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Earthquake Surface Slip-Length Data is Fit by Constant

Stress Drop and is Useful for Seismic Hazard Analysis

by Bruce E. Shaw

Abstract We present a newmethod to use directly observable surface-slip measure-
ments in seismic hazard estimates. We present measures of scaling-relation fits to slip-
length data. These fits show sublinear scaling, a slowing in the rate of slip increase for
the longest ruptures, so thatL scaling—scalingwith the length of the rupture—does not
hold out to very large aspect ratio events. We find the best fitting for a constant stress-
drop model, followed next by a square root of length model. The constant stress-drop
model, newly introduced here, provides a geometrical explanation for a long-standing
puzzle of why slip only begins to saturate at large aspect ratios. The good fit of the
constant stress-drop model to the slip-length data lends further support to the observa-
tions of constant stress-drop scaling across the whole range of magnitudes of earth-
quakes, from small to great earthquakes. The good fit of the constant stress-drop
model is also reflected by the low variability about the mean, with an average of less
than a factor-of-2 variability in stress drop about the mean observed. Converting
magnitude-area scaling into implied slip-length scaling, we determine qualitative con-
sistency in the functional forms, but a quantitative difference of, on average, ∼30%
more slip estimated from magnitude area compared with slip length.

Online Material: Tables of magnitude-length-width, magnitude-area, and surface
slip-length relations.

Introduction

For more than a quarter of a century since Scholz (1982)
pointed out the surprising observation that the slip of large
earthquakes continued to increase for lengths far beyond the
seismogenic depth, scientists have sought an explanation for
this puzzling observation. Awide range of possibilities have
been proposed, including the theories that slip might be pen-
etrating deep below the seismogenic zone during very large
ruptures (Das, 1982; King and Wesnousky, 2007; Hillers and
Wesnousky, 2008; Shaw and Wesnousky, 2008); that multi-
ple faults length scales may be playing a role (Manighetti
et al., 2007); that large slips in the initiation of ruptures are
leading to larger-scale ruptures (Bodin and Brune, 1996);
and that large earthquakes are somehow different than small
ones, with a breakdown of the constant stress-drop scaling
observed in small earthquakes (Hanks, 1977) implied in a
variety of proposed empirical relations (Wells and Copper-
smith, 1994; Working Group on California Earthquake Prob-
abilities, WGCEP, 2003 [WGCEP03]; Hanks and Bakun,
2008). These questions have important implications for the
physics of earthquakes and for society, since scaling relations
play a central role in current seismic hazard estimates
(WGCEP, 2008). Current seismic hazard estimates have
favored empirical scaling relations which infer a breakdown

in constant stress-drop scaling, with increasing stress drops
for the largest earthquakes (Wells and Coppersmith, 1994;
WGCEP, 2003; Hanks and Bakun, 2008). However, this has
led to a conundrum, with inconsistencies arising in attempts
to reproduce empirical ground-motion relations using param-
eterized kinematic ruptures (Graves et al., 2011). Clearly, a
better understanding is needed.

Here, we show that a very simple explanation, based on
the geometrical implications of the transition from small,
circular ruptures to large, long, rectangular ruptures offers a
scaling relation that (1) matches well observed data of sur-
face slip versus rupture length, (2) gives a large crossover
length scale matching that observed for magnitude versus
length observations (Romanowicz, 1992, 1994), and (3) gives
constant stress-drop scaling for large earthquakes, which
matches with that observed for small earthquakes, as well.
We thus find a simple explanation for very important obser-
vations which have flummoxed scientists for decades.

Next, we demonstrate how surface-slip observations can
be usefully incorporated into seismic hazard analysis. (This is
a somewhat involved topic, so readers just interested in the
constant stress-drop scaling relationship, and not the implica-
tions for seismic hazard, may turn now to the section
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Constant Stress Drop in Surface Slip-Length Scaling and skip
the rest.) Seismic hazard estimates use a series of empirical
relations to estimate shaking hazard. One set of geologically
observable measurements, in which slip at the surface scales
with rupture length, has not been traditionally used in these
hazard estimates. In this paper, we show how seismic hazard
estimates can usefully incorporate these measurements.

Seismic hazard analysis, as currently practiced, uses a
number of empirical relations for various rupture and
fault-based parameters to derive expected rates of magni-
tudes of events, and from that, shaking hazards associated
with the events. To estimate rates of magnitudes of events,
both the sizes and rates of events need to be estimated. To
estimate sizes of events, empirical relations giving magni-
tude as a function of the log of the rupture area have been
found to be quite useful across the broad range of scales rel-
evant to seismic hazard.

Magnitude-area scaling has also been used to help
determine the rates of events. It is this method that we argue
in this paper can be improved by also considering surface
slip-length scaling measurements. To define rates of events,
a distribution of event sizes, which include the relative rates,
is constructed. Despite its difficulty and uncertainty, it is a
necessary step. The uncertainty is dealt with through differ-
ent branches in a logic tree, reflecting various underlying dis-
tributions. Then, given a distribution of event sizes, rates of
events are determined by placing various forms of integral
constraints on the distributions. A common one examines
the summed seismic moment and determines an overall rate
of events by matching the average seismic moment rate to
that of a target. For locations where faults are relatively well
known, this constraint has been used through the technique
of moment balancing. Here, slip rates on faults are combined
with an estimate of downdip fault width to yield a long-term
moment-release rate. While this approach works and allows
for consistent budgeting, two major sources of uncertainty
have been identified by using it. One source of uncertainty
concerns the magnitude–area relations used to perform the
moment balancing, with differences between the different
magnitude–area relations believed to be one of the dominant
uncertainties in some recent state-of-the-art hazard estimates
(WGCEP, 2008). A second source of uncertainty concerns
the downdip width of ruptures and how the moment is dis-
tributed with depth. Seismogenic depths have been deter-
mined using the hypocenters of small events. However, it
is unclear how efficiently the origin points of these events
document the depths to which ruptures propagate and release
significant slip during large events.

In this paper, we propose a new alternative pathway for
imposing integral constraints, one that uses observed surface
slips as a basis to balance slip rates rather than moment rates.
This alternative approach has a number of advantages. First,
it manages to avoid some of the uncertainty surrounding the
issue of the depth of rupture in large events. Second, it adds
rate-calculation methods that do not depend on modulus es-
timates and their corresponding uncertainties. Third, it intro-

duces into the analysis a new, independent, geologically
observable dataset. Finally, by using the linear measure of slip
rather than the logarithmic measure of magnitude as the inde-
pendent variable, fits to the scaling relations are more naturally
mapped onto the linearly summed integral constraints. Thus,
errors are better accounted for where they matter most.

The scaling relation we examine in this paper for use in
slip-rate balancing is average surface slip as a function of
surface-rupture length. We examine fits of scaling relations
to the slip-length data and determine that uncertainties com-
pare favorably with magnitude–area uncertainties. We also
determine that the best fits to the data show a saturation
of slip at the largest length scales. The new constant stress-
drop scaling is shown to give the best fit to the data, followed
closely by a square root of length scaling. Finally, we com-
pare similarities and differences between slip-length and
magnitude–area scaling, and suggest how these can be
applied to seismic hazard estimates.

The next section presents the new constant stress-drop
slip-length scaling and demonstrates how accurately it fits
the data. The paper then turns to an examination of how to
apply slip-length scaling more generally to seismic hazard
analysis. The section Magnitude-Area Scaling and Implied
Slip-Length Scaling contains a discussion of the current basis
for seismic hazard analysis, magnitude-area scaling relations,
and how analogous implied slip-length scaling relations can
be derived from them. We explore how accurately the im-
plied slip-length scaling relations fit the data. In the section
Surface Slip, we compare various slip-length scaling rela-
tions with the surface-slip data, and compare against implied
slip-length scaling from magnitude-area data. The section,
Incorporating Results into Hazard discusses applying this
newslip-length pathway to seismic hazard analysis. Finally,
the paper concludes.

Constant Stress Drop in Surface Slip-Length Scaling

We derive a new constant stress-drop slip-length scaling
relation by considering how slip scales with length for rup-
tures breaking the surface of the Earth. For ruptures barely
breaking the surface, we consider the slip of a circular rup-
ture and examine the average slip as a function of length for a
line intersecting the circle, ignoring free-surface effects at
this stage. For a circular rupture with constant stress drop
Δσ on the interior circular rupture of radius R, of shear
modulus μ, slip is given by S!r" # Δσ

μ
24
7π

!!!!!!!!!!!!!!!!
R2 − r2

p
where

S!r" is the slip across the fault as a function of the distance
r from the center of the circle. For a line of length L inter-
secting this circle, the average slip S on the line is
S # 1

L=2

R L=2
0

Δσ
μ

24
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p
dx where x is the dis-

tance along the line, and y is the closest distance of the line
from the center of the circle. A little algebra gives

S #
Δσ
μ

3

7
L: (1)

Earthquake Surface Slip-Length Data is Fit by Constant Stress Drop 877



This is a new result, and is especially interesting in that it is
independent of the radius of the circle R and similarly the
closest distance of the line from the center of the circle y,
depending only on the length L of the intersection.

The scaling for the limit of very long ruptures, ruptures
much greater than the widthW of the rupture, is derived from
the solution for infinite long ruptures of width 2W, with the
factor of 2 now accounting for the free-surface effect. Aver-
age slip for these long rectangular ruptures is well known
(e.g., Scholz, 2002), and is given by

S #
Δσ
μ

2W (2)

for strike-slip events. Treating the stiffnesses in parallel, we
can combine these two limits into one scaling relation across
the range of scales as

S #
Δσ
μ

1
7
3L $

1
2W

; (3)

which gives our constant stress drop–scaling relation for
strike-slip faults.

Generalizing this to allow for the possibility that stress
drops might vary as a function of length, we can write this as

S #
1

7
3LΔσ0=μ

$ 1
2WΔσ∞=μ

; (4)

where Δσ0 is the stress drop at smaller lengths and Δσ∞ is
the stress drop at larger lengths. We can use this generalized
form to test for constant stress drop in the data.

How does this compare with the data? Figure 1 shows
surface slip-length data for large events, adapted from a
dataset compiled by Wesnousky (2008). That paper also
discusses sources of uncertainties in the data, a topic to
which we will later return when we begin comparing fits
of various scaling relations. The data combines all the vari-
ous focal mechanisms, including strike-slip events shown
with circles, normal events with diamonds, and thrust events
with squares. We have modified the value for the 1857
M 7.8 Fort Tejon earthquake to reflect the recent light detec-
tion and ranging (LiDAR) results of (Zielke et al., 2010) re-
garding the overestimate of the original (Sieh, 1978) analysis
for the Carizzo Plain section of that rupture; this correction
leads to a 10% reduction in the average slip for that event. We
have also added the value for the 2008 M 7.9 Wenchuan
earthquake, using data from (Xu et al., 2009), shown with
error bars given their estimate of 3–4 m of average slip at
the surface; this provides a rare, extended rupture-length
dip-slip event. For now, we will focus on the strike-slip
events, since that is where we have the most data; later,
we will discuss how our results generalize to the dip-slip
events. These data are reproduced inⒺ Table S3 in the elec-
tronic supplement to this paper.

The dashed lines in Figure 1 show the two asymptotic
scalings, one for the smaller length L scaling limit, equa-
tion (1), and one for the larger length W scaling limit, equa-
tion (2). The solid line shows the combined scaling in

parallel of these two stiffnesses, given in equation (3). Here,
we assume a physical length scale for W, with W # 15 km
for vertical strike-slip events. We also plot, for illustration,
a stress-drop value of Δσ # 4 MPa, using a modulus
μ # 30 GPa, for all the curves. We immediately make an
interesting observation: without optimizing, we see a very
good fit for these quite physically reasonable values.

By combining the two scalings, assuming constant
stress drop, we discover another interesting result: an explan-
ation for the large crossover length scale from L scaling toW
scaling. Here, the crossover scale comes from the quite dif-
ferent coefficients on the circular versus rectangular rupture,
with a crossover length Lc in the scaling at lengths

Lc #
14

3
W: (5)

This large multiple of W for the crossover value of Lc pro-
vides an explanation for large-length scale crossovers found
empirically by Romanowicz (1992, 1994) in moment-length
scaling, and by others in parameterizations of the surface
slip-length data (Shaw and Scholz, 2001; Manighetti et al.,
2007; Shaw and Wesnousky, 2008). Taking W # 15 km
gives a crossover length scale of 70 km, which is very simi-
lar to the crossover length scale found seismologically
(Romanowicz, 1992, 1994). The coefficient 14=3 also ex-
plains much of the trend in the S=W versus moment plot
based on source inversions of Mai and Beroza (2000).

Fitting Data

To test the constant stress-drop hypothesis, we turn to
equation (4). Here, we see that there is a degree of ambiguity
in that there is a trade-off between changing values ofW and
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Figure 1. Geological surface slip observations of average slip
versus length. Symbol types indicate focal mechanisms: strike-slip
(circle), normal (diamond), and thrust (square). Dashed lines show
asymptotic scaling limits for circular and long rectangular ruptures.
Solid line shows scaling combining these two limits, equation (3).
Parameters on lines are: constant stress drop Δσ # 4 MPa, and
seismogenic width W # 15 km. The color version of this figure
is available only in the electronic edition.
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Δσ∞. One way to deal with this is to fix W by assuming a
physical origin for it. Taking W # 15 km, a typical seismo-
genic depth that would then represent the downdip width W
on vertical strike-slip faults, we can fit the data in Figure 1,
allowing for varying stress drops. Fixing W to be a seismo-
genic width, and allowing for one stress-drop parameter on
the L scaling regime in addition to a second stress-drop
parameter on the W scaling regime as in equation (4), we
can fit the two-parameter model and determine howmuch the
two stress drops differ. Using only the strike-slip data, the
difference in the stress drops is only 30%. The Akaike infor-
mation criteria (AIC; 50.05 and 51.55 for the one- and
two-parameter models, respectively) and Fisher F-tests
[F!1; 19" # 0:460 p≈ 0:5] of the differences in misfit show
the small additional gain in fitting for the two stress-drop
parameter model, equation (4), relative to the one stress-drop
parameter model, equation (3), is not justified by the cost of
an additional parameter. (For more information on these
types of statistical tests, see the caption for Table A1 in
Appendix A, including additional related discussion within
the manuscript.) Thus, this slight difference in best-fit values
supports the constant stress-drop hypothesis, equation (3), as
does the information theoretic measures, which imply that
the only slightly better fit in equation (4) does not warrant
the additional parameter. Similarly, we reject fittingW to the
data and instead use an a priori physical basis for setting its
value. Figure 2 shows the best-fit value to the strike-slip

events of Δσ # 3:91 MPa, assuming W # 15 km and
μ # 30 GPa, shown with a solid black line.

Other Focal Mechanisms

For dip-slip faults, two effects influence the scaling. One
effect is that the downdip widthW is generally larger for dip-
ping faults. For a seismogenic depth H and fault dip θ

W # H= sin θ: (6)

(Later, we will generalize this slightly to consider the poten-
tial for ruptures to extend below the seismogenic layer.) For
dips of 90° (strike-slip), 60° (normal), and 30° (thrust), the
factor 1= sin θ is, respectively, 1, 1.15, and 2. Thus, only
for quite shallow dips is this a significant factor. A second
factor is a change in the stiffness coefficient on W for the
infinite rupture, with the factor of 2 replaced by the Lame
parameter ratio !λ$ 2μ"=!λ$ μ" # 1=!1 − !VS=VP"2"
where VS=VP is the ratio of the shear wave to that of the
compressional-wave speed. Using typical values of this
wave-speed ratio of 1.75 yields typical values of ∼1:5 for
this factor or ∼3=4 of the value for dip-slip relative to that
of strike-slip. Thus, for dip-slip cases, we have

S #
Δσ
μ

1

7
3L $

1"
λ$2μ
λ$μ

#
W

: (7)

We can further generalize this to the oblique slip case for slip
in the arbitrary direction ŝ consisting of along-strike and
dip-slip components:

S #
Δσ
μ

1

7
3L $

1

Wŝ ·
"
2; λ$2μ

λ$μ

#
(8)

or equivalently

S #
Δσ
μ

1

7
3L $

1

Wŝ ·
"
2; 1

1−!VS=VP"2

#
: (9)

Figure 2 shows these combined effects for the three dip
cases, of θ # 90° using equation (3), and θ # 60° and 30°
using equation (7). We assume constant seismogenic depth
and correspondingly varying downdip W, and include the
modulus effect in equation (7) and typical values for the
moduli for the two dip-slip cases. We see the modulus effect
outperforming the increased W effect at 60°, so the expected
slip is slightly lower for the 60° dip case. The crossover
where the two effects are comparable occurs at ∼45°. By
30°, the increased W effect dominates and slip is indeed
increased, but not by a large amount. It is not until we
get to faults with a very shallow dips that an entirely new
scale of slip occurs, at dips and W’s relevant to subduction
zones. Thus, for subareal surface-rupturing events under
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Figure 2. Dip effects on expected scaling. Data points are geo-
logical surface-slip observations of average slip versus length. Sym-
bol types indicate focal mechanisms: strike-slip (circle), normal
(diamond), and thrust (square). Curves show scaling expected for
fixed seismogenic depth, but changing dip, and thus downdip width
and changing modulus effects. All curves have the same stress drop,
a value for best fit stress drop to strike-slip data of 3.91 MPa. Differ-
ent curves use the same seismogenic depth of 15 km and different
dips 90° (solid line) strike-slip equation (3), and 60° (short-dashed
line) and 30° (long-dashed line) dip-slip equation (7). Note only
relatively small differences are expected in the scaling of events
with different focal mechanisms, which appears consistent with
data. The color version of this figure is available only in the elec-
tronic edition.
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constant stress-drop scaling, we do not expect vastly differ-
ent slip values for dip-slip versus strike-slip events. And the
data, although sparse, appears to support this.

Constant Stress-Drop Values

Given the success of the constant stress-drop scaling,
further plots are warranted. Figure 3 shows inferred values
of individual stress drops, using equation (3) and data for
slip and length scales. In the figure, we use a constant
W # 15 km, since this allows stress-drop estimates to be de-
rived from surface data alone. Using the W’s from the data-
base as opposed to a constant value of W # 15 km appears
to improve the estimates slightly, reducing the coefficient of
variation and residual W dependence somewhat. Assuming
W # 15 km, and specifically examining large earthquakes
so that L ≥ 15 km, the COV (coefficient of variation equal
to the standard deviation divided by the mean) is 0.430.
Using variable W, the COV is 0.416. Note that these COVs
are remarkably small. These factor-of-2 variations compare
with closer to factor-of-10 variations on either side of the
mean values at small events (Hanks, 1977). One explanation
could be that measurement uncertainties in corner frequen-
cies affect the scatter at small events, more than measurement
uncertainties in L andW for large events. Or it could be a real
effect.

Interestingly, the mean value for the stress drop inferred
from the large event surface-slip data is remarkably consis-
tent with mean values inferred seismologically from small
events (Hanks, 1977; Allmann and Shearer, 2009) and from
aftershock distributions (Rubin, 2002). While there are sub-
stantial uncertainties associated with mean values at small

events due to inferences about corner frequencies (for exam-
ple, Brune [1970] scaling versus Madariaga [1976] gives a
factor-of-5 difference in seismologically determined average
static-stress drop), the consistency of constant stress-drop
scaling across the entire range of magnitudes is a remarkable
observation.

We next examine how to use slip-length scaling in
seismic hazard analysis.

Magnitude-Area Scaling and Implied
Slip-Length Scaling

As noted in the Introduction, magnitude-area scaling
relations have been employed two ways in hazard estimates,
one to estimate sizes of events and the other to estimate rates.
However we choose to apply constraints to estimate rates,
estimating sizes from magnitude-area relations remains the
most accurate method. We thus begin with magnitude-area
scaling relations.

We examine four magnitude-area scaling relations
here. Two are the branches of a recent hazard analysis for
California (WGCEP, 2008), the third generalizes one of these
relations (Shaw, 2009), and the fourth generalizes a long
standing relation (Wells and Coppersmith, 1994). The first
is Ellsworth-B (2003; EB):

M # logA$ 4:2: (10)

This has the virtue of being extremely simple, as a one-
parameter fit, and being a good empirical fit to the large earth-
quake (M > 6:5) data for which it was developed. The second
is Hanks and Bakun (2002; HB02), a two-regime scaling:

M #
$
logA$ 3:98 A ≤ 537 km2;
4
3 logA$ 3:07 A ≤ 537 km2: (11)

This has the virtue of more accurately fitting the data at
smaller magnitudes. The third is Shaw (2009), which is a
generalization of the Hanks and Bakun model; it extends the
bilinear Hanks–Bakun (HB) two-regime scaling to that of a
three-regime scaling, with a third asymptotic regime valid
for very long ruptures L ≫ W whereby S approachesW scal-
ing asymptotically. This is done at the price of one additional
scaling parameter (the length scale at which the transition to
the third regime occurs). The Shaw (2009; S09) scaling rela-
tion is parameterized as

M # log10 A$
2

3
log10

max!1;
!!!!!
A
W2

q
"

!1$max!1; A
W2β""=2

$ const:

(12)
Here,W is the rupture width, and β is a fitting parameter that
gives a crossover scale length to the asymptoticW scaling. To
match the small events, the constant is set to be the same as in
the HB relation: const # 3:98. In the limit of β → ∞, the
scaling relation reduces to the HB scaling relation and, in this
sense, represents a one-parameter extension, if one chooses to
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Figure 3. Stress drop as a function of L. A constant
W # 15 km is assumed for width in the calculation. Shades of sym-
bols represent values of W in km in the (Wesnousky, 2008) data-
base. Assuming constant W presumes the least knowledge about
uncertain downdip widths. A slightly better fit, in terms of slightly
reduced scatter, is obtained using the variable widths in the data-
base. However, this shows that even just with surface data, we
get relatively small scatter. The color version of this figure is avail-
able only in the electronic edition.
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treatW as a parameter. Note also that in the limit asL → ∞, it
scales asymptotically asM ∼ 2

3 log10 A, which gives S ∼W, as
the Starr (1928) and Knopoff (1958) solutions suggest. Ap-
pendix B discusses how the parameters in this scaling relation
are determined.

The fourth is a Wells-and-Coppersmith-type linear rela-
tion between M and log10 A

M # C1 log10 A$ C0: (13)

The EB relationship is a special case of these linear relation-
ships, with C1 # 1. Here, the additional parameter introduces
new scaling physics. Allowing for a nonspecific parameter on
the area term, as the Wells–Coppersmith fitting does, adds
substantial complexity to the model, given that it is an expo-
nent on the area. Progressing from a discrete small set to a
continuum is a leap in dimension, which would require a
much better fit to be worth generalizing in such broad terms.

Magnitude-Area Data

Next, we compare the scaling relations with the data. A
number of databases were used, and they were chosen due to
their published availability and use in vetted seismic hazard
estimates. Because of concerns about the potential influence
of downdip width, the WGCEP03 database containing mag-
nitude, length, and width was used (WGCEP, 2003) to cali-
brate width-sensitive fits, in particular the S09 equation (12)
relation. The WGCEP03 database is mainly a subset of the
Wells and Coppersmith (1994) data, selected for quality con-
trol. (The data are reproduced inⒺTable S1, in the electronic
supplement.) The Hanks and Bakun (2008) magnitude-area
database was used as another target, providing some addi-
tional large events and alternative interpretations of areas, par-

ticularly at small magnitudes. (The data are reproduced inⒺ
Table S2, in the electronic supplement.)

One limitation of these databases is a lack of explicit error
estimates for the data. Wells and Coppersmith (1994) have a
good discussion of the wide range of issues generating uncer-
tainties in the data. One approach, developed by Ellsworth
(2003), is to use the variability of published estimates from
similar events to obtain an empirical estimate of data uncer-
tainties. This leads to the not obvious result that area estimates
are substantially more uncertain than magnitude estimates
(0.25 in log10 area versus 0.08 in magnitude). At the same
time, many of the scaling relations were optimized using
least-squares regressions, which implicitly neglect errors in
the horizontal axis. A useful extension is the orthogonal
distance regression (ODR), which explicitly accounts for data
uncertainties in the horizontal and vertical directions. A ben-
eficial feature of ODR is that in the limit of the data uncertain-
ties on the vertical axis being large compared with the data
uncertainties on the horizontal axis, they converge to least-
squares estimates. Moreover, when data uncertainties are
not precisely known, erring on the side of larger estimates
in the vertical axes relative to that of the horizontal gives a
better estimate of parameter uncertainties (Boggs and Rogers,
1990). To best compare against previous scaling relations and
to operate in a mode useful for hazard estimates, we use least-
squares error metrics to compare all models, in addition to
ODR estimates with large vertical data uncertainties relative
to that of horizontal to estimate parameter uncertainties.

Figure 4 shows fits of the scaling relations to the data.
Deviation on this log–log scale can be observed, but
statistical testing helps to illuminate things further as we will
discuss now. Table A1 in Appendix A shows standard devi-
ations of the fits relative to the data, with the models listed
in rank order based on AIC (Akaike, 1974), which rewards

(a) (b)

Figure 4. Magnitude area relations for large strike-slip events. (a) WGCEP03 data. Dark circles denote W < 15 km events, and light
circle denoteW > 15 km events. (b) Circles denote magnitude and area of events from Hanks and Bakun (2008) database. The dash-dot line
is the linear Ellsworth-B (WGCEP, 2003) magnitude-area relation, equation (10). Short-dash line is the Hanks and Bakun (2002) bilinear
relation, equation (11). The long-dashed line is the Wells and Coppersmith (1994) scaling relation, equation (13). The solid line is the Shaw
(2009) scaling relation, equation (12). The S09′ relation is illustrated using default W values, with W # 15 km. The color version of this
figure is available only in the electronic edition.
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minimizing errors while penalizing for extra parameters;
minimum AIC is best. AIC # −2 lnL$ 2k where L is the
likelihood and k is the number of fitted parameters.
Thus, differences in AIC correspond to differences in log-
likelihood, with relative likelihood of two models being
e−ΔAIC=2. This gives a scale of the differences in AIC that
matter, at least a few to be significant. AIC is similar to Fisher
F-test in that they both examine the importance of the fit
relative to the cost of extra parameters. AIC has an advantage
in that it does not require the lower parameter model to be
embedded in that of the higher. Used together, standard
deviation and AIC provide a helpful view of differences in
fits: differences in standard deviation give relative variations
in how well the curves are fitting in an absolute sense.
Differences in AIC offer a sense of how statistically signifi-
cant, in a log-likelihood sense, the differences are.

With regard to data fits, one concern involves whether
fits across the entire magnitude range or only at large events
should be considered. There are substantial uncertainties in
values of area for the small events; however, these events also
are used in hazard calculations, so matching the scaling in
that regime is important. Both sets of error measures, across
the entire magnitude range, and just for the large events, are
therefore shown in the table.

Table A1 (a) in Appendix A shows fits to the WGCEP03
data. Table A1 (b) in Appendix A restricts the fits toM >6:5.
Table A1 (c) in Appendix A shows the HB data, and Table A1
(d) in Appendix A the fits to M >6:5 for that data. Because
only area values are given in the HB database, the S09 rela-
tion fixes W as a parameter in fitting that data.

The HB and S09 relations work best across the entire
magnitude range, while that EB and S09 work best specifi-
cally for the large events. The original Wells–Coppersmith
relation (WC in the table) somewhat underpredicts the HB da-
taset at the large events. Refitting the parameters, we find best
fittingC1 # 1:08 andC0 # 3:86 (WC† in Table A1 inAppen-
dix A). This does a better job, but as we will observe when ex-
amining other types of data, the nonrobustness of the fits (in
particular, changingC1 for other different datasets) raises issues
for this functional form. When width information is available,
the S09 relation using fault basedW (denoted S09 in the tables)
does better than using fixed values ofW (denoted S090 in the
tables), so this is the preferred version of that relation.

Comparing fits of the different scaling relations across the
entire range of magnitudes (M >5) the S09, HB, and modi-
fied WC-type scalings fit better than the EB scaling. For only
the large events, (M >6:5) however, which the EB relation
was developed to match, it does quite well. Using as an error
metric the difference in magnitude, Fisher F-tests support
what we observe in AIC: from the lowestmagnitudes (M >5),
the S09 relation fits better than that of the EB, as does the HB
relation relative to that of the EB. But for large magnitudes
(M >6:5), the EB relation begins to performwell. At the large
magnitudes, the EB, S09, andmodifiedWC relations are com-
parable. In contrast, the HB relation begins to perform less
accurately. For the entire magnitude range, the S09 relation

fits better than theHB relation, significantly in theWGCEP03
data where width information is available, although only just
above the level of statistical significance in the HB data where
width data is unavailable and defaultW values must be used.
As the magnitude cutoff increases, the S09 relation does even
better against the HB relation. Thus, the extra regime in S09
relative to HB appears justified in terms of a better statisti-
cal fit.

Substantial differences in the scaling relations exist in
the M 6 range, a range that is significant from the point of
view of hazard for many areas. Indeed, moderate magnitude
events can often dominate the hazard; while they are much
smaller than the large events, they also are much more fre-
quent, and thus more likely to occur nearby. Proximity is a
major component of hazard, as the recent 2010–2011 events
in Christchurch, New Zealand, graphically illustrate. Distin-
guishing between the different scaling relations in the M 6
range will not be helped by our slip-length scaling approach
here and will have to be dealt with using other methods.
(Finite source inversions and precise relative relocations of
aftershocks are two potential methods of pursuing these is-
sues.) Substantial differences also exist at the largest events.
Vastly different scalings are proposed for the three different
relations, with moment M scaling as M ∼ A2 in HB, M ∼
A3=2 in EB, andM ∼ A in S09. Distinguishing between these
different scalings in magnitude log area space is difficult to
accomplish for the limited dataset available at the largest
magnitudes. When we seek to examine summed constraints,
however, these differences become significant and measur-
able, a subject to which we now turn.

Implied Slip-Length from Magnitude Area

Here, we transform magnitude-area scaling into a corre-
sponding implied slip-length scaling. Satisfying integral
constraints by moment balancing, or, as we argue for in this
paper, slip-rate balancing, the slip from each event is
summed to obtain an overall rate of events to match the long-
term slip rate on the faults. This slip is summed linearly; as
such, it makes sense to determine how the scaling relations
look not in log–log space, which emphasizes the range of
sizes, but in linear–linear space, which emphasizes the larg-
est events that are dominating the sum. To convert the mag-
nitude-area scaling relations to implied slip-length scaling
relations, we use the same assumptions involved in perform-
ing moment balancing. We convert magnitude M to moment
M and divide by area A and modulus μ to get slip S:
S # M=Aμ. A standard value of the modulus is used
(μ # 30 GPa), an issue to which we will return when we
subsequently discuss how the magnitude-area data compares
with the surface-slip measurements. In converting moment to
slip, we can see the uncertainty in the downdip width playing
out: if our area estimates are biased, our slip estimates will be
biased. For length and width, we can use the information in
databases directly when it is available, as in the WGCEP03
data. Figure 5a shows this transformed data. When it is
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unavailable, as in the HB data, we can divide the area by
downdip width W to get length L: L # A=W. Figure 5b
shows this transformation assuming W equals L for small
events, but then saturates for large events at the downdip
width W. That is, W # W% where

W% # min!L;W" #
$
L L ≤ W;
W L > W

(14)

with typical values of the seismogenic widthW # 15 km for
vertical strike-slip faults, and downdip widths for dipping
faults having correspondingly larger values. Assuming a
default downdip width, as in equation (14), we can infer
an L from A. Alternatively, individual values of L from com-
piled databases (e.g., Wells and Coppersmith, 1994) can be
used directly with the HB data. We have also determined that
when we use individual values of L associated with the
events, we get similar results, whether we assume a default
value for W and derive an implied L, or we use individual
values of L. While individual points do move to some de-
gree, the overall trend is similar. Because of the simplicity
and clarity associated with using implied length in conjunc-
tion with implied slip, we focus our attention on that ap-
proach when using the HB data.

Again, assuming W # W% the magnitude-area scaling
relations transform into slip-length scaling relations as
follows. For EB, we get

S ∼ A1=2 # C2!LW%"1=2 #
$
C2L L ≤ W;
C2!LW"1=2 L > W

: (15)

For generalized WC-type scaling, we get

S ∼ A1:5C1−1 # C3!LW%"1:5C1−1

#
$
C3L3C1−2 L ≤ W;
C3!LW"1:5C1−1 L > W

: (16)

For HB, we get

S ∼

8
<

:

%
A
537

&
1=2

A ≤ 537 km2;

A
537 A > 537 km2

#

8
<

:

C4L L ≤ W;
C4!LW"1=2 W < L < 537 km2=W;
C4LW=!537"1=2 537 km2=W ≤ L

: (17)

For S09, we get

S ∼
2A=W

1$max!1; A=W2β"
#

$C5L L ≤ Wβ;
2C5
1
L$

1
Wβ

L > Wβ : (18)

Taking into account the crossover effects of the finite seismo-
genic width expressed in equation (14), we find the
magnitude-area scaling relations transformed into that of
slip-length scaling are modified to have an additional regime
for the EB, generalized WC, and HB scaling relations, while
the S09 scaling relation is instead reduced by one regime and
one parameter, from three to two regimes, and from three to
two parameters (C5 and Wβ in equation 18). This reduction
for the S09 scaling relation is not coincidental because it was
developed from a slip-length scaling relation; that slip-length
scaling relation is a generalization introduced by Manighetti
et al. (2007) of a scaling relation by Shaw and Scholz (2001).

Comparing the different scalings for large L, we again
note very different predicted behaviors. For L ≫ W in HB
S ∼ L, in Ellsworth-B S ∼ L1=2, and in S09 S ∼W. In the
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Figure 5. Fits of implied slip-length scaling by magnitude-area scalings. Magnitude is converted to moment, then divided by area and
modulus to get slip. Length is used when it is available in the database. Otherwise, area is converted to length by dividing area by width,
assuming seismogenic depth H # 15 km; data are shown with circles. Different line styles represent different magnitude-area scaling rela-
tions rescaled in the sameway the data has been. Parameters used directly frommagnitude-area scaling relations, Table A2 (a) in Appendix A.
The curves are the implied slip-length for Ellsworth-B (WGCEP, 2003) (long dash), Hanks–Bakun (Hanks and Bakun, 2008) (short dash),
and Shaw (2009) (solid). The S09′ relation is illustrated using defaultW values, withW # 15 km. (a) Data derived fromWGCEP03 database.
Event specificW’s used. (b) Data derived from Hanks–Bakun database. The default ofW # 15 km was used. The color version of this figure
is available only in the electronic edition.
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generalized WC scaling, S ∼ L1:5C1−1, a nonspecific expo-
nent. The scalings also differ in their W dependence at large
L, with a linear dependence on W in HB and S09, and a
W1=2 dependence in EB. In the generalized WC scaling,
S ∼W1:5C1−1, again, a nonspecific exponent. Unfortunately,
the W values for the data are too uncertain to test the various
predicted dependences. Fortunately, the data does appear
good enough to test some features of the L dependence.

Examining the fits of the transformed scaling relations
to the transformed data in Table A2 in Appendix A, the S09
relation is seen to be the best, followed closely by EB, then
the modified WC and then HB. Figure 5 shows the fits to
the data.

Finally, the answers are robust with respect to uncertain-
ties in the data. We have also fit using ODRs, which explicitly
account for uncertainties in the data. Avariety of estimates of
the data uncertainties were examined, including estimates
derived from data by Ellsworth (WGCEP, 2003). These
alternative fits changed parameters by typically only a few
percent up to a few tens of percent and preserved the con-
clusions based on relative fits.

Surface Slip

Surface Slip Data

In the previous section, we showed how transforming and
reweighting magnitude-area scaling relations helped to test
them against data they were developed to fit, and to better
match the scaling relations to summed integral constraints.
Surface-slip data enables us to proceed far beyond this, how-
ever, by bringing in independent data. With independent data,
we canvalidate the scaling relations. Surface-slip data brings a
number of advantages, as well as disadvantages. One of the
greatest advantages is that for large subareal events, it is
geologically observable and provides a ground-truth, model-
independent measure of the earthquake source. A disadvant-
age is that it is only a slice, a view at the surface that requires
interpretation to infer what occurs at depth. It is also an
imperfect recorder, as noise in the system (Shaw, 2011) and
comparisons with sophisticated geodetic measurements (Wei
et al., 2011)make clear. An important source of uncertainty in
surface-slip measurements is the practice of enveloping the
data, with slip minima along the surface rupture often
removed in calculating geologically estimated average slip
values (Wesnousky, 2008).

Using surface-slip data to constrain rates has a number
of advantages despite the uncertainties in the data. First, it
manages to avoid some of the uncertainty surrounding the
issue of the depth of rupture in large events. Second, it in-
troduces into the analysis a new, independent geologically
observable dataset, thereby bringing in additional testable
and collectible information to the estimates. Third, by using
the linear measure of slip rather than the logarithmic measure
of magnitude as the independent variable, fits to the scaling
relations are more naturally mapped onto the linearly

summed integral constraints, so errors are more accurately
accounted for where they matter most. Finally, it allows
for the ability to incorporate pre-instrumental information,
opening up the possibility to vastly extended datasets.

Surface-Slip Scaling Relations

Here, we simplify the slip-length scaling relations. Gen-
erally, only large earthquakes, events which break the full
seismogenic thickness, tend to break the surface and show
significant slip there. For strike-slip events, we are therefore
referring to L ≥ W or L > 15 km andM ≥ 6:5 events. Thus,
rather than having the added complication of the two-regime
W% in equation (14), we can reduce to a simpler casewith only
the saturated W regime. Carrying over the scaling relations
from the magnitude-area scaling, and simplifying the multiple
regime scaling to those which matter in the large-event slip-
length scaling, we determine four candidate scalings.

The first is a square root L1=2 scaling consistent with the
implied EB scaling:

S ∼ A1=2 # C6!LW"1=2: (19)

This kind of scaling has been proposed by Leonard (2010)
for large lengths. Wesnousky (2008) also considered an L1=2

scaling for slip, although not its W dependence. The second
is a linear L scaling consistent with the implied HB scaling
for the largest events,

S ∼ A # C7LW: (20)

The third is a power-law scaling, consistent with the gener-
alized WC-type scaling. This adds an extra free parameter, a
nonspecific exponent η in the scaling, so a much better fit
will be required to make the added model complexity and
potential physics worthwhile:

S ∼ Aη # C8!LW"η: (21)

For the fourth scaling, we replace the two-regime implied
slip-length scaling with the new constant stress-drop scaling
(S12), equation (3), derived earlier. They come from a similar
approach, but the constant stress-drop scaling has the advan-
tage of being a reduced parameterization. For ease of discus-
sion, we reproduce it here:

S #
Δσ
μ

1
7
3L $

1
2W

: (22)

Comparing Fits to Surface Slip Data

Which scaling relation best fits the surface slip data? We
have two different types of scaling relations to compare with
the data: the implied slip-length data from the magnitude-
area scaling, equations (15)–(18); and the simplified surface
slip-length scalings, equations (19)–(22). Note that the two
sets of scalings are addressing different things, and while
they should agree asymptotically for the largest events,
the details at the smaller events differ. Therefore, we would
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expect the different sets to behave best on the data they were
developed to address.

Figure 6a shows the fits of equations (15)–(18), and
Figure 6b shows the fits of equations (19)–(22) to the sur-
face-slip data. The two different sets are seen to fit compa-
rably, with the detailed differences at the smaller L values not
making much difference to the overall fit; indeed, the two
plots are difficult to distinguish. We observe only small
differences between scaled fits of the implied slip-length
scaling from magnitude-area scaling relations and the simpli-
fied surface-slip scalings for this surface-slip data, which is
mostly dominated by larger events where the two sets of re-
lations are similar. Standard deviations are (see Table A3 in
Appendix A), respectively, 1.174 for linear L scaling, 0.804
for square root L1=2 scaling, 0.760 for equation (22) S12
scaling, and 0.741 for equation (18) S09 scaling. Accounting
for free parameters, the additional parameter in equation (18)
scaling is not justified, and by an AIC criteria, the S12 fits
best. Details are reported in Appendix A. ODRs explicitly
accounting for data uncertainties also yield similar answers.

One important thing to notice in Figure 6 relative to
Figure 5 is the change in scale on the vertical axis. While
the functional forms of implied slip-length scaling relations
perform reasonably well in fitting both the implied slip-
length data in Figure 5 and the surface slip-length data in
Figure 6a, there is a significant change in the overall ampli-
tude of the slip, with noticeably less slip in the surface-slip
data. We will return to a discussion of this shortly, when we
examine reconciling differences in the slip estimates.

Regarding the power-law fit of the generalized WC-type
relation, two features of this fit are a concern for this

functional form. First, the best fitting exponent differs sub-
stantially for the implied slip and surface-slip datasets, so we
are not getting stable results. Second, the uncertainties in the
amplitude value C7 are very large relative to the values them-
selves, again pointing to the sensitivity in parameter fits to
the data. Simply put, this functional form is not a good
parameterization of the data. These results also may help to
explain the large uncertainties found by Wells and Copper-
smith (1994) in fitting their regressions to surface-slip data,
and the variable exponents found in fitting the generalized
WC-type regressions to regional tectonic data (e.g., Yen
and Ma, 2011).

Reconciling Differences in Magnitude-Area and
Surface Estimates of Slip

Ideally, estimates of average slip from magnitude-area
and slip-length data would agree. However, there are some
systematic differences in the estimates. As noted earlier in
comparing Figure 5 with Figure 6, magnitude-area estimates
of average slip were found to be larger than surface-slip
estimates. Attempting to reconcile the estimates, we note
one difference is that different events are considered in the
two databases. To control for this, we compare events which
are common to both datasets. (The data are reproduced inⒺ
Table S4, in the electronic supplement.) Examining the ratio
of the surface slip estimate to the magnitude-area estimate,
shown in Figure 7, we find the magnitude-area estimate
assumingW # H # 15 km is on average roughly 30%more
(average ratio S=!M=Aμ" # 0:75 for data points in the
figure). We find, as well, no obvious magnitude dependence
to this difference. Wells and Coppersmith (1994) also noted a
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Figure 6. Fits of various scaling relations to surface slip observations of average slip versus length. Symbol types indicate focal mech-
anisms: strike-slip (circle), normal (diamond), and thrust (square). (a) Implied slip-length from magnitude-area scaling fits of surface-slip
data. In order of best fit to least good fit: solid line shows equation (18) S09 scaling; long-dashed line shows equation (15) Ellsworth-B (EB)
scaling; short-dashed line shows equation (17) Hanks–Bakun (HB) scaling. (b) Surface slip-length scaling fits of surface-slip data. In order of
best fit to least good fit: solid line shows equation (22) constant stress-drop scaling; long-dashed line shows equation (19) L1=2 scaling; short-
dashed line shows equation (20) L scaling. Note that the two types of scaling relations, the implied slip-length curves in (a) and the surface
slip-length curves in (b) differ only at the smaller length scales, and provide comparable-looking fits. Note the change of scale relative to
Figure 5. The color version of this figure is available only in the electronic edition.
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similar discrepancy in slip estimates from surface and depth
measurements. Two possibilities arise in understanding this.
One is that the surface-slip measurements are systematically
low, missing some slip. The other is that the magnitude-area
estimates are systematically high, mapping specific deep co-
seismic slip below the seismogenic layer onto the seismogenic
layer. Indeed, adopting the best fitted W # 19 km from the
S09 fit to themagnitude-area datamostly resolves the discrep-
ancy. Both of these possibilities appear to be valid concerns
and are a source of genuine uncertainty.

Related to the question of moment estimates potentially
being biased high, we need to divide by the modulus to
connect from moment to slip. We used a uniform value of
30 GPa for all events. This is a standard value used, but
others are also sometimes used. For example, using 33 GPa
as an alternative value would reduce the moment-estimated
slip by 10%, reducing the average discrepancy with the sur-
face measurements from ∼30% to 20%. Wesnousky (2008)
also discusses this question about modulus impacts on mo-
ment estimates. Modulus uncertainties should to be taken
into account in slip-rate estimates from magnitude-area scal-
ing relations. It is an additional advantage of surface-slip
measurements that they do not involve this quantity—and
thus, uncertainties in this quantity—in slip-rate estimates.

Regarding the possibility that geological measurements
of surface offset may be underestimating true offset, recent
technological advances have allowed for new views of this
question. For the 2011 M 7.2 El Mayor–Cucapah earth-
quake, Wei et al. (2011) combined before and after LiDAR
pictures mapping vertical offsets with before and after optical
pictures mapping horizontal offsets providing an image of
unprecedented detail and fidelity of complete, near-field fault
displacements and offsets. A clear outcome of that data, com-
bined with the research of Hudnut et al. (2010) was that

envelopes of geologically measured surface offsets better
represented the true offsets than simple averages, with the
geological offsets often missing displacements observed in
high-resolution geodetic imaging. The work on the El
Mayor–Cucapah event is the most accurate view, but it re-
mains just one event for now.

Support from an ensemble point of view that slip at the
surface may not all be recorded comes from a statistical
analysis of surface displacements. Shaw (2011) analyzed
differences in surface slip as a function of separation and
found substantial average differences in a slip of 1 m, down
to the smallest separations. At the same time, maximum slips
were well bounded, thus it is not so much an added as it is
subtracted noise to underlying slips. Missing slip due to
unconsolidated near-surface layers is the simplest explana-
tion of these results. Uncertainties in the enveloping proce-
dures used to estimate average slip at the level of tens of
percent remain and is an unresolved uncertainty.

Finally, we can use averages in the differences between
implied slip length from magnitude-area and surface slip
length to separate the effects from different catalogs used.
Ratios of the fit parameters of the two leading scaling relations
L1=2 and S12 for the surface-slip relative to that of the implied-
slip dataset give, from Table A3 (b) relative to Table A2 (c) in
Appendix A, values of ∼0:65. Dividing this by a factor 0.75
from the systematic difference for the same datasets gives an
∼15% effect due to the different databases. The main differ-
ence in the databases is in how a number of events included in
the magnitude-area database are not present in the slip-length
database. A significant number of much older first half of the
20th century events in Tibet and Mongolia account for much
of this difference. Regressions that included these events
would thus be expected to raise amplitudes of fits to surface
data of slip-length scaling relations by ∼15%.

Deep Slip

The possible existence of significant amounts of co-
seismic slip below the seismogenic layer in the deeper,
stably sliding fault remains an open question as yet unre-
solved by observations. Dynamic modeling results suggest
it is a real possibility, but parameter uncertainties and par-
ticularly observational resolution uncertainties make this
difficult to constrain, and, as such, remains an unresolved
uncertainty.

Modeling results show a significant fraction of slip may
be driven coseismically below the seismogenic layer, on the
order of a third of the total moment (Shaw and Wesnousky,
2008). This slip occurs mainly as long-period motion, with a
dearth of high frequencies (Shaw andWesnousky, 2008), and
thus occurs in moment and magnitude estimates, but not
necessarily in that of shaking. Moreover, it may be misplaced
in inversion algorithms which map slip onto sources of
higher frequency radiation. This may be one reason synthetic
ground-motion simulations have had difficulty reproduc-
ing empirical ground-motion prediction and standard

Figure 7. Exploring discrepancy between implied average slip
values from magnitude-area and surface-slip data. Ratio of data in
Figure 6 to data in Figure 5b for same events in both plots. Surface-
slip measurements average ∼30% lower than magnitude-area esti-
mates. The color version of this figure is available only in the elec-
tronic edition.
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magnitude-area scaling relations simultaneously (Graves
et al., 2011).

Reconciling average surface slip with that of magnitude-
area estimates thus remains an unresolved uncertainty. The
surface-slip estimates may be biased a bit low due to the
missing slip; or the magnitude-area estimates may be biased
a bit high due to mapping of deep slip onto shallower seis-
mogenic depths. While this uncertainty remains, there are
nevertheless two things we can report. First, the functional
forms of slip-length scaling observed geologically and
inferred from the magnitude-area scaling are similar for
large events, and so both are indicating similar behavior.
Second, the difference in amplitude is modest when the
event populations are the same, with an average of ∼30%.
Splitting the difference would cover both datasets with a
&15% uncertainty.

Surface slip-length measurements, in addition to slip-
length estimates from magnitude-area, are not equivalent
measures. Slip only begins to penetrate the surface for large
events, with magnitudes M >6:5 or so for strike-slip events,
while average slip estimates from moment-area relations
continue down to small events. It is only for the very largest
events that we expect these two estimates to approach each
other. However, because these are the events which dominate
the sums, finding consistency between the two complemen-
tary views is important. Despite the remaining modest
differences, the level of agreement we observe gives confi-
dence to our understanding.

Inversions for slip distribution on modeled finite sources
is one potential avenue for resolving the discrepancies noted
here. Comparisons have been made using surface data and
finite-source inversions (Mai and Beroza, 2000; Manighetti
et al., 2007). One difficulty with this approach is the broad
range of results obtained in the inversions from different
groups for the same event. Given the vast differences, as well
as uncertainties in the underdetermined inverse problem, we
restrict our attention in this paper to the most constrained
observations.

Incorporating Results into Hazard

As noted in the Introduction, magnitude-area scaling
relations are used in two ways in standard seismic hazard
estimates: to estimate the sizes of events, and to estimate
the slip and therefore rates of the events. Given the indepen-
dent but complementary and directly observable information
provided by surface-slip measurements, we recommend ex-
panding logic-tree branches in seismic hazard estimates to
incorporate this information.

For maximal numbers of branches on a logic tree, all of
the magnitude-area relations could be considered to estimate
sizes; in addition, all of the magnitude-area and slip-length
relations could be considered to estimate rates. Combining
these two sets independently gives a number of branches
equal to the product of the numbers of relations in the
two sets independently. Table A4 (a) in Appendix A illus-

trates this case, using the four magnitude-area scaling rela-
tions for sizes, and four slip-length relations for rates,
consisting of two implied slip lengths from magnitude area
and two slip lengths from surface slip. This gives a total of
16 branches.

Deciding which branches to use, or which to assign
greater weight, depends on a number of factors. Goodness
of fits to the data, number of parameters, and information
theoretic measures of fits are all useful in guiding weights
of logic-tree branches. Relative AIC takes into account
both the gain in fit as well as the cost of additional param-
eters in fitting, and thus the fits of the scaling relations to
the data are presented in the tables in Appendix A in rank-
ordering of best AIC fit. Other considerations should go
into weighting branches. We seek to span uncertainty in
what is the best type of scaling (epistemic uncertainty), so a
model which is different than the others deserves additional
consideration.

The pruning of logic-tree branches can also be performed
using additional criteria. One method is through consistency
with both the magnitude-area and implied slip-length scaling.
For example, the S ∼ L1=2 scaling in equation (19) matches
the implicit scaling in the EB equation (10) magnitude-area
relation. Table A4 (b) in Appendix A illustrates this case,
which leads to a fairly substantial trimming of branches in
Table A4 (a), leaving four. In the UCERF2 (WGCEP,
2008) case, this type of cut was made in that the same relation
was used for both size and rate. That is, in the language of
UCERF2, in the Earthquake Rate Models, illustrated in
Figure 4 of theUCERF2 report (WGCEP, 2008), themag-area
relationships were also used in the M0-rate balancing on the
type A fault models. Thus, in UCERF2, since no surface-slip
relations were used, only two total branches remained from
the twomagnitude-area relations considered.While the appli-
cation of this work has focused on slip-rate estimates, which
are more appropriate to well-characterized fault systems
where slip rates on faults are sufficiently defined so that con-
straints can be applied, the consistency argument could also be
used as a constraint for favoring various magnitude-area scal-
ing relations to estimate the sizes of events. Thus, this work
also has potential applicability beyond areas that have well-
constrained slip rates on faults.

While linear slip-length scaling was not favored by our
results, continuity with previous estimates can also be consid-
ered. Table A4 (c) in Appendix A shows an expansion to in-
clude previously used branches in UCERF2 (WGCEP, 2008).

Slip-Rate Budgeting

A new approach to imposing integral constraints on
matching fault-slip rates is proposed in this paper. We sug-
gest using slip-rate rather than moment-rate balancing. This
has the advantage of being able to incorporate new kinds of
data, including data that is less sensitive to rupture-width un-
certainties and is observable at the surface.
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Rate estimates depend on slip estimates. Unfortunately,
slip estimates from surface-slip measurements and frommag-
nitude-area derived estimates differ. However, there is a fairly
simple way to parameterize the differences. In an attempt to
reconcile surface slip with that of magnitude-area estimates,
we observed no obvious magnitude dependence, which was
an important factor. Furthermore, dynamic modeling detected
no strong magnitude dependence for large events in the frac-
tion of deep-moment occurrence (Shaw and Wesnousky,
2008). Both lines of evidence support a simple parameteriza-
tion of an overall constant multiplicative factor—let us call
it Λ—in an attempt to use either surface slip-length estimates
or implied-slip estimates from the magnitude area in order to
estimate rates. Generally, Λ # 1 would be an uncorrected
multiplicative factor, butΛ > 1 could be used if it was believed
that slip was underestimated by unconsolidated sediment or
afterslip in surface creep, or Λ < 1 if it was overestimated
by deep-slip corrections. Importantly, the lack of substantial
magnitude dependence allows for a simple single-parameter
correction.

For complete slip-rate budgeting, we require not only
the scaling of slip with size, but also the rates of events—the
magnitude frequency distribution. Fortunately, we do not
need to deal with this additional part of the problem in
finding a best-fitting scaling relation. This is because the er-
ror metric we have used, the standard deviation of slip, is
robust to the functional forms of slip considered and to the
range of generally used magnitude–frequency distributions
(Gutenberg–Richter b # 1, or characteristic). Only if small
events or creep were dominating the slip budget would we
need to focus on fits in a regime other than the large-event-
dominated regime we have examined.

In locations where surface creep is a substantial fraction
of the slip budget, traditional magnitude-area estimates are
more appropriate for slip-rate budgeting, and full weighting
should be given to those branches of the logic tree. Fortu-
nately, this is a rare situation for faults. Exceptions in
California include the creeping sections of the San Andreas
and Hayward faults, but these exceptions prove the rule as
they are but a small fraction of the active faults considered in
California hazard calculations (WGCEP, 2008).

Depth Extent of Rupture: Relationship between
W and Seismogenic Depth

Past working groups have used the seismogenic depth
H as a proxy for downdip width W during large events.
However, there is some uncertainty as to the precise relation-
ship between W and H. Dynamic ruptures are known to be
able to push at least some distance into velocity-strengthening
layers, soWwould be expected to some extent to be at least as
large as H. Rolandone et al. (2004) found a deepening of
seismicity following Landers. We suggest dealing with the
uncertainty posed by the additional potential deepening with
a constant proportionality parameter ξ:

W # ξH= sin θ: (23)

In this expression, we also have explicitly written the geo-
metric correction for the fault-dip angle θ to transform
depth to downdip length. What values are good values to
use for ξ needs to be discussed. We can probably put one
bound on ξ, since it is unlikely thatW would break less deep
than H:

ξ ≥ 1: (24)

In principle, ξ need not be a constant, and could be a
function of L, rendering W a function of L (King and
Wesnousky, 2007; Leonard, 2010). This further extension
is worthy of additional study. It would, for example, allow
the association of the HB magnitude-area scaling with a
sublinear slip-length scaling; one could trade high implied
slips instead for high implied downdip widths (although
the widths associated with the longest ruptures might be con-
sidered problematic). It would, however, lead to additional
moment-rate estimates for the same slip rates on faults.

Conclusion

We have presented a new way to use geologically
observable surface-slip measurements in seismic hazard
estimates. We have demonstrated how slip-length scaling
complements magnitude-area scaling relations in the two dif-
ferent realms, where it is used in seismic hazard estimates.
One method, estimating sizes of events, provides a consis-
tency constraint in matching implied slip-length scaling of
magnitude-area with surface slip-length observations, thus
helping to distinguish candidate-scaling relations. A second
method involves estimating rates of events. To help match
imposed rate constraints on faults, we propose using slip-rate
rather than moment-rate balancing as the integral constraint
on faults. This use provides an alternative estimate, which
avoids downdip width uncertainties and possible ambiguity
of deep coseismic slip below the seismogenic layer being
mapped onto shallower layers, and potentially biasing slip
estimates from magnitude-area relations.

In examining the consistency of slip-length scaling
implied by magnitude-area estimates with surface slip-length
measurements, we found qualitative consistency in the func-
tional forms. However, systematic quantitative differences
with the magnitude-area estimates are, on average, ∼30%
higher. This may be due to overestimating slip from magni-
tude area due to deep coseismic slip being mapped onto
seismogenic layers, or by surface-slip measurements under-
estimating slip, perhaps due to poorly recorded slip in uncon-
solidated surface layers. Both of those biasing effects remain
possibilities, and both are unresolved uncertainties. Never-
theless, the overall functional consistency lends support for
the approach of using the complementary information con-
tained in the slip-length data.
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Fitting slip-length scaling with different functional
forms, we found evidence for sublinear slip scaling at the
largest events and a breakdown of L scaling, for both the
implied slip from magnitude-area and the surface-slip data.
In the surface-slip data, the best fitting was found for a con-
stant stress-drop model. The next best fitting, which was
nearly as good, was for a L1=2 model. Fits were done using
strike-slip data since reasonable populations of events were
available to perform sufficient statistical fits. Nevertheless,
what data there were for other focal mechanisms appeared
to have behavior consistent with the strike-slip data.

In their seminal work, Wells and Coppersmith (1994)
compared uncertainties in their regressions and determined
that surface slip was much less reliable than other regres-
sions. We also find large uncertainties when fitting with
the power-law functional form implied by their scaling rela-
tions, but instead suggest this is a limitation of the functional
forms they considered in trying to fit the data, not of the data
itself. More constrained functional forms do appear to have
much smaller parameter uncertainties and perform well in
data parameterization. Moreover, the degree of misfit to sur-
face-slip data is comparable to (and actually somewhat
smaller) than the misfit to implied slip values derived from
magnitude-area data. The relatively low scatter in the sur-
face-slip data supports the value of these data.

A new scaling for slip versus length based on a constant
stress-drop model was introduced. A generalization to allow
for arbitrary rake and dip faults was presented. This constant
stress-drop model provides a geometrical explanation for a
longstanding puzzle of the large aspect ratio at which slip
begins to saturate. The constant stress-drop model provided
a very good fit to the slip-length data, finding support for a
constant stress drop connecting an L-scaling to that of a W
scaling regime. The mean values of the stress drop were
found to be consistent with that inferred from small events
(Hanks, 1977; Rubin, 2002), providing support for the
remarkable invariance displayed by earthquakes of constant
stress-drop scaling from small to great earthquakes. The
good fit of constant stress-drop scaling to the surface slip-
length data was true not only of the mean, but the scatter
around the mean. A remarkably small degree of scatter in
the implied stress drops was found, with a COV < 0:5 mea-
sured. This order factor of 2 difference from the mean in
stress drops contrasts with a much larger variation, closer
to a factor of 10 from the mean, observed seismologically
in small events (Hanks, 1977). It may be that uncertainties
in small-event measurements are dominating the scatter,
with, in particular, cubic dependence on corner-frequency
magnifying seismological estimates. Alternatively, it may
be a real effect, and large and great earthquakes might have
significantly reduced scatter in the intrinsic variability of the
stress drops. Whatever the origin of the difference, the rel-
atively small variability seen for large earthquake stress
drops is beneficial for applications to seismic hazard esti-
mates, where tighter constraints are more useful.

Data and Resources

All data are reproduced and available in the Ⓔ elec-
tronic supplement to this article. Data source for WGCEP03
magnitude-area-width taken from published literature (Ells-
worth, 2003;WGCEP, 2003), and reproduced inⒺ Table S1.
Data source for magnitude-area data from Hanks and Bakun
(2002, 2008) is reproduced in Ⓔ Table S2. Data source for
slip-length data is adapted from Wesnousky (2008), with
correction added for the 1857 M 7.8 Fort Tejon earthquake
to reflect the recent LiDAR results of Zielke et al. (2010). We
have also added the value for the 2008 M 7.9 Wenchuan
earthquake Xu et al. (2009). These data are reproduced in
Ⓔ Table S3. A finalⒺ Table S4 contains a database derived
from the sources used in S2 and S3 to construct a database of
properties of the events common to these two databases. All
four supplementary Ⓔ Tables S1–S4 are available in the
electronic supplement to this article.
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Appendix A

Fits of Scalings to Data and Logic-Tree Branches

Table A1: Magnitude-Area Scaling

The standard deviation in Table A1 measures the differ-
ence in magnitudes of the data from the predicted curve. A
least-squares fit is performed, which neglects errors in area
relative to errors in magnitude. Uncertainties on parameters
are shown for parameters fit to data; fixed parameters and
parameters set in previous work or by other fits to data do
not have associated uncertainties. Parameter uncertainties
are estimated from ODR with large vertical values relative
to horizontal data uncertainties. The number of free parame-
ters is denoted by Number, followed by the best fitted param-
eter values. The parameterC0 is the constant in themagnitude-
area scaling relations. Ranking in this table, and those that
follow, is by minimum AIC (Akaike, 1974), which rewards
reduced standard deviation but penalizes additional parame-
ters. AIC # −2 lnL$ 2k, where L is the likelihood and k is
the number of fitted parameters. Thus, differences in AIC cor-
respond to differences in log-likelihood, with relative likeli-
hood of two models being e−ΔAIC=2. This gives a scale of the
differences in AIC that matter, at least a few to be significant.
In the table, we use AIC # n'ln!2πσ2" $ 1( $ 2k where σ is
the standard deviation, n is the number of data points, and k is
the number of parameters. For use in hazard estimates, scaling
relations need to be able to operate in prospective mode, so
fixing parameters, rather than refitting them with each new
dataset, is preferred. Penalizing fits for the number of param-
eters when the parameters are not refit to the dataset does
somewhat overestimate the AIC parameter penalty; however,
given the small number of parameters in all the fits, the over-
estimate inAIC parameter penalty is not important at the levels
being examined here. (a) Data from the WGCEP03 (Ells-
worth, 2003; WGCEP, 2003). The modified WC scaling is
denoted with a dagger symbol: WC†. The S09 scaling with
fixed values of W is denoted with a prime symbol: S090.
(b) Only large magnitudes M >6:5 are considered, reducing
the number of data points from 77 to 49. Because the param-
eters are not refit to the reduced dataset, the parameter
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penalties are perhaps overly harsh, since the parameters are
not refit. However, the AIC values do offer some help as to
the statistical significance of the differences in the standard
deviations, so they are presented, nevertheless. This method
favors to some degree the EB scaling, since it was designed to
fit over this range, while the other scalings were fit over the
whole range. (c) Data from the HB database (Hanks and Ba-
kun, 2008). Because width information is unavailable, only
S090-fixed W solutions are shown. Two of those are shown;
one optimized for the HB data, and the other a default version
based on theWGCEP03 data. (d) Only largemagnitudesM >
6:5 are considered, reducing the number of data points from
87 to 36. Again, this favors the EB scaling.

Table A2: Slip-Length Scaling from Implied
Magnitude Area Data

The standard deviation in Table A2 measures the differ-
ence in slip of the data from the predicted curve. The data are
transformed frommagnitude-area to slip-length as follows. To
get slip, we convert magnitude to moment and divide by area
and modulus to get slip. When length is available, we use it.

When it is not, we divide area by a default width, with width
being the lesser of the length comparedwith downdip seismo-
genic width. To get length, we divide area by width, assuming
width is the lesser of the length compared with the downdip
seismogenic width. Note that we do not refit the parameters,
which were set based on fits in log-space magnitude-log area,
to the new linear space slip-length metric. All parameters refit
to datasets shown with uncertainty estimates on parameters.
(a) Transformed data from WGCEP03 data (WGCEP, 2003).
Lengths from database. (b) Transformed data from HB data-
base (Hanks andBakun, 2008). Lengths from dividing area by
default width, with seismogenic width of 15 km. (c) Surface
slip-length scaling relations are fit to the implied slip-length
HB data. This is done for completeness, and comparison with
the surface level in the different tables.

Table A3: Slip-Length Scaling from Surface-Slip
Data

The standard deviation in Table A3 measures the differ-
ence in slip of the data from the predicted curve. The data is
derived from the Wesnousky database for surface slip of

Table A1
Magnitude-Area Scaling Fits

Scaling Misfits Parameters

Name Equation Standard Deviation AIC Number Values

(a) Fits to complete WGCEP03 magnitude-area-width dataset
S09 (12) 0.202 −23.62 2 C0 # 3:98 β # 7:4& 2:3
WC† (13) 0.203 −22.87 2 C0 # 3:89& 0:11 C1 # 1:08& 0:04
S090 (12) 0.204 −20.65 3 C0 # 3:98 β # 7:4 W # 15 km
HB (11) 0.212 −16.13 2 C0 # 3:98 Ac # 537 km2

WC (13) 0.217 −12.50 2 C0 # 3:98 C1 # 1:02
EB (10) 0.229 −6.15 1 C0 # 4:20

(b) Misfits to M >6:5 subset of WGCEP03 data without refitting parameters

EB (10) 0.173 −31.09 1 C0 # 4:20
S09 (12) 0.177 −26.23 2 C0 # 3:98 β # 7:4
WC† (13) 0.178 −26.32 2 C0 # 3:89 C1 # 1:08
S090 (12) 0.190 −17.60 3 C0 # 3:98 β # 7:4 W # 15 km
HB (11) 0.213 −8.72 2 C0 # 3:98 Ac # 537 km2

WC (13) 0.216 −7.17 2 C0 # 3:98 C1 # 1:02

(c) Fits to complete Hanks–Bakun magnitude-area dataset

S090 (12) 0.208 −20.54 3 C0 # 3:98 β # 5:0& 1:4 W # 19& 3:4 km
HB (11) 0.213 −18.46 2 C0 # 3:98 Ac # 537 km2

WC† (13) 0.215 −16.43 2 C0 # 3:86& 0:08 C1 # 1:08& 0:03
S090 (12) 0.213 −15.78 3 C0 # 3:98 β # 7:4 W # 15 km
WC (13) 0.220 −12.32 2 C0 # 3:98 C1 # 1:02
EB (10) 0.275 24.23 1 C0 # 4:20

(d) Misfits to M >6:5 subset of Hanks–Bakun data without refitting parameters

EB (10) 0.185 −17.26 1 C0 # 4:20
WC† (13) 0.193 −12.21 2 C0 # 3:86 C1 # 1:08
S090 (12) 0.200 −7.58 3 C0 # 3:98 β # 5:0 W # 19 km
S090 (12) 0.204 −6.32 3 C0 # 3:98 β # 7:4 W # 15 km
HB (11) 0.213 −5.27 2 C0 # 3:98 Ac # 537 km2

WC (13) 0.216 −4.05 2 C0 # 3:98 C1 # 1:02

Earthquake Surface Slip-Length Data is Fit by Constant Stress Drop 891



large strike-slip events (Wesnousky, 2008). (a) Shows a com-
parison of the surface slip data with scaling relations
derived from transformed magnitude-area to implied slip-
length. (b) Shows a comparison of the surface-slip data with
scaling relations proposed for surface slip-length scaling.
The best overall fit to the data, in terms of AIC, is constant
stress-drop (S12) scaling. With respect to the power-law fits
across the different datasets, note the parameter sensitivity
of η to the datasets, with η varying substantially between fits
to the surface-slip data here and the implied-slip data in
Table A2. Note also the large ratio of the uncertainty in am-
plitude of the power-law fit relative to the amplitude itself.
This is an undesirable quality of a measure and argues
against this functional form. In contrast, the covariance of
the fits L1=2, S12, and L to the different datasets is substan-
tial; they are stably varying together.

Branches in Logic Tree

Table A4 shows branches in logic trees. (a) Maximal
branches showing four viable magnitude-area scaling rela-
tions combined with four viable slip-length scaling relations,
for a total of 16 branches. (b) Trimmed set of branches using
consistency in scaling assumptions, having basis of scaling
in sizes being consistent with same assumptions underlying
scaling in rates. This type of consistency was used in
UCERF2. (c) Extension of trimmed consistency set to in-
clude previously used branch, which also provides role as
outlier. Note: Default values unless otherwise specified are
W # 15 km and μ # 30 GPa. Tables are included in col-
umns for examples of parameters one might use for scaling

relations fit to datasets; other datasets would result in other
values for scaling relation parameters.

Appendix B

Parameters for Shaw09 Scaling Relation

The Shaw09 (S09) parameters in equation (12) are set as
follows. Because the S09 relation is meant to generalize the
HB relation, we fix the constant parameter to equal the con-
stant in the HB relation. This is not necessary, but uncertain-
ties in the constant parameter are dominated by uncertainties
in area estimates at small magnitudes, and no additional in-
formation in this regime has been added here; therefore, we
adhere to continuity.

Substantial uncertainty exists concerning the relation-
ship of seismogenic depth and rupture width. Because of
these uncertainties, and because the S09 parameters use
width information, we calibrate the parameters in a way that
aims to best reproduce similar treatments of the inputs. The
WGCEP03 database contains width information; therefore,
we use that to calibrate the S09 β parameter.

The width W can be treated either as a fixed value and,
thus, as a parameter in the S09 relation or as input from a
given rupture. The advantage of using it as an input is that
it allows for a broader range of applicability beyond the fixed
value. It is also determined to do a better job fitting the data.
Nevertheless, there are instances where one may want it to
have a default value, such as during the examination of
sensitivities and uncertainties in W estimates, or when width
information is unavailable, as it is in the HB database, which
has only magnitude and area.

Table A2
Implied Slip-Length from Magnitude-Area

Scaling Misfits Parameters

Name Equation Standard Deviation AIC Number Values

(a) Misfits without rescaling for new metric; from WGCEP03 data
S09 (12) 1.212 252.1 2 C0 # 3:98 β # 7:4
S090 (12) 1.245 256.3 2 C0 # 3:98 Wβ # 15 × 7:4 # 111 km
EB (10) 1.275 258.0 1 C0 # 4:20
WC† (13) 1.415 276.0 2 C0 # 3:86 C1 # 1:08
HB (11) 1.687 303.0 2 C0 # 3:98 Ac # 537 km2

WC (13) 1.699 304.1 2 C0 # 3:98 C1 # 1:02

(b) Misfits without rescaling for new metric; from Hanks and Bakun (2008) data

S090 (12) 1.180 279.6 2 C0 # 3:98 Wβ # 15 × 7:4 # 111 km
EB (10) 1.211 282.2 1 C0 # 4:20
WC† (13) 1.282 294.1 2 C0 # 3:86 C1 # 1:08
HB (11) 1.459 316.6 2 C0 # 3:98 Ac # 537 km2

WC (13) 1.549 327.0 2 C0 # 3:98 C1 # 1:02

(c) Surface slip scaling relations fit to Hanks–Bakun implied slip-length data

Lη (21) 1.190 281.1 2 C8 # 0:026& 0:013 km1−2η η # 0:632& 0:061
L1=2 (19) 1.236 285.8 1 C6 # 7:46& 0:42 · 10−5

S12 (22) 1.249 287.6 1 Δσ # 5:95& 0:34 MPa
L (20) 1.339 299.7 1 C7 # 1:19& 0:08 · 10−6 km−1
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To find a default β value, we fix W, since the pre-event
area based on seismogenic depth is more akin to a default W
value. California fault values have an averageW ∼11 km, so
we take that as the fixed value. To avoid mixing in substan-
tially biggerW’s, we restrict the WGCEP03 (WGCEP, 2003)
dataset on which we fit β to W < 15 km. For these events
with widths comparable to California events, we obtain for
W # 11 km a best fit β # 7:4 using least-squares magnitude
misfits. There is quite a broad minimum, and other values
could also be used with little degradation in misfit. This does,
however, give a means of fixing a value for β, and if it per-
forms well on other datasets, it will be a satisfactory param-
eter choice. ODR fits using all the WGCEP03 dataset give
β # 7:7& 2:0, which is an alternative means of fixing β,
well within the broad range of uncertainties in β.

For the HB dataset, because only area is provided, a
fixed value of W is used. We use a default value of
W # 15 km for this global dataset, which includes some
ruptures believed to be much wider than typical values for
California faults. A good job fitting the data would indicate
this is a reasonable choice.
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Table A3
Slip Length from Surface-Slip Data

Scaling Misfits Parameters

Name Equation Standard Deviation AIC Number Values

(a) Implied slip-scaling relations
S09 (18) 0.741 51.00 2 C5 # 2:80& 0:53 × 10−5 Hβ # 73:1& 19:7 km
EB (15) 0.804 52.44 1 C2 # 4:91& 0:38 × 10−5

HB (17) 1.171 68.22 1 C4 # 1:65& 0:20 × 10−5

(b) Surface-slip scaling relations

S12 (22) 0.760 50.05 1 Δσ # 3:91& 0:29 MPa
L1=2 (19) 0.804 52.43 1 C6 # 4:91& 0:38 × 10−5

Lη (21) 0.788 53.60 2 C8 # 0:093& 0:069 km1−2η η # 0:421& 0:092
L (20) 1.174 68.34 1 C7 # 7:10& 0:88 × 10−7 km−1

Table A4
Logic-Tree Branches

Sizes Rates

Name Equation Table Name Equation Table

(a) Full branches
S09 (12) 1a S09 (18) 2a

EB (15) 2a
S12 (22) 3b
L1=2 (19) 3b

EB (10) 1a S09 (18) 2a
EB (15) 2a
S12 (22) 3b
L1=2 (19) 3b

HB (11) 1a S09 (18) 2a
EB (15) 2a
S12 (22) 3b
L1=2 (19) 3b

WC† (13) 1a S09 (18) 2a
EB (15) 2a
S12 (22) 3b
L1=2 (19) 3b

(b) Trimmed by consistency of scaling assumption

S09 (12) S09 (12)
S12 (22)

EB (10) EB (10)
L1=2 (19)

(c) Extension of consistency set to previously used branch

S09 (12) 1a S09 (12) 1a
S12 (22) 3b

EB (10) 1a EB (10) 1a
L1=2 (19) 3b

HB (11) 1a HB (11) 1a
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