
Surface-Slip Gradients of Large Earthquakes

by Bruce E. Shaw

Abstract For earthquakes that are large enough to break the earth’s surface, slip
can be measured directly, providing model-independent information of spatially vary-
ing behavior in earthquakes. Here new techniques are developed and applied to extract
robust measures of surface slip. In particular, I examine how differences in slip scale
with differences in separation. Examining slip distributions of seven large earthquakes
in a digital database, I find that the curves collapse into a common behavior over
kilometer to tens-of-kilometer length scales. Distributions of differences of slip are
found to be reasonably well fit by normal distributions, with the variance of the dis-
tributions scaling with separation distance. In particular, average slip differences are
seen to be increasing linearly out to length scales of the seismogenic crust, but with a
nonzero intercept when extrapolated back to a zero separation of around 1 m offset.
The variability of slip extrapolated to zero separation, the mean offset, of around 1 m
(:96� :15 m) is a remarkable feature of the observations, holding for all seven of the
large earthquakes analyzed. Leaving aside the offset and looking at the increase as a
function of separation, the slope or lateral strain has a value consistent with large scale
average strains. Thus, behavior consistent with constant stress drop is seen at length
scales smaller than the event size, revealing a further invariant of earthquake dy-
namics. Finally, taking into account the noisy environment by looking for coherent
structures unlikely to be noise related, I find structures which have moderate values of
lateral strains, on the order of a factor of 10 times mean values, with values appearing
to be independent of length scale and magnitude.

Introduction

The deep depths where earthquakes initiate and the short
unforeseen times over which they occur leave much of the
information we have about them remote and underdeter-
mined. In the case of large earthquakes which break the
surface, however, geological observations of offsets across
faults provide direct measurements of surface slip that are in-
dependent of any modeling assumptions. As such, these slip
measurements provide a particularly valuable view of earth-
quake behaviors. Geologists have long recognized the impor-
tance of these measurements, and have expended great effort
in collecting the data using a variety of markers. The collected
surface-slip data have been used in a number of ways. Most
commonly, it is used to anchor our views of individual events,
providing ground truth against which geodetic and seismolo-
gical measurements are compared. Average properties of sur-
face slip have also been used to look at scaling laws (Scholz,
1982; Romanowicz, 1992, 1994; Scholz, 1994; Wells and
Coppersmith, 1994; Bodin and Brune, 1996; Shaw and
Scholz, 2001; Manighetti et al., 2007; Wesnousky, 2008)
and to find mean profiles of slip (Biasi and Weldon, 2006)
and to categorize shapes of slip (Manighetti et al., 2005;Wes-
nousky, 2008). Properties of the distributions of surface-slip
values averaging over position along-strike have also been

measured for use in paleoseismic inferences of event magni-
tudes (Hemphill-Haley and Weldon, 1999).

Here, I take a new approach, examining statistical prop-
erties of the fluctuations in surface slip to try to extract useful
information about earthquake ruptures. This approach is
made difficult by large variability in individual surface-slip
measurements along-strike. There are many potential factors
contributing to the variability of slip along-strike; which fac-
tor or factors are most important remains an open question.
Inelastic surface deformation in unconsolidated surface
materials, secondary strands which distribute slip onto multi-
ple surfaces, nonplanar geometry leading to mixed-mode
variable oblique slip, and measurement uncertainties are
some of the potential factors. Different surface conditions,
such as water table and sedimentary consolidation and
depths, may lead to different relative contributions of each
of these factors. The analysis will not be able to disentangle
what factors are ultimately contributing to the observed
variability. It will, however, give a much better handle on
what the variability is, an outcome that could aid future
efforts in pinning down the sources of variability, and a result
which is taken advantage of here to find further underlying
systematics in the data.
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This paper focuses on one measure of surface slip, the
difference in surface slip as a function of distance between
points. This quantity has a number of advantages. First, it is
not sensitive to incompleteness in the observations: it can be
made even when only some parts of a fault have measured
offsets. Second, it has dimensions of strain and thus directly
maps onto quantities of physical significance and interest.
Third, because average stress drops, or similarly, strain
drops, have been observed to be scale invariant across the
whole range of earthquake sizes (Aki, 1972; Hanks, 1977;
Shaw, 2009), one may expect that statistical measures of
smaller scale features of this quantity may be of further
significance. Finally, because the statistics of pairs of points
are examined, a large ensemble is obtained when the number
of slip measurements N is large, with the number of pairs
scaling as N2=2.

Data and Analysis

Extracting strain by differencing slip just at neighboring
points gives hugely variable results and is not robust to noise.
Slip can differ by substantial amounts at closely spaced
points at the surface by meters of slip over even separations
of tens of meters in extremely well-controlled settings (Rock-
well et al., 2002). With such large differences in slip, inferred
strains are then more a function of separation of measure-
ment locations than slip differences. Moreover, such large
strains would shatter rocks, so they must be accommodated
in unconsolidated materials in the near surface. How does
one then see through these shallow layers and these appar-
ently noisy measurements? Here, the power of statistical
measures enables the extraction of a signal. By looking at
how populations of slip differences change as separation
changes, we can see through these noisy signals to find
underlying trends.

To quantify slip gradients, I look at differences in slip S
as a function of separation j~ri � ~rjj along the fault where ~ri
and ~rj are two different positions along the fault rupture. The
interest is in average behavior:

hjS�~ri� � S�~rj�jii>j � f�j~ri � ~rjj�; (1)

and also distributions of the values as a function of separa-
tion. At constant strain, these distributions should grow lin-
early with separation. What do the earthquake data show?

The slip data I use come from data compiled by Wes-
nousky (2008) and included in the electronic supplement to
that paper. This data set is further restricted by considering
only events with magnitude 7 or larger that occurred in the
last 50 yr and that had at least 40 measured surface-slip
values. This restriction leaves seven events: surface slips that
are shown in Figure 1. Slip values in the database do not
comewith uncertainties. A strength of the analysis developed
is that it will enable the derivation of effective uncertainties
from the data. I perform the following analysis on the data. I
form differences in slip and distance between all pairs of

points. To look for invariant features, attention is focused
on length scales smaller than the event scale, focusing in par-
ticular on the separations of 20 km or less, to represent
lengths equal to and smaller than the seismogenic crust.

Next, robust statistical measures of this ensemble are
sought. I begin by using rank ordering to group points to
avoid introducing intrinsic scales into the problem. Pairwise
separation distances between point measurements are taken
rij � j~ri � ~rjj for i > j and rank ordered, from the closest to
furthest distance. Then, going from the closest separation
pairs to the farthest, the data are divided into nonoverlapping
subsets of n points each. Rank ordering of each subset of n
points ordered from the smallest difference in slip to the
largest difference in slip is then done.

Figure 2 illustrates this rank ordering procedure, in dar-
kening shades by groups and, here, using n � 128. In this
figure, the bottom half of each group is shown in the lightest
shade, the next quarter is shown in a darker shade, the next
eighth is shown in yet a darker shade, the next sixteenth is
shown in an even darker shade, and the rest are shown in the
darkest shade. One significant feature of the data is that for
the larger groups above the median, the shades above the
lightest shade, when extrapolating back to a separation
r � 0, one sees that the data have a nonzero slip difference.
On reflection, this is not too surprising given that there are
measurement errors and uncertainties in the individual data
points. Some of this uncertainty is measurement uncertainty,
some of this is other physical factors. I will not be able to
separate out the different uncertainties here, but rather seek
to quantify the variability and extract a signal which is not
swamped by it.

Rank ordering makes clear that slip differences increase
with increasing separation for almost all of the curves, as
indicated by the upward trend of the rank-ordered groups.
To quantify the dependence as a function of separation,
the points are grouped into linear width bins. Points between
separations r and r� dr (width dr � 2 km here) are
grouped, and the average values are plotted as a function
of the middle of the bin separations. The average properties
can be measured without assuming anything about the under-
lying distributions. Figure 3a shows the average difference in
slip as a function of separation for all the events. Figure 3b
shows the standard deviation as a function of separation.
They are obviously closely related, so Figure 3c shows
the ratios of the average to the standard deviation. On the
same plot, a thin dashed black line shows the ratio of
these two quantities for a normal distribution, which is��������
2=π

p ≈ :797. For comparison, tick marks are also shown
for an exponential distribution, which has a heavier tail (re-
latively more extreme values) than a normal distribution (and
has an average to standard deviation ratio of 1=

���
2

p ≈ :707),
and for a boxcar function (flat out to a maximum value, then
zero after that), which has a minimal tail (and has an average
to standard deviation ratio of

���
3

p
=2≈ :866). The normal dis-

tribution value is unambiguously a much better fit. The good
fit of the normal distribution value to the average behavior
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raises the question of what the underlying distributions are, a
question which will be returned to shortly. But for now, let
us continue our examination of these average behaviors,
looking for systematics in them.

There are a number of interesting things to say about
Figure 3. First, and very significantly, there is quite a good
collapse of the data, with all of the curves being remarkably
close to one another, certainly within a factor of 2. Second,
there is an approximately linear trend in the difference in slip
with increasing separation. Third, this linear trend has a non-
zero offset, with a value of around 1mwhen extrapolated back
to zero separation. Not taking this offset into account would

wreak havoc on interpretations of strain at small distances,
giving strain diverging as the inverse of the separation for con-
stant difference in slip. A number of factors go into creating
this offset, and I will not be able to disentangle them here.
Nevertheless, the near constant offset value of around 1 m
for all events is remarkable. There are a number of possible
sources of this uncertainty; again, resolving which ones might
be relevant are beyond the scope of this work. One possibility
is intrinsic uncertainties in the slip measurements. Klinger
et al. (2005) give an error estimate of 1 m in the optical ima-
ging technique used in their measurements of the Kunlun
earthquake, which forms a basis of the data for that earthquake
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Figure 1. Surface slip data for largeM > 7 earthquakes, from data compiled by Wesnousky (2008; see the Data and Resources section).
All M > 7 events in the data set occurring in the last half century with N > 40 data points are shown and used in the following analysis.
Points outlined in a lighter shade highlight coherent structures of a long stretch of sequentially increasing or sequentially decreasing slip, a
subject discussed later in the paper. Original sources for the earthquakes shown here are as follows: 2001M 7.8 Kunlun (Lin et al. 2002; Xu
et al., 2002; Klinger et al., 2005, 2006); 2002 M 7.9 Denali (Haeussler et al., 2004); 1992 M 7.3 Landers (Sieh et al. 1993); 1999 M 7.1
Hector Mine (Treiman et al., 2002); 1999 M 7.2 Duzce (Akyuz et al., 2002); 1999 M 7.6 Izmit (Barka et al. 2002); 1990 M 7.7 Luzon
(Nakata, 1990; Yomogida and Nakata, 1994). The color version of this figure is available only in the electronic edition.
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in the Wesnousky (2008) data set (see Data and Resources
section). Another possibility is something physical. Nonpla-
nar geometry effects would be an example of this. Another
possibility might perhaps be measurement biases, whereby,
during allocation of finite and precious fieldwork time, values
where slip has changed sufficiently are given higher priority
than values where slip has not changed. Again, there is not
enough information here to disentangle the wide range of
possibilities, and so I will continue by working around it.

Figure 4 shows the results of linear fits to the average
slip difference curves in Figure 3a, showing offsets in
Figure 4a and slopes in Figure 4b. The offsets give quite
surprisingly stable values of around 1 m (:96� :15 m mean
value after correcting for bin width). The slopes are substan-
tially noisier though, with deviations of a factor of 2 on either
side of the mean (:48� :25 × 10�4). The Denali event also
seems to have a noticeably smaller slope than the other
events. Given the noise and sparse data and limited magni-
tude range, it is difficult to say anything about any trends in

the data. The mean value of the slopes, :5 × 10�4, however, is
quite interesting, being comparable to those mean values
implied by constant stress drop and thus constant strain drop
scaling for average large-scale behavior. That is, for stress
drops of 3 MPa seen for small and large events, dividing
by typical rock modulus values gives strain drops of
3 MPa=30 GPa ∼ 10�4. (Here the slopes at the surface are
compared to mean values at depth, presuming that the slopes,
unlike the offsets, are representative of deeper rock behav-
ior.) Seeing comparable values at scales on the order of
kilometers to tens of kilometers indicates yet a further
invariance of earthquakes, with constant stress drop scaling
holding not only at the scale of events, but at length scales far
below the event scale within events.

Distribution of Slip Differences

Earlier we saw that for a variety of average measures of
differences in slip at different separations, the ratios seemed to
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Figure 2. Differences of slip for all pairs of points separated by a distance less than 20 km. Differences in slip appear in darkening shades
by rank order groups, as discussed in the Data Analysis section, with darker shades as higher ranking differences. The color version of this
figure is available only in the electronic edition.

Surface-Slip Gradients of Large Earthquakes 795



be well fit by values expected if the underlying distributions
were normal. Howwell do normal distributions fit not just the
low-order averages but also the full underlying distributions?
A Lillie test shows that a quarter of the 70 distributions
(10 bins times seven events) are rejected at the 5% confidence
limit as being generated by a normal distribution. This factor
of 5 enhanced rejection rate indicates that a normal distribu-
tion is not a perfect fit, but the 75%pass rate also indicates that
it is not a bad fit either. Given that there are some differences,
we would like to know in what ways the distributions differ
from normal distributions. Are the differences in the tails, or
are they somewhere else? Before, we looked at ratios of

low-order moments of the distributions, specifically in
Figure 3c, the ratio of the first moment and the square root
of the second moment. Generalizing this approach, we can
look at the ratios of higher- and lower-order moments to probe
the larger or smaller values. Defining

Λη ≡ �R yηp�y�dy�1=ηR
yp�y�dy ; (2)

I plot this ratio of themoments as a function of the exponent η.
To orient what we are looking at, with this ratio, Λη will be
larger than for a normal distribution when η > 1 if the
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Figure 3. Averaging over slip differences as a function of separation. The different shades of curves are for each different earthquake,
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separation distance, which is 5 km less than half of the event length, to avoid finite size effects; thus, the two shortest events truncate before
20 km. The color version of this figure is available only in the electronic edition.
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Figure 4. Linear fit to mean slip difference versus separation from Figure 3a. (a) Zero offset versus magnitude of the event. (b) Slope
versus magnitude of the event. The color version of this figure is available only in the electronic edition.
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distribution of observations has a heavier tail (more extreme
values) than the normal distribution predicts. Figure 5 shows
this plot for each of the bins in all the events, shading the bins
by the separation (the darkest is close in, the lightest is farther
away). Right away, two things can be seen. First, relative to a
normal distribution (the thick dashed black line), there is a
slight bias below the line at large η, more towards the boxcar
function minimal tail (lower black dotted line) than the
exponential function heavier tail (upper black dotted line).
Thus, relative to a normal distribution, there is, slightly, an
even sharper cutoff in the tails at the more extreme values.
Second, there is a distance dependence to the bias, with closer
separations having heavier tails than farther separations, the
darkest curves tending to be slightly above the lightest ones at
large η. These deviations can be interpreted as a consequence
of having an absolute cutoff in what the differences can be,
given by the maximum slip. This maximum slip cuts off
the tails at higher separations, and, when present at shorter
separations, contributes to heavier tails than a normal distri-
bution of fluctuations would suggest.

Further details of the distributions of individual events
affirm what has been seen in these averages of moments.
Figure 6 shows how each of the bins’ distributions deviate
from what one would expect from a normal distribution,
illustrated by plotting the cumulative distribution of differ-
ences with a nonlinear axis. (Here, unlike equation (1),
i ≠ j is considered, and the sign of the difference in slip

is included, giving an overall antisymmetric shape to the
curves, to best view any deviation from normal distribu-
tions.) Curvature towards the vertical on these plots indicates
lighter tails than a normal distribution, while curvature
towards the horizontal indicates heavier tails. The slight
tendency to curvature towards the vertical is evident in these
plots.

All this focus on deviations from normal distribution
behavior should not distract one from a central point,
illustrated well by Figure 3: the average behavior is well fit
by the average behavior of normal distributions. To the extent
that small deviations from normal distribution behavior are
found, the small deviations are found in the tails, with biases
towards tails which fall off even more steeply than normal
distributions, and this effect becomes more pronounced at
larger separations.

Modeling the Behavior

To confirm understandings of the measurements and the
constraints they place, I examine the results of applying the
data analysis techniques to synthetic slip data. The first test is
to apply uncorrelated random slip noise to the real data to
show that the results are not sensitive to noise in the data
and also to show that the input noise maps correctly onto the
offset as expected. Figure 7 shows the ensemble for added
slipΔS chosen as the absolute values of normally distributed
random slip with standard deviation ξ, with ξ � 0, 1, and
2 m, respectively, in the panels. Robust behavior for added
noise is seen, and it is mapping onto the offset, as expected.

How do synthetic slip functions compare with the data?
Figure 8 shows various input slip functions. Figure 8a
shows the results of the real data, for comparison with the
synthetic distributions that follow. Figure 8b shows a trian-
gle. Figure 8c shows a square root of sine function, based on
a fit of stacked average slip data (Biasi and Weldon, 2006).
Figure 8d shows a stepped increase in slip, based on a model
of the Denali event (Haeussler et al., 2004). Figure 8e shows
a spectrally rough model, using a power law spectrally
weighted k�p with p � 2:2 (Helmstetter and Shaw, 2006).
Figure 8f shows a modified Wiener process model (cumula-
tive normally distributed noise detrended and absolute value
so it is nonnegative everywhere). All contain, in addition to
these correlated slip functions, an additional amount of un-
correlated slip noise. Using the same fitting procedure as was
done with the real data, the average, standard deviation, and
ratio of the standard deviation to the average are plotted.

By studying different noise amplitudes and different
underlying slip distribution amplitudes, one learns that the
amplitude of the noise at small separations and the average
slip gradients at seismogenic depth scale separations together
combine to create the dominant signal. Unfortunately,
smaller scale features seem swamped by the noise. Thus. the
measures studied have some discriminating power but, not
surprisingly, not complete discriminating power.
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Figure 5. Ratio of moments to mean, as in equation (2). Shad-
ing is for different separation bins, with the darker shades being the
closest and the lighter shades being the farthest. Results for all seven
large earthquakes are superposed. The central thick dashed line
shows the curve corresponding to a normal distribution. The top
dotted line shows the curve corresponding to a heavier tailed expo-
nential distribution. The bottom dotted line shows the curve corre-
sponding to a lighter tailed boxcar function distribution. Note the
slight progression from heavier tails to lighter tails for increasing
separation, indicated by the darker curves tending to lie above
the lighter curves. This is consistent with a slight upward trend
in the ratio of the mean to the standard deviation shown in Figure 3c.
The color version of this figure is available only in the electronic
edition.
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The small mean slope seen in Denali can be reproduced
by the two models, the stepping model in Figure 8d and the
square root of sine in Figure 8c, where increases are concen-
trated over narrow regions, and typical differences are not
changing much with separation. The other models with
larger coherent changes on seismogenic crust depth scales
and below better fit the other moderate mean slope events,
so having more broadly distributed changes in slip rather
than just concentrated changes in slip best fits most of the
events. The triangle model, Figure 8b, fails in fitting any of
the event data well due to the poor fit of the slip differences at
larger separations to a normal distribution, evidenced by the
too-fast growth in the mean-to-standard-deviation ratio at
large separations. Thus, the two models which best fit most
of the events are the two variable slip models; the spectrally

rough model, Figure 8e; and the modified Wiener process
model, Figure 8f.

The modeling shows that local behavior at the seismo-
genic crust depth scales and below are indeed mapping onto
the signal seen at these scales. The modeling affirms that
noise is a substantial part, but certainly not all, of the signal.
Noise alone would give a flat curve with no upward trend,
which is obviously inconsistent with the data. On the other
hand, ignoring the noise leads to obvious inconsistencies at
zero separation with insufficient offset there. Thus, the data
consist of noise and some underlying signal. My analysis
helps to quantify aspects of both of these features. As
Figure 8 illustrates, a noise of around ξ � 1:25 m, having
a mean offset of around 1 m, gives a good fit of the synthetic
data to the observations.
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Figure 6. Cumulative pdf fit of normal distribution to the sets of data in each 2 km bin. The general lack of curvature in the vast majority
of the curves indicates that a normal distribution is generally a good fit to the data. Dashed lines show linear fit to each bin. The slight
curvature towards the vertical, as opposed to the horizontal, indicates that the slight deviations from normal distributions that do exist tend to
have lighter tails (less extreme values) than normal distributions (as opposed to heavier tails indicated by curvature towards the horizontal).
The color version of this figure is available only in the electronic edition.
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Coherent Structures

Having better understood the noisy environment of the
measurements, I turn to an alternative way of looking at the
data, seeking coherent structures that are unlikely to be noise
dominated.

In an environment swamped by uncorrelated noise, slip
increases are just as likely to be followed by slip decreases.
Finding a long sequence of slip changes all of the same sign
means that these are unlikely to be caused by noise. Indeed,
for a sequence of n changes of the same sign, the probability

of it being caused by uncorrelated noise is 2�n�1. Selecting
sequences with n ≥ 5, the vast majority of these will reflect
underlying coherent processes (only 1=16 or less of the
curves should have occurred by chance). The selection
process will necessarily miss many if not most structures.
The idea is that hopefully, the structures it does detect will
be representative of some features of the underlying coherent
processes. As will be seen, this hope appears to be realized.

Here, because what is being done is not a statistical
analysis and because we are looking for potential magnitude
dependence, the criteria used in the previous section are
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Figure 7. Robustness of measures with respect to adding noise to the real data, showing that added noise is mapping onto measures as
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Figure 8. Comparison of real data with synthetic model slips. Synthetic slip functions include the uncorrelated slip noise component
added to the base correlated slip. The uncorrelated noise has mean amplitude 1 m in the model cases shown. For each type of model slip,
seven examples are calculated because that is the sample size for the real data, with one example from the seven plotted on the left to illustrate
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relaxed, and additional events from the database are included
in the search. I searched for additional events from the
database by dropping the magnitude and minimum number
of slip measurement requirements. This led to a dozen extra
events being searched. From the approximately 20 events
searched in the database, 13 coherent structures were found
from seven different events (the events in which structures
were found were 2001 M 7.8 Kunlun, 1992 M 7.3 Landers,
1999 M 7.2 Duzce, 1954 M 6.8 Dixie Valley, 1988 M 6.6
Tennant Creek, 1968 M 6.5 Borrego Mountain, 1986 M 5.9
Marryat Creek). Figure 9 shows events not already shown
in Figure 1 that were found to have coherent structures
(sequences of slip values meeting the criteria of being
sequentially increasing or sequentially decreasing for n ≥ 5

points, highlighted in Figures 1 and 9 with lighter shade). Of
the additional events in which coherent structures were found
that were not previously analyzed, shown in Figure 9, three
of the four are thrust and normal faulting events (Dixie
Valley, normal; Tennant Creek and Marryat Creek, thrust),
unlike the exclusively strike-slip events considered in
Figure 1. In the case of Tennant Creek and Marryat Creek,
the data are for vertical scarp height, which is not the same as

net surface slip on dipping faults. To compare these two
cases against the others in terms of slip and slip gradients,
the dip of the faults (45° for Tennant Creek, 35° for Marryat
Creek) is accounted for, with the scarp height values multi-
plied by the inverse sine of these angles to get downdip slip
and the corrected downdip slip values used in the figures that
follow, which combine the different events. Extending the
analysis to these other types of events helps to extend the
magnitude range over which scaling effects can be looked
for. As will be seen, they do not appear to show obvious
differences with the large strike-slip events from Figure 1
in terms of coherent structures. Thus, they are included in
the analysis that follows. Regarding the representativeness
of the coherent structures that are detected by the criteria
specified, looking at the plots, the highlighted stretches do
not seem particularly special and by eye, seem to represent
typical behaviors of high sloping regions in other areas,
which happen not to have long sequential stretches.

Figure 10 shows, superposed on common axes, the
coherent structures found. Examining the plot, I find that
the relatively low scatter of the slip around average slope
profiles indicates that the procedure is picking up mostly
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Figure 9. Surface-slip data for earthquakes that have coherent structures and are not already shown in Figure 1. Coherent structures are
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coherent signals. As a further test that the analysis is indeed
picking up relevant structures and not just statistical noise, I
repeated the measurements for the case where a large-
amplitude uncorrelated noise was added to all the slip mea-
surements. An ensemble of noise measurements showed that
on average only around one structure was found in these
uncorrelated noise dominated cases, in contrast with the 13
structures found here. Thus, the great majority of the detected
structures are indeed not just noise.

Figure 11 shows fits to the slip gradients as a function of
two features of the slip structures: in Figure 11a, scale length
over which the structure occurred and in Figure 11b, mag-
nitude of the event the coherent structure. In both cases,
importantly, there is a lack of any obvious trend. That is,
coherent surface-slip strain values appear to be independent
of length scale and also independent of event magnitude.

The strain values seen are, interestingly, not very big.
They are significantly larger than the average lateral strain
values seen in the previous analysis, but that is not surprising
given that we are selecting for regions which stand out above
the noise in the system. Interestingly, they are about a factor
of 10 larger than the average behavior found in the statistical
analysis but remain modest in terms of absolute value: earth-
quakes generally appear not to change their underlying slip
very suddenly.

Conclusions

I have developed a new way of statistically analyzing
surface-slip measurements to examine surface-slip gradients
in large earthquakes. A good collapse of the data is found,
with scatter around the median of less than a factor of 2 and
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common behavior over kilometer to tens-of-kilometer length
scales, suggesting that this is a useful projection of the data.

I have found distributions of differences of slip to be
reasonably well fit by normal distributions, with the standard
deviation in the normal distributions growing linearly with
distance. Mean measurement differences trend consistently
to an offset extrapolated back to zero separation of around
1 m. A fundamental open question is to ask what the source
of this zero-separation offset is. Is it measurement noise,
effects of the near-surface nonlinear unconsolidated sedi-
ment behavior, nonplanar geometry effects, interesting
source effects? This analysis does not answer these ques-
tions, but it is hoped that the work quantifying this noise term
stimulates further progress on these questions. Fortunately,
the future holds further promise in getting at these issues
through hugely improved data. Specifically, the B4 LiDAR
(light detection and ranging) mapping of faults (Hudnut et al.,
2002), when combined with a future B5 picture after large
surface rupturing events, should produce unprecedented
density and accuracy of slip data. Such data, when analyzed
in the manner outlined in this paper, should help tremen-
dously in identifying the sources of, and perhaps reducing
significantly, the variability in slip. Extending this analysis
to such a data set would be tremendously exciting.

Developing a better understanding of the noise inherent
in the signals has enabled the extraction of interesting
measures of the underlying signal. Subtracting the zero
offset, average lateral surface strains at kilometer to tens-of-
kilometer length scales were found to be comparable to aver-
age strain drops at the event scale. This extends previous
observations of constant stress drop scaling at the scale of
events across populations of events at very different length
scales (Aki, 1972; Hanks, 1977; Shaw, 2009) into a whole
new regime, with now-constant stress drop scaling observed
within events at length scales smaller than the event scale,
revealing a further symmetry of earthquake dynamics.

Analyzing the data beyond statistical measures but
remaining cognizant of the noise, I looked for coherent struc-
tures in the slip gradients. By examining long sequences of
increasing or sequences of decreasing measurements unlike-
ly to be caused by noise, a set of slip gradients were found in
the surface data. These coherent structures were found to
have moderate strain values, not surprisingly larger than
average values (they were, after all, selected to stand out
above the noise). The values found, on the order of a factor
10 times the average measurements, were interesting in a
number of ways. First, they were not all that large, suggest-
ing earthquakes generally do not change their underlying slip
very suddenly. Second, neither a length scale nor a magni-
tude dependence was seen in the values, indicating potential
scale invariant behavior in the coherent structures.

Looking ahead, these statistical and coherent structure
analyses of surface-slip data would all benefit from denser
measurement, and better quantifications of uncertainties in
the measurements. This is a tremendously important window
into earthquake source behavior, and there is no doubt

more to be learned from analyzing these sub-event-scale
observations. I eagerly await a B4–B5 event.

Data and Resources

Slip data are taken from an extensive list of primary data
compiled byWesnousky (2008) from a wide range of sources
and included in the electronic supplement to that paper.
References to the original sources of data are listed in the
captions of Figures 1 and 9.
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