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[1] One of the biggest assumptions, and a source of some
of the biggest uncertainties in earthquake hazard estimation
is the role of fault segmentation in controlling large
earthquake ruptures. Here we apply a new model which
produces sequences of elastodynamic earthquake events on
complex segmented fault systems, and use these simulations
to quantify the variation of large events. We find a number
of important systematic effects of segment geometry on the
slip variation and the repeat time variation of large
events, including an increase in variation at the ends of
segments and a decrease in variation for the longest
segments. INDEX TERMS: 7209 Seismology: Earthquake

dynamics and mechanics; 7221 Seismology: Paleoseismology;

7223 Seismology: Seismic hazard assessment and prediction; 7260

Seismology: Theory and modeling; 8010 Structural Geology:

Fractures and faults. Citation: Shaw, B. E. (2004), Variation of

large elastodynamic earthquakes on complex fault systems,

Geophys. Res. Lett., 31, L18609, doi:10.1029/2004GL019943.

1. Introduction

[2] The faults on which earthquake occur are not simple
planar structures, but have bends, splays, and steps in them.
These geometrical features are used to define segments of
faults, which are themselves used to delineate future
expected large events. The role of fault segmentation in
determining future large earthquakes is not, however, well
understood. While there are many instances of large earth-
quakes initiating and terminating at geometrical disconti-
nuities [King and Nabelek, 1985], there are also examples
such as the 1992 M7.1 Landers events which jumped two
segment stepovers and then died in the middle of a third
segment. Underlying these complications is the long repeat
times of large earthquakes– of order hundreds of years–
which make simple observational answers hard to find.
Despite the limited observations, current planning efforts
for future earthquakes revolve centrally around the concept
of fault segmentation, defining fault segments and then
relying on panels of experts to vote on which segments
they think might break separately or together [Working
Group on California Earthquake Probabilities, 2002].
Clearly, there is a need for more scientific understanding
of this problem.
[3] Improvements in our understanding of the physics

operating on various timescales has allowed improvements
on our ability to do time dependent hazard estimation
[Dieterich, 1994; Parsons et al., 2000]. On long timescales
used for planning and mitigation purposes (e.g., the 50 year
probabilities used in the national hazard maps), a critical
parameter affecting these hazard estimates is the coefficient

of variation of large event repeat times (the standard
deviation of the repeat times divided by the mean repeat
time). For large coefficients of variation there is little
change in the probabilities of large events occurring during
the earthquake cycle, and the time dependence of long term
probabilities become negligible. In contrast, for smaller
coefficients of variation, the distribution approaches a
periodic distribution, we have more pronounced changes
in the probabilities during the earthquake cycle, and the
potential of doing time dependent long term hazard estima-
tion becomes significant. What the appropriate value or
values of the coefficient of variation are for earthquakes
remains a hotly debated topic, with major implications for
earthquake predictability and hazard estimates [Working
Group on California Earthquake Probabilities, 2002;
Lindh, 2003].
[4] Fueling the controversy is the paucity of observational

data from which values can be obtained. Important con-
straints have been derived from direct observations of the
time intervals between the few areas with historical records
[Nishenko and Buland, 1987; Lindh, 2003; Sykes, 2003].
There are, however, a number of limitations with this
approach, including the small number of events in each
sequence, and thus the need to average over widely different
fault systems, and the long times between large events–
hundreds of years– which precludes much additional
improvements in the data.
[5] Other observational contributions have come from

paleoseismic trenches, which record sequences of ruptures
at individual points along a fault. Trenches, however, have
yielded only limited sequence lengths, and concerns about
missing events, which may be difficult to see or may have
ruptured nearby branches, further complicate these efforts.
For perhaps the best recorded site, where a remarkable
14 events have been dated at Wrightwood [Fumal et al.,
2002] a further issue complicates a simple interpretation of
the data: it has been argued that the site may be near an
overlap of large events rupturing to the north and to the
south, and thus the relatively large coefficient of variation
measured there is not typical of values along the length of
fault. With these observational limitations, and the difficulty
of obtaining further data, other approaches which can
contribute to this problem are obviously needed.
[6] Here, we present numerical results from a newly

developed model which generates long sequences of elasto-
dynamic events on complex fault systems [Shaw, 2004].
The model has a number of features which are important to
bring to bear on this problem. First, it self-consistently
generates a complex fault system geometry, through a
physical mechanism rather than being externally imposed.
This self-consistency is important in insuring strain is
compatibly accommodated in the long run over many
earthquake cycles. The self-consistency also reduces the
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number of things which must be specified, by allowing the
fault system to self-organize from a simple physics, here a
random strength heterogeneity combined with a long term
slip weakening. The complex geometry is important in the
ability to study the role of fault geometry in the problem,
particularly since fault segmentation is a foundation upon
which seismic hazard maps are based. Second, it self-
consistently generates sequences of elastodynamic events
on the fault system. The long sequences are critical here in
that the stresses left over by previous events form the setting
for subsequent events. The self-consistency and elastody-
namics are important in our ability to study the interaction
of geometry and dynamics and to simulate the cascading
ruptures seen, as studies of individual ruptures on segmented
faults have illuminated the critical role of the prestress in the
ability of ruptures to jump stepovers [Harris et al., 1991];
here the sequences generate their own distributions of
prestress. Finally, our ability to simulate long sequences
of events allows us not only to reach a representative
population of events, the attractor of the dynamics, but also
to examine statistical measures of the system over the
timescale of many many earthquake cycles, to thus elucidate
quantitative measures relating dynamics, geometry, and the
variation of large events.

2. The Model

[7] The model geometry is meant to capture the behavior
of an extensional fault system like the Basin and Range in
the Western U.S. The model consists of a scalar two

dimensional brittle upper layer coupled to a slowly stretch-
ing ductile substrate. When the stresses in the brittle layer
exceed the strength, dislocations occur. All of the non-
linearity in the problem comes from how the strength
evolves. It begins from some initial unbroken strength
having some overall value plus a spatially random compo-
nent. A long term geological slip weakening localizes the
slip onto faults and leads to a slow geological evolution of
the fault system [Spyropoulos et al., 2002]. Dynamic
weakening during slip events leads to sudden stick-slip
events. A variety of dynamic weakening mechanisms are
explored, including slip-weakening, velocity-weakening,
and time-weakening [Shaw, 1997; Shaw and Rice, 2000].
We explore a range of frictions because the frictional
behavior at seismic slip rates remains a fundamental open
question. The model, and the equations defining it have
been presented elsewhere [Shaw, 2004]; we include them
for completeness as auxiliary material1. Except where
noted, we use slip-weakening for the dynamic weakening.
Lengths in the problem are scaled to the seismogenic depth,
which has been scaled to unity.

3. Results

[8] Beginning from some stage in the slow geological
evolution of the fault system, we examine a long sequence
of elastodynamic ruptures. These ruptures display a rich

1Auxiliary material is available at ftp://ftp.agu.org/apend/gl/
2004GL019943.

Figure 1. Different measures of a long sequence of dynamic events on a complex fault system. The simulation was run so
that we have typically tens of large event cycles occurring on each fault. Axes are distances in units of the seismogenic layer
depth. a) Slip rate on faults, including all events large and small. b) Number of large events during which a point on fault
slips. c) Slip variation of large events. d) Time variation of large events.
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complexity of behaviors. Figure 1 shows a number of
different ways of looking at a catalogue of events which
have occurred on the fault system. Figure 1a shows with a
greyscale the slip rate on the faults. We see the major faults
most prominently in this view. We also see that the longest
faults tend to slip the fastest. Figure 1b shows the number of
times a part of the fault has slipped in a large event. This
highlights the most active areas, and also shows more of the
smaller fault segment features which, though slipping less
during large events, nevertheless do break during the large
events and help accommodate slip on the fault system.
Large events are defined by events which break a total
length of faults greater than the seismogenic depth of unity.
The numerous small events are not considered in the
statistical analysis in this paper so that we can focus on
the variation of large events. A segment here is defined as a
straight continuously broken length of fault; stepovers mark
places where segments link to form larger faults. In the
various plots which follow, tens of repeat times are used, so
small catalogue lengths are not an issue [Working Group
on California Earthquake Probabilities, 2002; Stein and
Newman, 2004].
[9] The final two panels show the core of this paper’s

results. Figure 1c shows the variation in slip of the large
events. We see a number of interesting things in this plot.
First, at least on the largest main segments, the larger
variation is tending to happen at the ends of the segments
relative to the middle (e.g., the fault centered near 3 in the
horizontal spanning around 32 to 43 in the vertical).
Second, the largest segments appear to typically have less
overall variability than the smaller segments.
[10] The final panel, Figure 1d, shows the variation in

recurrence time of the large events. Because of its central
significance in seismic hazard, this is the key measure. It is,
furthermore, illuminating of some interesting dynamics. In
Figure 1d we see both of the features mentioned regarding
Figure 1c, that the ends of the largest segments tend to be
more variable than the middles, and that the larger segments
are less variable.
[11] We can make all of these statements more quantita-

tive by averaging the variability over segments. To do this,
we first group segments of similar length. We then normal-
ize the horizontal axis by the segment length, and average
over the group of segments of similar length. In Figure 2 we
plot the results of the slip variation averaged in this way,

with thicker lines corresponding to longer segment lengths.
The main features mentioned before are clearly shown: for
the thickest lines indicating the longest segments, the
variation is larger at the ends compared to the middle, and
the average variation across the segment length of the
thickest lines is the lowest. An additional feature which
can be seen is a qualitative contrast of the smaller segments,
which actually show higher variability in their centers as
compared with their ends.
[12] Figure 3 shows the same averaging as in Figure 2,

only now with the time variation. As before, the ends of the
largest segments show higher variation than the centers, and
the largest segments have the lowest overall variation. We
also see here that the time variation is quantitatively
different than the slip variation, being in particular some-
what lower for the time versus slip variation. There is also
an interesting qualitative difference: whereas the slip vari-
ation has a spatial dependence along the segment length
which scales with the segment length, the time variation has
a spatial dependence along the segment length which scales
with the seismogenic depth elastic length. (The steepening
of the time variation near the segment ends for long
segments indicates this, and a plot similar to Figure 3 but

Figure 2. Slip variation along segments. Thicker lines
indicate longer segments. Length bins are between L = .33,
.56, .92, 1.5, 2.5, 4.1, 6.8, 11.2.

Figure 3. Time variation along segments. Thicker lines
indicate longer segments.

Figure 4. Average time variation and space variation as a
function of segment length, for different frictional instabil-
ities. Time variation is solid line, while slip variation is
dashed line. Thinnest lines are slip weakening, thickest lines
are velocity weakening, and intermediate thickness lines are
time weakening. Note for all frictional instabilities the time
variation is less than the slip variation for the longest
segments.
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with the horizontal axis unscaled by segment length shows
this most clearly). Thus the slip variation and time variation
are not simple proxies for each other.
[13] The last figure, Figure 4, shows averages of variation

as a function of segment length, for different frictional
instabilities. We average the information in Figures 2 and 3
along the segment lengths, and then plot the average
variation as a function of segment length. We do this on
the same fault system using three different frictional insta-
bilities, plotting the time variation with solid lines and the
slip variation with dotted lines. The thin lines show a slip
weakening friction, as was used in the previous figures. The
somewhat thicker lines show a time weakening friction. The
thickest lines show a velocity-weakening friction. For all of
the frictions, we see a maximum variability around the
elastic lengthscale of unity and a decrease in variability for
the longest segments. We also see that the slip variability is
larger than the time variability for the long segments. The
velocity weakening friction shows the highest variability,
followed, interestingly, by the time-weakening and then the
slip-weakening. Clearly, geometry and dynamics are both
playing a role in quantitatively determining the results.
Nevertheless, the common qualitative features we have
found allow us to extract useful information even in the
absence of a settled understanding of the friction on faults.

4. Implications

[14] The significant systematic effect we have seen in
large event variability along segments, and with segments
lengths has a number of important implications for seismic
hazard estimation. First, if the Wrightwood paleoseismic
trench is indeed near a segment boundary, the high values of
variation measured there may not be typical of other parts of
the San Andreas. A comparison with values more in the
center of segments would be extremely valuable. Second,
we find important differences between slip variation and
time variation, so slip variability is not a sufficient proxy for
time variability; it is, however, seen to bound the time
variability for the longest segments. Third, we find good
news for time dependent hazard estimation, in that the largest
segments and largest events appear to be the most regular.
More sophisticated hazard estimates could incorporate this
change in the time variability with event size. Finally, older
fault systems with smoother longer fault segments may

be more regular than younger fault systems; global data
averaging across varying faults [Nishenko and Buland,
1987] may need to take this into account.

[15] Acknowledgments. Ned Field and Seth Stein provided construc-
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Model Equations

The equations of motion we are solving are as follows. In
the 2D scalar bulk, we have

∂2u

∂t2
= ∇2u + (w − u)− η

∂u

∂t
+∇ ·M, (1)

where u is displacement, t is time, ∇2 = ∂2

∂x2 + ∂2

∂y2 is the
two-dimensional Laplace operator representing the horizon-
tal elastic coupling of the displacement field, and the w− u
term represents the vertical coupling to the lower ductile
layer. This layer is slowly stretched, loading the upper brit-
tle layer and moving as

w = νyt (2)

with ν ¿ 1. The dissipation constant η damps the waves,
and is used to mimic geometrical spreading effects which
are otherwise much weaker in our 2D model as compared to
3D. The final term is the body forces arising from the fault
dislocation openings M

M = δu

∣∣∣∣∣
Γ

. (3)

The boundary condition on the faults Γ are that the nor-
mal strain equals the traction

∇u· ⊥ Γ

∣∣∣∣∣
Γ

= φ. (4)

All of the nonlinearity in the problem is contained in the
friction φ, which has a stick-slip form, resisting motion up
to some threshold value, and acting against motion when
sliding occurs. We represent the stick-slip by

φ = Φ(
∂S

∂t′
, t′ ≤ t)H(

∂S

∂t
) (5)

where Φ is a scalar frictional strength, S = |M| is the slip
and ∂S/∂t is the slip rate on the fault, and H is the anti-
symmetric step function

H =

{
∂̂S
∂t

∂S
∂t
6= 0;

|H| < 1 ∂S
∂t

= 0.
(6)

which represents the stick-slip nature of the friction, being
multivalued at zero slip rate, and opposing motion in the
∂̂S
∂t

unit direction when slipping.
What remains a big open question for earthquakes, is

what is the frictional strength φ. While there are reasons

Copyright 2003 by the American Geophysical Union.
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for thinking we may have a pretty good handle on what is
happening at slow slip rates [Dieterich, 1994; Heslot et al.,
1994], at high slip rates things are extremely uncertain, and
many potential physical effects may be occurring, with sub-
stantially different implications for friction [Sibson, 1973;
Melosh, 1996; Rice, 1999; Tullis and Goldsby , 2003]. With
friction at high slip rates being an open question, we use
a friction which has a minimum of parameters, is computa-
tionally efficient, and spans a range of frictional instabilities,
including slip-, time-, and velocity- weakening [Shaw , 1995;
Shaw and Rice, 2000]. Specifically, we use a Φ which com-
bines long term geological strength ΦS which weakens with
accumulated geological slip [Spyropoulos et al., 2002] and a
dynamic strength ΦQ which weakens during events [Shaw ,
1997]

Φ = ΦS + ΦQ. (7)

The long term strength is given by

ΦS = Φ0 + ξ − βS

1 + aS
. (8)

Here Φ0 is a constant overall strength which is irrelevant to
the problem, ξ is a random variable of amplitude between
0 and ξ0, varying in space but fixed in time. This seeds
some initial random strength heterogeneity in the model.
Geological slip weakening occurs with the last term, which
is proportional to slip S with a constant β. β affects the
degree of localization in the problem, and therefore the re-
sulting fault geometry. For large Φ0, we can operate in a
regime where the saturating term a is small and irrelevant.
The brittle strain excess ε ≡ (νt−Φ0)/ξ0 gives the relevant
strain [Spyropoulos et al., 2002].

For the dynamic strength weakening, we consider three
terms

ΦQ = − αQ

1 + αQ
− Σt − ε∇2

||
∂S

∂t
(9)

The first term, which is a function of heat Q, models fric-
tional weakening from frictional heating; pore fluid effects
[Sibson, 1973; Lachenbruch, 1980; Shaw , 1995] and flash
heating of asperities [Rice, 1999] are two potentially rel-
evant physical mechanisms which this simplified quantifi-
cation could represent. The weakening rate constant α is
a critical parameter in many aspects of the dynamics, al-
though the results we present here are mainly insensitive
to it. Heat accumulates with slip rate, and dissipates over
some timescale 1/γ:

∂Q

∂t
= −γQ + |∂S

∂t
|. (10)

Slip weakening results from γ ¿ 1, while velocity weakening
results from γ À 1 [Shaw , 1995; Shaw and Rice, 2000].

The second term in Equation (9)

Σt =

{
σ0

t−ts
t0

t− ts < t0;

σ0 t− ts ≥ t0.
(11)

is a nucleation term, which we make a big simplification of
and consider as a time weakening term, which weakens with
time t over a timescale t0 since beginning slipping at ts and
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restrengthens when resticking occurs. Th is allows for a huge
numerical speedup compared with more expensive rate and
state formulations, and the study of time weakening friction
as well.

The last term ε∇2
||

∂S
∂t

, with ε a small constant and ∇2
||

the fault parallel second derivative, provides stability at
the shortest wavelengths [Langer and Nakanishi , 1993; Shaw
and Rice, 2000].

For numerical simplicity, we restrict the faults segments
Γ to be perpendicular to the stretching direction y. We also
discretize the equations onto a rectangular grid, and use
a second order finite difference approximation of the con-
tinuum equations. The numerical scheme proceeds by first
evolving the fault system quasistatically, taking advantage
of the dependence of the fault system evolution on the total
slip, rather than slip increments, on the faults. Once a de-
sired total strain is reached, the system is switched to elasto-
dynamic mode. The system is loaded until one point is just
at the point of failure. The event evolves then under fully
inertial dynamics. Once the event has stopped slipping, the
waves are quenched in the system, and the system is then
reloaded until the next point is just at failure. Parameters
used in the simulations shown, unless otherwise indicated,
are: fault parameters β = 1.4, ε = 1.0; domain parameters
δx = .125, δy = .125, Lx = 84, Ly = 12; bulk parameter
η = .3; friction parameters α = 3, γ = .1, σ0 = .3, t0 = .2,
ε = .003 .

References

Dieterich, J. H., A constitutive law for the rate of earthquake pro-
duction and its application to earthquake clustering, J. Geo-

phys. Res., 99 , 2601, 1994.

Heslot, F., T. Baumberger, B. Perrin, B. Caroli, and C. Caroli,
Creep, stick-slip, and dry-friction dynamics– experiments and
a heuristic model, Phys. Rev. E , 49 , 4973, 1994.

Lachenbruch, A., Frictional heating, fluid pressure, and the resis-
tance to fault motion, J. Geophys. Res., 85 , 6097, 1980.

Langer, J. S., and H. Nakanishi, Models of rupture propagation
ii: Two dimensional model with dissipation on the fracture
surface, Phys. Rev. E , 48 , 439, 1993.

Melosh, H. J., Dynamical weakening of faults by acoustic fluidiza-
tion, Nature, 379 , 601, 1996.

Rice, J. R., Flash heating at asperity contacts and rate-dependent
friction, Eos Tran. AGU , 80 , Abstract F681, 1999.

Shaw, B. E., Frictional weakening and slip complexity on earth-
quake faults, J. Geophys. Res., 100 , 18,239, 1995.

Shaw, B. E., Modelquake in the two dimensional wave equation,
J. Geophys. Res., 102 , 27,367, 1997.

Shaw, B. E., and J. R. Rice, Existence of continuum complexity
in the elastodynamics of repeated fault ruptures, J. Geophys.
Res., 105 , 23,791, 2000.

Sibson, R. H., Interactions between temperature and pore fluid
pressure during earthquake faulting and a mechanism for par-
tial or total stress relief, Nature Phys. Sci., 243 , 66, 1973.

Spyropoulos, C., C. H. Scholz, and B. E. Shaw, Transition regimes
for growing crack populations, Phys. Rev. E , 65 , 056,105,
2002.

Tullis, T. E., and D. L. Goldsby, Flash melting of crustal rocks
at almost seismic slip rates, Eos Tran. AGU , 84 , Abstract
S51B–05, 2003.

B. E. Shaw, Lamont-Doherty Earth Observatory, Palisades,
NY 10964. (e-mail: shaw@ldeo.columbia.edu)

(Received .)


