to, but slightly stronger than, the elastodynamic
destressing due to sliding. For slip weakening this is related
to the strain from the coupling to the stably sliding lower
layer, while for velocity weakening it is related to the
radiation damping. Figure 2a illustrates two views of the
complex attractor for the slip weakening case near the critical

frictional weakening value where both small and large events
are seen. Figure 2b illustrates a velocity-weakening case,
again near the critical value where there are small events.
[19] The results we will discuss are relatively insensitive

to parameter values, being swamped by the larger scaling
issues as we will see. Changing frictional parameters
changes the results quantitatively only slightly and qualita-
tively not at all. The main effect of operating near the
critical weakening values are the fact that the small and
intermediate magnitude events occur.
[20] The canonical set of parameters that we will perturb

are as follows: For the bulk, Lx = 200, Ly = 8, dx = 1/16, dy =
1/32. For the friction (see Appendix A for definitions of
parameters), k � 1, h = 0.003, s0 = 0.01, t0 = 0.1, sb = 0.1,
with, for slip weakening, a = 3, g = 0.1, b = 10, and for
velocity weakening, a/g = 3, g = 3, b/g = 10. Again, none
of the results which follow appear to be sensitive to these
parameter choices.

3. Radiation

[21] We begin our examination of the radiated field by
looking in the time domain. Figures 3 and 4 show the time

Figure 2. Representations of the attractors for two different frictions with (a) slip weakening and (b)
velocity weakening. Two different representations of the attractors in each case are shown. (top) Times at
which events along the fault slipped. (bottom) Cumulative slip along the fault following events. For each
of the bottom representations, the same events are shown in the top and bottom representations.
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series for example small and large sized events. The small
event in Figure 3 is the smallest of the events, being only one
element dx long, and shows effectively an empirical Green’s
function for the problem. The large event in Figure 4 begins
bilaterally, with one side dying out early and the other
propagating further before dying out. We set up an array
of velocity meters at a fixed distance from the fault, equally
spaced from each other, and plot a stack of the resulting
measured velocities. Each panel is for a different distance
from the fault, beginning on the fault, and moving progres-
sively farther away. The distances of the array are �y = 0,
0.25, 2, 3 away, and illustrate the motions on the fault, and
the radiation emitted moving from the near to the far field.
[22] In Figure 4 we can also see that the radiating

boundary condition is working quite well. The radiating
boundary is located at Ly = 4, and thus reflections would
begin to show at the array at times 2Ly � �y. The clear
absence of any noticeable reflected energy in the bottom
panels, at times 6 and 5 for �y = 2 and 3, respectively,
shows that the boundary condition is working.

[23] The large event in Figure 4 shows strong directivity,
with the energy focused in the direction of the propagating
rupture. We also see how irregularities in the slip due to
irregular prestress radiate strongly into the bulk. We again
see the radiating boundary condition is working well, even
at these large amplitudes, through the lack of any noticeable
reflected energy.
[24] An alternative picture of the events can be obtained

by analyzing them in the frequency domain. If we take a
Fourier transform of the velocity records and look at the
square of the amplitudes, we obtain a physically relevant
representation of the motions, as these squared amplitudes
are the energies in each frequency band. This representation
then provides a natural basis to sum, as well as average,
since we are summing physical quantities obeying conser-
vation laws, energy.
[25] Thus, by placing an array of meters a fixed distance

from the fault and summing over the energies measured
across the whole array, we can measure the energy flux
through a plane (a line in our 2-D model) a given distance

Figure 3. Array of velocity records for different distances from fault. This is a one element event,
showing a kind of ‘‘empirical Green’s function’’ for the model. The vertical axis is velocity, while the
horizontal axis is time. Neighboring records are offset in the vertical direction by a constant velocity
increment, to more easily see the correlations. From left to right, from top to bottom, the distances of the
arrays from the fault are �y = 0, 0.25, 2, 3, respectively. Thus the top left panel shows the motions on the
fault, and the other panels show the radiated waves at increasing distances from the fault.
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from the fault. We show such a measurement in Figure 5 for
the small event shown in Figure 3, for various distances
from the fault. Specifically, what we plot in Figure 5 is

Ew yð Þ ¼
Z

1

2

Z
@U x; y; tð Þ

@t
eiwtdt

� �2

dx ð6Þ

with the corresponding period T = 2p/w plotted in Figure 5.
Thus, in Figure 5 we see how the spectrum of the radiated
waves changes as we move from the near to the far field.
Note that from Parseval’s theorem,

Z
v2 tð Þdt ¼

Z
v̂2 wð Þdw; ð7Þ

so the area under each curve is the total radiated energy. As
we move from the near field to the far field, the longer
wavelengths are absorbed; that is, they are transferred from
kinetic energy to potential energy. As we move away from
the fault, the spectra approach an asymptotic form, the far-
field spectrum of the radiation. Because of its fundamental
significance, we will focus our attention on this asymptotic
far-field spectrum.
[26] We can test our numerical measurements of the spectra

against calculations for the simplest one element event. In
Appendix C, we derive the expected scaling of the spectra at
low frequencies with distance, showing V̂ wð Þ 

ffiffiffiffiffiffiffiffi
w=r

p
:

The linear increase of V̂ 2 with w matches the asymptotic
low-frequency spectra well, as the dotted line linear in w
illustrates. The 1/r effect does not show up in the asymp-

Figure 4. Array of velocity records for different distances from fault. This is a large event in the
model, with a nearly unilateral rupture. Note the large-scale change relative to the previous small event
in Figure 3. The vertical axis is velocity, while the horizontal axis is time. Neighboring records are offset
in the vertical direction by a constant velocity increment, to more easily see the correlations. From left to
right, from top to bottom, the distances of the arrays from the fault are �y = 0, 0.25, 2, 3, respectively.
Thus the top left panel shows the motions on the fault, and the other panels show the radiated waves at
increasing distances from the fault. For the fault motions in the top left panel, we see a unilateral rupture
with varying slip and varying rupture velocity. The varying slip can be seen by the varying areas under
the curves, which are the slip. The varying rupture velocity can be seen by the varying slopes between
when neighboring parts of the fault initiate slip.
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totic spectra, since we integrate along dx and thus enclose
the fault. It does show up, however, in the near-field
corrections to the low-frequency amplitude, which scale
as 1/�y: Figure 5 shows that as �y increases by a factor of
2, V̂

2(w = 0) decreases by a factor of 2. Thus the spectral
shape at low frequencies (how close we are to a linear
increase of V̂ 2 with w) gives us a measure of how close we
are to the far-field asymptote.
[27] It is important to reiterate that we do not have any

intrinsic dissipation or scattering in our conservative bulk.
The changes we see in the spectra in the near field are due to
the conversion from kinetic to potential energy, rather than
loss by dissipation. This approach to the asymptotic state in
the far field also reflects the conservative nature of the bulk.
Adding dissipation to the bulk alters this picture by absorb-
ing the radiation; frequency-dependent dissipation would
progressively distort the spectrum with increasing distance
from the source. In the Earth, there is small but significant
dissipation, which most strongly affects the high frequen-
cies. Because of the uncertainties in detail of this dissipa-
tion, disentangling from the measured spectra the source
and the path effects remains an area of active research. Here
we examine the idealized case where there is no dissipation,
so that our signal is completely a source effect.
[28] One numerical point is that while we do not have

dissipation in the bulk, we do have dispersion in the bulk,
due to the finite resolution of our finite difference approx-
imation of the continuum. These effects become significant
at the highest frequencies, with the highest frequencies
being substantially slowed [Alford et al., 1974]. However,
by considering the amplitudes of the waves we avoid this
distortion of the wave field and obtain accurate measure-
ments of the energies out to higher-frequency bands than
would normally be considered accurate for phase-sensitive
measurements, as long as we wait long enough for the
waves to arrive.
[29] Figure 6 shows the spectra for the large event shown

in Figure 4, again moving from the near field outward. We

see that for this larger event it is difficult to get far enough
away to be in the far field for the lowest frequencies,
evidenced by the lack of a linear w asymptote. Nevertheless,
from an energetics point of view, we get a good measure-
ment, with a well-defined peak at finite frequencies.
[30] If we sum the energy over the frequencies as in

equation (7), there will be very little contribution from these
lowest frequencies. Using conservation of energy, we can
calculate the total radiated energy by looking at the differ-
ence in potential energy before and after the event, and
subtracting the dissipation on the fault [Shaw, 1998]. For
our case here, where there is an additional traction based on
the difference in displacements which stores energy, the k
term in equation (3), we need to keep track of the boundary
strain energy implicit in this term, as well as the bulk strain
energy. Doing the bookkeeping, we are rewarded with an
estimate of the total radiated energy that is independent of
the energy flux measurements near the fault. It is a check on
our numerical methods that these two independent measure-
ments indeed are consistent with each other.

3.1. Average Spectra

[31] Having considered these far-field spectra, we now
look at the average behavior across a wide range of event
sizes. Sorting events into groups of similar size, we average
the spectra, obtaining the average spectra as a function of
rupture size (here, grouped according to rupture length). We
calculate the mean �E(w, L) spectra, where the average is
over events having lengths between L and lL, with l > 1 a
bin size scaling factor; �E(w, L) = < E(w) > (L0jL� L0 � lL), so
we consider logarithmic bins in length. We sum each spectra
over a line a fixed distance �y from the fault, to get a total
radiated spectra, and then average the resulting spectra.
Thus we obtain our first principal result, the energy spectra
radiated by a range of sizes from the smallest events with
lengths of only a small fraction of the crust depth W, to the
largest events breaking tens of crust depths in length.
Figure 7 shows the resulting average spectra for the two

Figure 5. Spectral energy density for one block event in
Figure 3, moving from source to far field. Note approach to
far-field asymptotic linear growth in w = 2p/T for small w,
indicated by fit to dashed line with slope of unity.

Figure 6. Spectral energy density for large event in Figure
4, moving from source toward the far field. Note that we
have not yet reached the far-field spectra, evidenced by the
lack of a linear growth at low frequencies 1/T.
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cases of slip-weakening and velocity-weakening friction.
There are a number of interesting aspects to this plot. First,
both types of frictions look qualitatively similar, though the
radiation is shifted to higher frequencies for the velocity-
weakening friction relative to the slip-weakening friction.
Second, the mean energies at all frequencies monotonically
increase as the events get larger. However, the increase
occurs in a nontrivial way, in that the curves are not simply
scaled versions of one another.
[32] From a comparison of the slope of the spectra at

frequencies below the peaks with the far-field asymptotic
linear w calculation (equation (C7)), we can see that we are
close to the far-field spectra for the small events, but not for
the largest events. These measurements were carried out at
�y = 6. The binned lengths corresponding to the different
curves, from bottom to top, are L = 0.06, 0.10, 0.17, 0.28,
0.46, 0.76, 1.3, 2.1, 3.4, 5.6, 9.3, 15.3, 25.2, 41.6. From the
slopes we see the approximately far-field spectra persist to
L � 5, a length of order the distance �y from the fault.
While the larger events are not in the far field, we will see
that we can still quantify some of the features of the spectra
relevant to the far field. For example, all but the very largest
events have peaks in the energy density at finite frequencies.
[33] At the high frequencies a number of effects need to

be considered. At the very highest frequencies, we are
limited by finite resolution, and the waves do not prop-
agate. The Nyquist frequency for the discretization that we
use here of dx = 1/16 and dy = 1/32 gives an upper bound of
1/T � dy/2 = 16. Dispersion slows wavelengths close to
these values [Alford et al., 1974], giving cutoffs of around
half this resolution in practice. At frequencies below these
cutoffs, we see the source excitation directly. The peaks
around 1/T  5 are associated with the stress drop �. For
the smallest events the time-dependent drop st dominates;
changing the timescale of the drop t0 changes the location of
the peak, and changing the strength of the drop s0 changes
the amplitude of the peak. For the moderate and large
events, the stress drop sb dominates; changing b and sb
have analogous effects in shifting the location and ampli-
tude of the peak, respectively. Thus details of the stress
release dominate the highest frequencies. Nevertheless,

there are, as we will see, some general features of the
spectra we can measure to gain some useful information.

3.2. Corner Periods

[34] The first measurement we make is to measure the
period Te, where the peak amplitude of the radiated energy
spectrum occurs. The top solid curves in Figure 8 show how
Te scales with rupture length L. We see an approximately
linear growth of Te with rupture length, corresponding to the
classical rupture length corner frequency effect. The differ-
ent curves in Figure 8, corresponding to different values of
g, all show the same behavior; thus this effect is quite
insensitive to the friction, holding for slip weakening as
well as velocity-weakening friction.

Figure 7. Average spectral energy density for events of different sizes. (a) Slip weakening (g = 0.1). (b)
Velocity weakening (g = 3). Dashed line has slope w�2.

Figure 8. Two corner frequencies for spectra as a function
of rupture length L. The different thickness curves
correspond to different frictional parameter g = 0.1, 1, 3,
with the thicker lines corresponding to larger values of g.
The top solid curves are the period of the peak energy
density, while the bottom dashed curves are the period of
the peak-averaged acceleration spectra.
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[35] In addition to energy, another important measure is
acceleration, with acceleration being strongly linked to
damage. We can transform our energy spectra into an
average acceleration spectra by multiplying by twice the
frequency squared and then taking the square root. We then
measure the period at which the peak average acceleration
spectra occurs. Geometrically, this occurs when the line
with slope w�2 with the highest amplitude is tangent to the
energy spectra curve. The dashed lines in Figure 7 show
such lines with slope w�2. (To accommodate the situation
where the peak acceleration spectra might be flat, we define
this period to be the lowest period at which the peak occurs,
to connect to the concept of corner frequency. This situation
does not arise in our model spectra here, but may be
relevant to other situations, such as the classical Brune
w�2 spectra [Brune, 1970]).
[36] The period of the peak average acceleration spectra,

Ta, shows an interesting dependence on event size. This is
plotted in Figure 8, with the lower dashed curves. The
different curves again correspond to different frictional
instabilities parameterized by g. From Figure 8 we see the
nontrivial nature of this period of the peak average accel-
eration spectra measurement. For the smallest events the
period is set by the timescale t0 of the dominant st stress
drop mechanism. Changing t0 changes Ta. Because this
time-dependent regime of the friction is not very realistic,
this is not a particularly interesting regime. We can, how-
ever, make s0 small enough so it affects only the very
smallest events. Once the slip and velocity weakening stress
drops begin to dominate things get much more interesting.
For the moderate and large events, as we will see, a very
important source parameter begins to control the period Ta.
Note also that, interestingly, unlike the energy measure-
ment, the period Ta saturates for the largest events.
[37] Figure 9 shows our second principal result. We plot

with solid lines, as in Figure 8, the period Ta of the peak of
the average acceleration spectra as a function of event
rupture length. This is shown with the solid line in Figure
9, with the circles corresponding to the slip weakening case
and the pluses corresponding to the velocity weakening
case. To connect to the source motions, we have plotted
only half the period, Ta/2, on Figure 9 [Boatwright and
Choy, 1992] (this factor of 1/2 is a rough factor relating the
specific time function at a point on the fault lasting a given
time to the dominant period of the emitted waves; it varies a
bit with the specific time function. For example, Boatwright
and Choy [1992] show that a symmetric triangle of duration
T has a corner frequency at T/2.).
[38] On Figure 9 we also plot an additional set of points.

For each individual event these points show the average slip
duration of points on the fault plotted against the length of
the event. That is, we plot the mean slip duration q against
rupture length L, where

q ¼
R
� vð Þdtdx

L
; ð8Þ

with � the heaviside step function, which is 1 when the fault
is slipping (v = @U/@t|y = 0 > 0) and 0 when stuck (v = 0).
Again, we use the two different symbols for the two different
frictions, with circles for slip weakening and pluses for
velocity weakening. Note, as with Ta, the somewhat

surprising result that the mean slip duration decreases for
the largest events, at least for the slip weakening case.
[39] As noted before, for the very smallest events the

time-dependent stress drop st dominates the spectra, and Ta
is set by t0. Thus Ta falls well below the mean slip duration
points. Once the slip- and velocity-weakening stress drop
terms begin to dominate, however, we see that Ta scales
with q. The crossover of Ta from t0 scaling to q scaling
depends on the relative strength of s0; making s0 smaller
pushes the crossover to smaller values of L. Because slip-
and velocity-weakening frictions are more realistic, this
scaling with q is the more relevant regime. It is particularly
interesting that this corner frequency reflects a very natural
and fundamental source parameter, the slip duration, and,
moreover, that this relates to a topic of widespread interest
and debate, the existence of slip pulses [Heaton, 1990;
Beroza and Spudich, 1988; Perrin et al., 1995; Cochard
and Madariaga, 1996; Langer et al., 1996; Beeler and
Tullis, 1996; Day et al., 1998]. Further, we see an interest-
ing magnitude dependence to this.
[40] For ruptures that propagate in uniform stress fields,

classical crack solutions [Kostrov, 1964], as well as recent
expanding pulse solutions [Nielson and Carlson, 2000]
predict linear increases in the mean slip duration; our
resolution is too limited to explore this scaling, but we do
see an increase. For long narrow ruptures, however, the
ruptures feel the width W of the loaded seismogenic zone,
and this scaling will break down; one then expects satu-
ration. The somewhat surprising effect is that the mean slip
duration not only saturates but decreases for the largest
events, especially in the case of slip weakening. Evidently,
the slip pulses of these events narrow relative to their
maximum width, which occurs, we see from Figure 9, at

Figure 9. Comparison of the period of the peak average
acceleration spectra for events of different sizes with the
mean slip duration source parameter for different events.
The solid lines are 1/2 times the period of the peak average
acceleration spectra (see text for discussion of this factor of
1/2). The individual points are the mean slip durations of
individual events. Circles correspond to slip-weakening
events (g = 0.1), while pluses correspond to velocity-
weakening events (g = 3).
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L of order a few W. After that the pulses break out into
bilateral ruptures which narrow. This can all be seen in the
time domain plot of the example large event shown earlier
in Figure 4. What is key here is that even in the absence of
the privileged view that Figure 4 affords in measuring
velocities along the fault, we are able to observe these
source effects in the frequency domain in the far field, an
area accessible to standard observations!

4. Discussion

[41] A couple of other measurements support the results
we have presented. One concerns the extrapolation of the
measurements of the two corner frequencies to the far field.
In the case of the small events, we are already in the far
field, so this is not an issue. Figure 10 shows the same
measurements as in Figure 8, made now for a fixed value of
g, and different values of �y. Evidently, our corners for
even the large events are little affected by �y. Thus these
corner frequency results appear to be valid for the far field.
[42] A second issue is a potential concern that the

measurement of slip duration does not distinguish between
fast slipping and slow slipping, and thus possibilities like
long nucleation times or slow afterslip might bias the results
shown in Figure 9, since the radiation is dominated by the
fastest slip. This can be dealt with by an alternative to
equation (8), through a measure of slip duration which
weights time differently for fast and slow slip. One such
alternate measure of slip duration arises from a dimensional
argument. We define a radiative slip duration

tv ¼
R
vdt

� 	
 �2R
v2dt

� 	 ; ð9Þ

where the average (angle brackets) is over the rupture
surface. This measure has dimensions of time and gives an
effective slip duration for the parts of the fault that are
slipping rapidly. We can make the same plot as in Figure 9
using this new timescale to measure the dynamically
slipping part. Figure 11 shows this result. The effect at
large lengths shows the large event effect is indeed real,
with narrower pulses of concentrated slip developing.
[43] How many events might we need in order to see the

mean spectral effects we have presented? Because the data
sets are inherently limited, particularly for the rare longest
events, it is useful to see what the data looks like with
limited statistics. Figure 12 therefore shows the same type
of plot as in Figure 8, except now we plot Te and Ta in a
disaggregated way for individual events; an event is
represented by a line segment connecting the two measured
corner periods. Evidently, the trends discussed earlier, the
linear increase of Te with L, and the initial increase of Ta
with L followed by a saturation for the largest L, are seen
even for the noisy individual events. This disaggregation is
additionally helpful as it shows the scatter in the data.
Also, it is less sensitive than the mean plot to potential
outliers.
[44] There is one last transformation we want to do in

order to pose the model data in the way that renders it most
clearly comparable to observations. Because the length of
the rupture L is often itself measured from Te, there is a
potential circularity in treating them as independent quanti-
ties in a plot. Therefore we use an alternative physical
measure of the size of the event for the horizontal axis: the
geometric moment M, representing the total slip on the
fault. Figure 13 shows the same data as in Figure 12, only
now ordered on the horizontal axis by M. The essential

Figure 10. Two corner frequencies for spectra as a
function of rupture length L. The different thickness curves
correspond to different distances of the measurement
surface from the fault plane, with thicker lines correspond-
ing to larger values of �y. The values shown are �y = 1, 2,
4, 6, respectively. The top solid curves are the period of the
peak energy density, while the bottom dashed curves are the
period of the peak-averaged acceleration spectra.

Figure 11. Comparison of the period of the peak average
acceleration spectra for events of different sizes with the
mean velocity-weighted radiative slip duration source
parameter for different events. The solid lines are 1/2 times
the period of the peak average acceleration spectra (see text
for discussion of this factor of 1/2). The individual points
are the mean radiative slip durations of individual events.
Circles correspond to slip-weakening events (g = 0.1), while
pluses correspond to velocity-weakening events (g = 3).
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trend we have discussed is preserved. It will be extremely
interesting to make these plots with real earthquakes, being
careful to separate out different faulting styles of strike-slip
and subduction zone events, so that different W are not
mixed.

Appendix A: Friction

[45] The friction we use has been explored previously
[Shaw, 1995, 1997; Shaw and Rice, 2000]. The physical
motivation goes back to Sibson [1973], whereby frictional
sliding generates heat, thereby raising the pore fluid temper-
ature and pressure, and thus decreasing the effective normal

stress and friction. This gives frictional weakening from
frictional heating. Our constitutive equations make a simple
mathematical quantification and approximation of this effect.
In addition to the physical motivation, they also have the
advantage of spanning a range of frictional instabilities, from
slip weakening in one limit to velocity weakening in another.
[46] Using an approximation [Shaw, 1997] of the full

nonlinear case [Shaw, 1995], our constitutive equations for
the friction � are

� ¼ f
@S

@t0
; t0 � t

� �
H

@S

@t

� �
� hr2

k
@S

@t
: ðA1Þ

Figure 12. Two corner plots for individual events. Each line segment represents an individual event,
with the upper value being the w0 tangent peak energy density and the lower value being the w�2 tangent
peak average acceleration spectra. The horizontal axis is the rupture length of the event L. The dashed
line shows a linear slope for comparison. Note that the trends evident in Figure 8 persist for the individual
events. (a) Slip-weakening friction. (b) Velocity-weakening friction.

Figure 13. Two corner plots for individual events. Each line segment represents an individual event,
with the upper value being the w0 tangent peak energy density and the lower value being the w�2 tangent
peak average acceleration spectra. The horizontal axis is the moment of the event M. (a) Slip-weakening
friction. (b) Velocity-weakening friction.
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Here @S/@t = @U/@t|y= 0 is the slip rate on the fault, with f
depending on the past history of slip. The function H is the
antisymmetric step function, with

H ¼

@̂S

@t

@S

@t
6¼ 0;

jH j < 1
@S

@t
¼ 0:

8>><>>: ðA2Þ

where c@S=@t is the unit vector in the sliding direction. Thus
H represents the stick-slip nature of the friction, being
multivalued at zero slip rate.
[47] The parameter h is the strength of a viscous-like

boundary dissipation, with rk
2 = @2/@x2 being the fault-

parallel Laplacian operator. This term is useful for giving
stability to the smallest length scales [Langer and Naka-
nishi, 1993; Shaw, 1997].
[48] The history-dependent f that we examine in this

paper is given by

f ¼ �0 �
aQ

1þ aQ
� � ðA3Þ

with

@Q

@t
¼ �gQþ @S

@t

���� ����: ðA4Þ

Here �0 is the threshold value of sticking friction, which, as
long as it is large compared to the maximum friction drop,
turns out the be an irrelevant parameter in the problem. The
variable Q is something like heat; it accumulates with
increasing slip rate on the fault and dissipates on a timescale
1/g. An equivalent integral solution of Q

Q tð Þ ¼
Z t

�1
e�g t�t0ð Þ @S

@t0

���� ����dt0 ðA5Þ

shows that when 1/g is large compared to the rupture
timescale of unity, Q is just the slip, while when 1/g is
small, Q rapidly reaches a steady state value of 1/g times the
slip rate. Thus g controls the relative amount of slip-
weakening versus velocity-weakening effects [Shaw, 1995].
[49] The parameter a is the rate of weakening at small Q,

which turns out to be a crucial parameter. It has dimensions
of inverse length. The denominator 1 + aQ is used so as to
saturate the drop in friction caused by this term at large Q,
with the strength drop scaled to unity.
[50] The third term in the friction, �, describes the stress

drop in going from sticking to sliding friction. We make a
gross simplification of this term and, for simplicity, consider
a � which has two parts, one of which has the same form as
the second term:

� ¼ bQ
1þ bQ=sb

þ st: ðA6Þ

The sb term gives a drop which weakens initially linearly in
Q with slope b, and then saturates to a constant stress drop

sb at large Q. The second term, st, is a time-dependent
nucleation term given by

st ¼
s0

t � ts

t0
t � ts < t0;

s0 t � ts � t0;

8<: ðA7Þ

so that st increases linearly with time once the fault
becomes unstuck, up to a maximum value s0 over a
timescale t0, and is reset to zero when the fault resticks. The
time ts is measured from the last unsticking and is reset
during an event if the fault resticks and then slips again.
[51] This � term is a substantial simplification of what is

likely to be happening in the Earth. A more realistic
representation of this term would be the rate-and-state
formulation [Dieterich, 1979; Ruina, 1983], but that for-
mulation is much more expensive numerically, and it has
been shown that many of the features of the model are
insensitive to the details of the � term, at least in the two-
dimensional models [Shaw and Rice, 2000].

Appendix B: Radiating Boundary Condition

[52] To allow for the very long events which spontane-
ously form in the model, we need a very long fault, of order
hundreds of crust depths in length (thousands of kilometers,
in dimensional units). We cannot afford numerically to have
a bulk as wide as that so in order to avoid reflections off of
the finite bulk domain, we need a radiating boundary con-
dition away from the fault. We also want to study multiple
events and avoid contamination from the radiation of pre-
vious events, particularly as previous large events, being
orders of magnitude larger than the smallest events, would
swamp the small events even for very tiny relative residuals.
We have therefore applied a previously used technique,
whereby between events the system is quenched to the static
solution using the Dirichlet problem of fixed displacements
on the fault boundary and on the far boundary [Shaw, 1997]

U

���
y¼Ly

¼ nt: ðB1Þ

The one difference is that now, during an event, we use
radiating boundary conditions at the far boundary to make it
transparent. Our innovation here is to modify the radiating
boundary condition of [Clayton and Endquist, 1977] by
recentering their finite difference formulation so that what
previously worked off of an initially zero stress boundary
now works off of an initially uniform displacement boundary
(which is not in general a uniform stress boundary!). This is
important, since when we let go of the boundary when the
event starts so that the radiation will be able to pass through,
we do not want it to start flapping spontaneously on its own.
With this innovation we have a boundary which both
sustains an initial stress, and is dynamically transparent. A
judicious recentering of the Clayton and Endquist [1977]
(equation (A2)) condition allows this. Specifically, we take
their continuum radiating condition

@2U

@t@y
þ @2U

@t2
� 1

2

@2U

@x2
¼ 0 ðB2Þ
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and recenter it compared to their finite difference approx-
imation to take advantage of the constant displacement initial
conditions; with this recentering, the curvature @2U/@x2 term
is initially zero, along with the acceleration @2U/@t2 term, so
@2U/@y@t will be zero until a wave impinges. Denoting as
they do n the integer index of the elements in the x direction,
and k the integer index of the elements in the y direction, so
Unk(t) � U(x = ndx, y = kdy, t), our new recentering of the
finite difference approximation gives a time centered
condition of

1

4dydt
Un kþ1 t þ 1ð Þ � Un kþ1 t � 1ð Þ½ � Un k�1 t þ 1ð Þ

þUn k�1 t � 1ð Þ� þ 1

dt2
Un k t þ 1ð Þ � 2Unk tð Þ þ Un k t � 1ð Þ½ �

� 1

2dx2
Unþ1 k tð Þ � 2Unk tð Þ þ Un�1 k tð Þ½ � ¼ 0: ðB3Þ

We can simplify this slightly in our case where we integrate
explicitly in time, so the expression is no longer time
centered, to get

1

2dy
Un kþ1 t þ 1ð Þ � Un k�1 t þ 1ð Þ½ � ¼ 1

2dy
Un kþ1 tð Þ � Un k�1 tð Þ½ �

� dt
�

1

2dx2
Unþ1 k tð Þ � 2Unk tð Þ þ Un�1 k tð Þ½ �

þ 1

dy2
Un kþ1 tð Þ � 2Unk tð Þ þ Un k�1 tð Þ½ �

�
; ðB4Þ

which is the new radiating boundary condition we use, with
the acceleration having been replaced by the force, which is
the Laplacian from the wave equation (1).
[53] Figures 3 and 4 illustrate this boundary’s excellent

behavior, being stationary before the radiating waves have
hit, and nearly transparent as they encounter it. Figure B1
further illustrates this point by contrast, showing the top
right panel as in Figure 4, and then repeating the run, but

now with a fixed boundary condition; note the clear
reflected waves in this latter case.

Appendix C: Far-Field Low-Frequency
Asymptotics

[54] We estimate the low-frequency spectral shape of the
radiation as follows. The Green’s function for the wave
equation in two dimensions is

G x; t; x1; t1ð Þ ¼
0 c t � t1ð Þ < r;

1

2pc
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 t�t1ð Þ2�r2

p c t � t1ð Þ > r

8><>: ðC1Þ

where r = jx � x1j. For low frequencies for timescales which
are much longer than the timescale of the rupture process,
the detailed shape of the source-time function is not
important; so we consider the simplest source-time function,
which is the box-car, having constant velocity V1 over time
T and zero otherwise. Then

U x; tð Þ ¼
Z

G x; t; x1; t
0ð ÞV t0ð Þdt0

¼

0 r < t � t1ð Þ < r

1

2pc

Z t1�t�r=c

t1

dt0V1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 t � t0ð Þ2�r2

q r < c t � t1ð Þ < r þ cT

1

2pc

Z t1þT

t1

dt0V1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 t � t0ð Þ2�r2

q r þ cT < c t � t1ð Þ

8>>>>>>>>><>>>>>>>>>:
ðC2Þ

¼

0 c t � t1ð Þ < r

V1

2pc2
log

c t � t1ð Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 t � t1ð Þ2�r2

q
r

r < c t � t1ð Þ < r þ cT

V1

2pc2
log

c t � t1ð Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 t � t1ð Þ2�r2

q
c t � t1 � Tð Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 t � t1 � Tð Þ2�r2

q r þ cT < c t � t1ð Þ

8>>>>>>>>>><>>>>>>>>>>:

Figure B1. Illustration of utility of radiating boundary condition, by repeating same event using two
different boundary conditions. The event is the same as in Figure 4. (a) Reflecting boundary condition.
(b) Radiating boundary condition. Note absence now of reflection.
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Taking the derivative with respect to time t to get velocity
gives

V r; tð Þ ¼

0 c t � t1ð Þ < r

V1

2pc

1þ c t�t1ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 t�t1ð Þ2�r2

p

c t � t1ð Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 t � t1ð Þ2�r2

q < c t � t1ð Þ < r þ cT

V1

2pc

1þ c t�t1ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 t�t1ð Þ2�r2

p

c t � t1ð Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 t � t1ð Þ2�r2

q
0B@

�
1þ c t�t1�Tð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2 t�t1�Tð Þ2�r2
p

c t � t1 � Tð Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 t � t1 � Tð Þ2�r2

q
1CA r þ cT < c t � t1ð Þ

8>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>:
ðC3Þ

Rewriting in terms of the variable x = c(t � t1) � r and
keeping only lowest order in x/r, an approximation good in
the far field, gives

V r; xð Þ ¼

0 x < 0

V1

2pc
1ffiffiffiffiffi
rx

p 0 < x < cT

V1

2pc
1ffiffiffiffiffi
rx

p � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r x� cTð Þ

p !
cT < x

8>>>>>>>><>>>>>>>>:
ðC4Þ

Calculating the Fourier transform of this gives

V̂ wð Þ ¼
Z 1

0

V r; tð Þeiwtdt

¼
Z T

0

V1

2pc
ffiffi
r

p 1ffiffiffiffiffi
ct0

p eiwt
0
dt0

þ
Z 1

T

V1

2pc
ffiffi
r

p 1ffiffiffiffiffi
ct0

p � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ct0 � cT

p
� �

eiwt
0
dt0

¼ V1

2pc3=2
ffiffi
r

p
Z 1

0

1� eiwT
� � eiwt0ffiffiffi

t0
p dt0

¼ V1

2c3=2
ffiffi
r

p 1� eiwTð Þffiffiffi
w

p ðC5Þ

where the last step came from contour integration. Thus we
get

V̂ wð Þ ¼ �ieiwT=2
V1

c3=2
1ffiffi
r

p sinwT=2ffiffiffi
w

p : ðC6Þ

Taking the limit as w ! 0 gives

jV̂ wð Þj ¼ V1T

2c3=2

ffiffiffi
w

p ffiffi
r

p ; ðC7Þ

which is the asymptotic far-field low-frequency 2-D result
we seek.
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