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An analytic theory using WKBJ methods for selection with local perturbations in the Saffman-
Taylor [Proc. R. Soc. London, Ser. A 245, 312 (1958)] problem is presented. I obtain qualitative
agreement with previously published phenomenology, including symmetric narrowed fingers for lo-
cal reductions in the surface-tension parameter, narrowed asymmetric fingers for local increases,
and scaling of the tip curvature and asymmetry with the square root of the surface-tension parame-
ter. The source of the universality in the perturbed problem is discussed, giving some explanation
of why the experimental perturbations can be modeled by locally varying surface tension. Very
good quantitative agreement between theory and a numerical simulation of the same perturbation is
shown, with no adjustable parameters to fit. Finally, I outline experiments to test new behavior pre-
dicted by the theory; a quantitative prediction observable experimentally is given.

I. INTRODUCTION

Recently, much attention has been given to moving
free-boundary problems, both because of their relevance
to interesting physical systems, and because of some of
the surprising and elegant answers that have been found
to long-standing puzzles. The growth of dendritic solids
from liquid melt,! electrodeposition,’”* and diffusion-
limited aggregation® (DLA) are a few such systems. The
shape of the boundary between two different phases—
liquid-gas, nematic-isotropic, occupied-unoccupied—is
studied as one phase is driven to grow at the expense of
another. We search for similarity solutions in time, for
example, translation at constant velocity, or scale invari-
ance, and then examine how these states can be reached,
and their stability. The problem of fingering in two-
dimensional viscous fluid flow has connections to a num-
ber of different topics arising in the free-boundary stud-
ies. In what follows in the introduction, I will set up the
problem to be considered here, and point out some of
these connections.

A. Equation and boundary conditions

The physical system consists of two closely spaced
glass plates, called a Hele-Shaw cell,® filled with two im-
miscible fluids. The boundary between them is studied
when one fluid is pushed against the other. The laminar
viscous flow allows averaging over the small plate separa-
tion, so we can consider just a two-dimensional problem.
In the viscous fluid there is no inertial term, so the veloci-
ty of the fluids moves with the gradient of the pressure:
v~Vp. Taken with the incompressibility of the fluid,
V-v=0 we get the pressure field satisfied Laplace’s equa-
tion V?p =0.

At the walls of the channel, and at infinity, we have
fixed boundary conditions: there is no flow through the
walls, and a uniform flow down the channel at infinity.
The difficulty is the free interface boundary. The inter-
face moves with the local fluid velocity, given a dynami-
cal boundary condition that v;-fi= const X Vp-fi, where
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v; is the interface velocity and 1 is the unit normal to to
interface. The other interface condition in the fingering
problem is a static one. When the viscosity of the push-
ing fluid is much smaller, we can take the pressure as be-
ing constant throughout it. Then the static boundary
condition is p =TK, where T is the surface tension and K
is the curvature.

There are many closely related physical problems with
this same dynamic boundary condition, but a different
differential equation or static boundary condition. Gen-
eralizing Laplace’s equation to the diffusion equation
gives a whole class of problems called Stefan problems:
dendritic growth and directional solidification are two ex-
amples with the same free-boundary conditions as the
case of viscous fingering.” The equation for fingering in a
non-Newtonian fluid involves an extra term in the
differential equation; there, a highly ramified branching
pattern, like DLA, is seen.® In DLA, there is a noise
term added to the dynamic condition, while the surface
tension is zero. If we mimic the boundary conditions of
the fluids, using DLA walkers, by reducing the noise and
adding surface tension, fingering like that of the fluids is
observed.’ In this paper I generalize the static boundary
condition to allow for local variations in the surface ten-
sion.

B. Selection problem

In the absence of surface tension, continuous families
of exact solutions are known in the fingering!® and den-
drite problems.!! Experimentally, however, it is found
that a unique solution is selected for each value of the
surface tension parameter. This situation has arisen in a
number of systems: when we neglect in a simplified mod-
el a physical effect that seems to be small, we get a con-
tinuum of solutions, but including this term selects a par-
ticular solution. These kinds of perturbations are called
singular perturbations. Current research on directional
solidification,!? viscous fingering, and dendrites!’ is
studying questions of selection and singular perturba-
tions. In this paper, I will develop the theory for the
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variation in the selected solution when the static bound-
ary condition is changed locally.

Thirty years ago Saffman and Taylor found a two-
parameter family of finger solutions in a channel at zero
surface tension: one parameter represented the width of
the finger, and the other the asymmetry in the channel.'*
But when the experiment was done, only one solution was
observed, the symmetric finger whose width went to 1
from above as the surface tension went to zero.!> The
question that remained unresolved until recently was why
this particular solution was selected. McLean and
Saffman, when they put surface tension into the problem,
obtained an integrodifferential equation which they
solved numerically, and found a selected width for
nonzero surface tension.'® But at the same time, in carry-
ing out a regular perturbation expansion in the surface
tension, to all orders no selection mechanism was found.
The problem was finally tackled analytically in the last
few years.!” 72! The techniques involved taking the exact
solution for zero surface tension, and then looking at the
correction to the shape of the finger due to surface ten-
sion. The surface-tension term is proportional to the cur-
vature, and in the equations this term is a singular pertur-
bation. It turned out that the solutions to these equations
contained terms exponentially small in the surface ten-
sion which were causing the selection. This is why no
selection was seen in the regular perturbation expansion.

Next, it was found that local perturbations to the inter-
face could drastically alter the selected finger solution.
When small bubbles were placed at the tip of a finger,
narrowed fingers with widths well below the 1 barrier
were obtained by Couder et al.?> In experiments with
thin wires, narrowed asymmetric fingers were observed.
A numerical simulation in which the surface tension was
locally varied also gave narrowed asymmetric fingers for
local increases, and symmetric solutions for local de-
creases; similar scaling laws for the asymmetry and tip
curvature as a function of the dimensionless surface-
tension parameter were seen in the experiment and simu-
lation of Zocchi, Shaw, Libchaber, and Kadanoff
(ZSLK).2>?* An alternative model for the effect of the
bubble has been given by Hong and Langer?® who con-
sidered the bubble as giving a finite positive cusp at the
tip of the finger. Hong has also modeled the wire by a
negative cusp.?® Later I will comment on the relation of
their model to the technique used here.

It is the purpose of this paper to explain this more gen-
eral selection problem when there are perturbations
present. I obtain qualitative agreement with the phenom-
enology of the perturbed problem, scaling laws consistent
with observed values, and very good direct quantitative
comparison between theory and simulation. Additional-
ly, features of the theory which ought to be observable
experimentally are discussed, and measurements which
would test these predictions presented.

C. Outline of the paper

In the absence of surface tension, the interface is a line
of constant pressure. Surface tension adds a correction
that changes the condition for the field on the boundary.
The pressure is now a constant times the curvature—a
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nonlinear function of the shape. The method I will use
was developed by Tanveer.?” The method consists of
transforming this boundary condition into a differential
equation for the correction to the exact solution, and tak-
ing advantage of the small surface-tension parameter on
the highest derivative to use WKBJ techniques.?® Follow-
ing ZSLK, I will generalize the method to allow for vari-
able surface tension, with perturbations represented by
local variations.

The calculation proceeds as follows. In Sec. II I
analytically continue and linearize a real equation that
must be satisfied on the interface. This gives a complex
linear ordinary differential equation for the correction to
the shape of the finger due to surface tension. The tech-
nique is Tanveer’s, my only modification being the gen-
eralization of allowing for spatially dependent surface
tension. At the end Sec. II I discuss the form of the
surface-tension perturbations to be used. We then have a
complete formulation of the problem. In Secs. III and IV
I solve the equations. The idea is to find solutions good
at each tail, and continue them forward to the tip, where
they should match. For general finger width and asym-
metry we will find the solutions good at each tail do not
match at the tip. In Sec. III I follow how Tanveer calcu-
lates the mismatch of the solutions in the case of constant
surface tension, presenting it in a way that can be used
for the generalized nonconstant surface-tension problem.
The new work is contained in Sec. IV. There I calculate
the contributions to the matching of the solutions at the
tip due to local variations in surface tension. An explicit
expression for one localized perturbation is given, as well
as a general equation for multiple perturbations. Section
V discusses the results of the calculation. I get symmetry
relations for the different perturbations, scaling relations,
quantitative comparison between theory and simulation,
and predictions for experiments. The reader not interest-
ed in the details of the calculation can skip to Sec. V; I
summarize there the equations that I will use that were
derived in the first three sections.

II. FORMULATION OF THE PROBLEM

In this section I outline the method of Tanveer, while
modifying it to allow for varying surface tension. We be-
gin with the boundary condition at the interface for a
“steady-state’ finger moving at constant velocity down
the channel. We analytically continue this condition on
the shape of the finger, and get a second-order ordinary
differential equation for the correction to the shape of the
finger due to surface tension. Along the way we linearize
the differential equation, while keeping the highest
derivative which is a singular perturbation to the ODE.
In the last part of this section I discuss the form of the
perturbations used in this paper. Later on in the paper, I
will discuss how the differential equation is solved.

A. Setting up the calculation
1. Boundary conditions for the shape correction

The pressure field ¢ satisfies Laplace’s equation, so we
can write it as the real part of an analytic velocity poten-
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tial W(z)=¢+iy. This is an analytic function of the
spatial variable z =x +iy, where x is the distance down
the channel and y is the direction across. Change to a
reference frame moving at velocity U so that the finger is
at rest. The statement that it is a steady state is that the
finger boundary is a streamline;

¥=0 (1)

on the finger boundary. In the moving frame ¢ is just
.ot in the rest frame minus the translated velocity times
x: ¢+ Ux =¢,. The surface tension on the boundary
gives ¢, and we get

2

3 r 7K + const . (2)
wl2u

Here K is the curvature of the boundary. The constant
coefficient b2T /w?12u comes from the Hele-Shaw cell
approximation: b is the plate separation, w the channel
width, p the fluid viscosity, and T the surface tension.
The thing that is new is 7. The function 7 will be allowed
to vary in space; it represents a perturbation to the inter-
face. It is the point of this paper to show how the intro-
duction of a 7 which is nonconstant alters the selection
mechanism.

We are going to be doing many analytic continuations.
Rather than work in physical z space, it is more con-
venient to map conformally the fluid region onto a
simpler domain. We map the fluid to the upper half unit
disc in the § plane, with the finger boundary correspond-
ing to the unit semicircle, and the walls being mapped to
the real diameter. The solution is the function which
maps this domain back to the physical plane, while
respecting the boundary conditions there. We write the
solution as

¢+ Ux =

=2 pE)— e+ 2(1—A)(1— cosB) In(E—1)
m o mw

+%<1—m( 14 cosB) In(E+1)

—i2(1—=A)1—cosB)+i . (3)

The right-hand side, except for f, is the exact two-
parameter family of solutions for zero surface tension
found by Saffman and Taylor. The fraction of the width
of the channel filled by the finger is A, while

a=(1—A)cosf (4)

is the asymmetry of the finger, and is the displacement of
the finger from the center of the channel (@ =0 is a sym-
metric finger). The correction to the shape of the finger
due to surface tension is f.

To represent the effect of no flow through the walls we
map the fluid onto the upper half plane, and set

Imf =0 (5)

on the real diameter. (The real axis is like a “mirror”).
Our other condition for f comes from Egs. (1)-(3). Com-
bining them, choosing the appropriate origin for z, and
properly analytically continuing, we get
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Ref=—G7(§)K (&) . (6)

G is a dimensionless surface tension

2.2
=T (7)
RwuU
The curvature K can be written as
K@=t 1+ Re |t-L In(f' +h) ®)
|f'+h| ag ’

where f'+h =(m7/2)dz/d§. Our plan is to analytically
continue this equation for f, in order to write it as a
differential equation. When later on we do this continua-
tion we will need the analytic structure of h, defined by
its zeros and poles:

h(&)= HE—D) , 9)
where

pi=a+[a?+(2r—1)]'"2 (10)
and

py=—a+[a*+2r—1]"2. (11)

Equation (6) is a nonlinear differential equation for f.
The equation can be linearized by taking |f'/h|<<1.
Tanveer solves the uniform surface-tension problem for
both the nonlinear equation and the linearized equation.
He finds the same qualitative behavior, with slight quan-
titative differences. Because I expect the features again to
be essentially given by the linearized problem, and since
the linear analysis is much simpler and can be treated fur-
ther analytically, I will take only that approach in this

paper.

2. Linearization and analytic continuation

To linear (6) we take f'/h to be small. This approxi-
mation will work except at the zeros of h. At the zeros of
h the dominant term is f'/h?, so we keep this term in the
linearization, which is now valid everywhere. The result
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o
|

When we finish the calculation, we will have to go back
to see that the terms that were dropped were done con-
sistently. Rather than waiting for the end of the calcula-
tion to justify the linearization, I will note now the order
of the terms: away from the singularities of &,
f/G~G™1? f'~1, f"~G 12 near the zero —1/p,
of h, f'/h ~1 and the contributions come from a neigh-
borhood <G ~!/2, so that Gf’'/h? does indeed dominate
the ff'/h term neglected in the linearization.

The next step is to analytically continue this real equa-
tion (12), valid on the unit circle, to a complex equation
valid everywhere. While the details are interesting, I will

+GRe[1+§h—

=0.
h

%IhIRe(fH-GRe

(12)
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only sketch them here, since Tanveer goes through them
carefully, and the only modification is to replace |A| by
|h| /7. Define a new analytic function g with the proper-
ty that

Reg=%|thef (13)

on the unit circle. Then (12) becomes

+g

Re ghé—f” —G—éﬂf +G =0. (14)

Being careful about the kinds of singularities in (14),
Tanveer shows that the analytic continuation of (14) is
just the expression inside the brackets, which vanishes
everywhere. Now to find g. Using the Poisson integral
formula to find g inside the unit circle from its real part
on the unit circle, and using {*=1/¢ on the unit circle,
gives g in terms of an integral on the unit circle of a ker-
nel times f(§)+ f(1/£). The next step is to continue this
expression to find g outside the unit circle. This involves
deforming the contour outside the circle, and gives some
extra residues from the singularities of the kernel. The
net result is to get an expression for g which is given by
an integral over the unit circle plus an algebraic function
times f({)+ f(1/£). We now have an expression involv-
ing f"(§), f'(&§), f(§), f(1/§), and an integral of
FE)+f(1/8).

The continuation uses the symmetry imposed by the
walls, that |A (&) Ref(£)=|h(L*)|Ref(E*) on the unit
circle. This symmetry w111 also have to be present in 7:
7(&)=7(£*) on |£|=1. Taken with the condition that 7 is
real on the unit circle, this gives

Im[7]=0 (15)

on the real diameter.

The final step giving the differential equation is to re-
strict the region of validity to having § be on or outside
the unit circle. This is done to simplify the term we have
involving f(1/§), and the integral of f({)+ f(1/§) on
the unit circle. Then our equation will only involve f(§)
and its derivatives. For § on or in the unit circle, if we
write f as a regular perturbation expansion,

f= i G"f,, (16)

n=1

the corrections to this expansion will be exponentially
small. For { outside the unit circle, the corrections can
become large. It is for this reason we will be examining
the equation in that domain, where these otherwise hid-
den transcendentally small terms can become large
enough to be seen. If we restrict the region of validity of
the equation to be for |£| > 1 then we can replace f(1/£)
by the first term in the regular perturbation expansion,
f1(1/8), where

_ 5 S B
e I e
o 1t Re(|§thr§h/h’)T(g,) , an
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which is valid for || < 1.
The result is that the continued equation is now
”n ’ L
f"rof't—f=R, (18)
G
with
- _ K
Q=—"> (19)
hlh|
L=——
e
é« 1/2(§+p2)1/2(1+§p2)3/2(1_é-p])3/2 20)
gHgr—1y ’
h S8 L
R=—h————""7-—"7-—-—-= .
£ c Tfl(l/g) 21)

The term I, is the analytic continuation of |4 | Ref, but
it will not play any role in the rest of the calculation.
This is a linear second order differential equation for the
shape correction f. Solving it correctly will be a long and
difficult task. To complete the specification of the prob-
lem, we need the function 7. In the next section I discuss
this function 7, which represents perturbations to the
finger interface.

B. Form of 7

I now present the form of the perturbations I will use
in this paper. Here, the idea of universality is very im-
portant. The experiments with a wire, and simulations
which used localized surface-tension perturbations which
were Gaussian functions of the lateral direction y,
showed very similar behavior (ZSLK). There was no
physical connection between the form of the perturbation
in the simulation and the wire, other than that both were
localized. It is then hoped that this lack dependence on
the specific form of the perturbation will also show up in
the analytic treatment. Thus, rather than trying to re-
create a very complex physical system of a wetting wire
intersecting a moving meniscus, I seek a form simple
analytically, out of which more complicated forms could
be built if desired. Later, we will be able to see the source
of this universality.

Physically, we want something localized in space.
Mathematically, the effect of the function is seen through
its zeros and poles. The simplest structure is a ratio of
polynomials. Let us work this out in the § plane, build-
ing in the proper symmetries. The lowest order would be
a dipole

&— gOrt
g gOr:

where {, is some point on the unit semicircle and r, and
r, are positive real numbers (since we do not want any
zeros or poles on the finger, they should also not equal 1).
We have to preserve the symmetries that Im7=0 on the
real diameter and on the unit circle. That means
7(§)=7(1/§)=7*(£). Building that all in gives

(22)
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r 66— 1/r)
r)(§8o—1/1¢)

1 _ (E—6or NE—Eo/r) (60—
&) (E—Lors NE—Eo/rs) (660~

(23)

This expression has the form of two quadrupoles, one in
the upper half plane, and one reflected about the real axis
in the lower. To get a feel for what this 7 perturbation
looks like, let us write it in another form. For §0=ew",
and

r+Lt=2+02, (24)
r,
rs+—r—1—=2+02(1+A) 25)

s
on the unit circle (23) can be rewritten as

A

1+
1+[2—2cos(v—v,)]/0?

T=

A
+
1+[2—2cos(v+vy)]/0?

(26)

For small o this is a function which is nearly constant
away from v,, and varies locally at v, with a range o and
amplitude 4. For v#v; and o very small, the denomina-
tors will be very large, and 7 will be essentially 1. At
v=v,, 7=1+ A. The definitions (24) and (25) for r; and
r, gave a simple expression for (26). When working with
the representation of 7 given by (23), however, it is
simpler to define r; and r, by

r=1+o, 27
r=1+o0Vi+4 . (28)

This is the definition of r; and r, I will use in the paper.
This gives basically the same perturbation as (26): a qua-
dratically falling even perturbation in v with width o and
amplitude A4, with

—1<A<w, (29)
o>0. (30)

Finally, I can build up nearly any perturbation by com-
posing these elemental 7’s:

" max

=10 7,(v,, 4,,0,) . 31

We will see later, however, that for small perturbations
many of the results are quite independent of the details of
the perturbation, and they can be characterized in a most
simple universal way.

III. MISMATCH IN THE CONSTANT-r PROBLEM

We now proceed to solve the differential equation (18),
taking advantage of the smallness of the parameter G.
We construct a particular solution analytic everywhere
along the finger boundary, with no exponentially growing
parts. We will see this can only be done for special values
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of the width and asymmetry, and this will be the selection
condition. In this section I show how Tanveer obtains
the mismatch of the solutions good at each tail. The new
work is contained in Sec. IV, where I calculate the contri-
butions for quadrupole perturbations, giving the general
selection for multiple quadrupoles and the explicit ex-
pression for a single quadrupole.

A. WKBJ solutions and matched asymptotic expansions

In the limit as G—0 there are two linearly indepen-
dent WKBJ solutions to the homogeneous equation (18):

gazhl/zL—lmTl/‘tem*“Z , (32)

gﬁzh1/2L~1/47_1/4€,—1>G*‘/2 , (33)
where

P(O)= fi/pz deiL V2 (34)

These solutions will be valid except where the approxima-
tion breaks down, at the zeros and poles of L and 7. The
subtlety in these WKBJ problems is that the two true
solutions, call them F, and Fg, may be asymptotic to one
linear combination of the WKBJ solutions in one sector
of the plane, and to a different one in another sector.

A simple way to see the differing asymptotic combina-
tions is to consider the function 2 cosh(£?G ~!/2). For the
argument of §: —w/4< arg({)<w/4 and also on the
similar wedge surroundmg the negative real axis, this is
asymptotic to 67 , whereas in the two wedgzes be-
tween these two sectors it is asymptotic to e
The changeover occurs on the lines between the real and
imaginary axes, where the terms are of comparable order,
and one changes from being exponentially larger than the
other to exponentially smaller. This illustrates a general
feature, called the Stokes phenomenon: When passing
through a line emanating from a turning point or pole on
which the real part of P is constant (called a Stokes line),
you can have the true solution be asymptotic to different
linear combinations of the WKBJ solutions. (In the ex-
ample mentioned above, P =£2 and the turning point is
at {=0.) We calculate these linear combinations by look-
ing very close to those singularities. Then using the
properties of the special functions which solve the locally
simple differential equations, we can calculate the linear
combination, or connection formula. This feature, that
there can be exponentially small terms in the solution in
one part of the plane which become exponentially large in
another part of the plane, is what makes a naive regular
perturbation treatment not work. The selection will
come from making sure there are no exponentially grow-
ing parts.

A simple analogy to the calculation we will be doing is
the one-dimensional quantum-mechanics oscillator prob-
lem. There, we start at — c with the exponentially de-
caying solution, and continue it forward to the classical
turning point. We “scatter”” through the turning point,
matching to the two oscillating solutions on the other
side, then continue across to the second turning point.
There we again scatter into the two solutions, one decay-
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ing and the other growing exponentially. However, we
want our solution to match to only the decaying solution.
Only special isolated parameters will satisfy this condi-
tion, and these give the eigenvalues of the problem. We
have a similar problem here: we want the shape correc-
tion to be have no exponentially growing parts on the
finger. We can start at one tail of the finger, and continue
around the tip, scattering when we pass through any
turning points or poles. When we get around to the other
tail, we want there to be none of the exponentially grow-
ing term mixed in. Another way is to start at both tails
with the proper algebraic shape, and then continue for-
ward to the tip on each side, demanding that they meet
exactly with no discontinuities (that it is analytic). This
matching near the tip is, in fact, what we do. It can be
seen now, in a rough way, the effect of the perturbations:
by adding turning points and poles to scatter the solu-
tions good at the tails, they can change this ‘“‘resonance”
eigenvalue matching condition at the tip.

The plan is as follows. We first construct solutions
good at each tail. These solutions will be made up of
combinations of the homogeneous WKBJ solutions; more
precisely, combinations of functions which are asymptot-
ic to the WKBJ solutions. Then we learn how to contin-
ue the functions and solutions into other sectors where
the original asymptotic expansions are no longer valid.
When we have continued these solutions good at each tail
to the tip, we will calculate how much they miss by.
There will be a contribution to the mismatch due to the
shape of the finger, and a contribution due to the local
variations in the surface tension. Balancing the two con-
tributions so there is no net mismatch will give the selec-
tion condition.

B. Solutions good at each tail

The method of variation of parameters gives us a par-
ticular solution to the inhomogeneous equation (18):
¢ F R ¢ FgR
=F _— '—F _— !
F=Fpd) [ —5mdg = Fu() fg[, 5odg . (9

where F, and Fg are exact solutions to the homogeneous
problem and &, and £ are constants. To this we can add
any homogeneous solution; this is equivalent to changing
the lower limits of integration. What does this solution
look like? First, let us get a feel for the homogeneous
solution. Asymptotically, they will be given by linear
combinations of the two WKBJ solutions g, and gs. For
ReP >0, g, is exponentially large and gg is exponentially
small, and vice versa for ReP <0.

We are interested in both the constant ReP and ImP
lines coming out of the singularities of 7 and L. The con-
stant ImP ( anti-Stokes) lines are steepest descent paths,
and across the constant ReP (Stokes) lines the exact
homogeneous solutions F, and Fj can be asymptotic to
different linear combinations of the WKBJ solutions. For
the case of A <1 and the asymmetry parameter not too
large, so that p, and p, are complex, the relevant lines of
constant ReP and ImP are shown in Fig. 1 (see Tanveer,
Fig. 10). In a later section, I will show what the Stokes
lines for 7 look like. The arrows point in the direction of
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finger
tail tail

=-\+a

[ PLANE

y:x+a

FIG. 1. Relevant Stokes (constant ReP, dashed lines) and
anti-Stokes (constant ImP, solid lines) lines from —1/p, in the
case of complex p, and p,. The arrows are in the direction of
increasing value. The numbers correspond to the sectors in the
text.

increase (the opposite convention of Tanveer).

We see that g, becomes exponentially large in sectors 2
and 3 while gg is in sector 1 (see Fig. 1). Fix the linear
combinations by taking F,~g, and Fg~gg in sector 2;
this fixes their linear combination in all the other sectors
as well, though it may be different in different ones. Now
we want f to be an algebraic function; thus the
coefficients multiplying the exponentially larger terms
must be exponentially small. As this has to be valid at
the tail {= —1, this fixes one of the lower limits of in-
tegration in (35): §{,= —1. It turns out this linear com-
bination is also valid into sector 1 (more about this later).
By a similar argument, ReP({g) has to be at least as
small as the smallest value of ReP on the unit circle. It
turns out to be most convenient to choose ;=0 as the
lower limit, though this particular choice of {z will drop
out in the end and not affect anything (for a more de-
tailed discussion of all this see Tanveer, pp. 1595 and
1596). This solution,

F,R F,R
dE—F (£) ffl =g, 66

f=Fp&) [F =

works in sectors 2 and 1. Similarly, we can construct
another solution,

I F,R _ F;R
f=F,;(§)f0§—u7d§’—Fa(§) ffLde', (37)

valid in sectors 3 and 1, where Fg~gg and F,~g, in sec-
tor 3. What we need to show is that we can match
smoothly at the tip two solutions good at each tail. Our
project, then, is to learn how to continue these solutions
into other sectors to see if they match. It will turn out
this matching can only be done for special discrete pairs
of values for the finger width and asymmetry, and these
depend on 7.
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C. Shape mismatch My of f and f

To match f and f, we have to see how the F’s contin-
ue. Let us first look at the constant-r case. As I will
show later, it turns out that F,~g, in all the sectors.
Fg, however, changes; for Fz~gg in sectors 2 and 1, we
find F5~g3+bmga~FB+bmFa in sector 3, where b,, is
a constant I will give later. Let us try to match the fs.

I will write f in terms of f plus some correction. To
get the f part, we need to change the lower limit of in-
tegration in the integral that is multiplying F:
J

R

r=rp Jlagr, & F, [ acr, R
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[ dEFgR/W— [$d{'FgR /W. Note that we also had
to change Fj to FB' Since F, blows up at {=1, we would
not want to carry the b,, F, piece out to there. Instead,
we leave it behind along the way in the line integral, at
the point p,, (more about p,, later). The paths of integra-
tion I will use here, which are discussed later on, are
shown in Fig. 2.

One comment about notation: we are going to be see-
ing a lot of these fgadg’FR /W terms. To clean things

up I will often drop the d{’R /W and just symbolically
write fg F. That said, here goes;

=(Fptb,Fo) [FF—F, | [ Fyt S buFot [) Byt INA

=F, fogFa—Fa flgF,pLFa [fopm b, F,— ff': Fg— fp],,. Fﬁ] , (38)
M

SO
f=F+MgF,, (39)

where

Ms=b, fop”' dEF, ff? dg'FB»f;— fpldg'ﬁﬁ%.

(40)

Thus we see the difference between f and f is a constant
times F,. The constant Mg depends on the shape of the
finger; in the next section, I will evaluate this constant.
Since F, blows up on both sides, we cannot add or sub-
tract any bit of it to f or f. Thus they cannot match.

This mismatch MgF, is the cusp that Hong and
Langer?® and Hong?® consider. Note that it is a spatially
dependent complex number, as F, varies. The quantity
MF, turns out to be a positive real number at the tip.
Moving along the interface it is complex, but becomes
real and negative a distance ~ G !/? from the tip [see Sec.
V A 3)]. That is the negative cusp Hong uses.

- /
-1 0 +1
[ PLANE

FIG. 2. Paths of integration for calculating the mismatch of
the functions good at each tail. p, is the same as in Fig. 1.

Two things change when one of the quadrupole pertur-
bations is added. One is we get an extra scattering. The
second is that we have to deform the contour about the
pole to stay on the right Riemann sheet. To evaluate (40)
I will use steepest descent paths for the integrals.?® There
is an extra pole in R from 7, which leaves a residue when
we wrap the contour around it. This is shown in Fig. 2.
The net effect is that, as in the earlier case, we find that
F_ is not scattered (so that F,~g, globally again), while
Fg does scatter. The new solution £V good at the tail
&= —1 differs from the old solution f that was good at
the tail in the constant-7 case by an extra amount of F,:

fV=f+M;VF,, @D

where M|V is a constant I will calculate which comes
from variations in 7 between the tail {=—1 and the tip
of the finger. Similarly, when we continue from the right
side tail {=1 we get

f(+1):]'”__MI(‘+l)Fa , (42)
where M, """ will be a constant that will come from per-
turbations to 7 between the tail =1 and the tip. The
difference  between them is then f(7D—f+D
=(Mg+M, V+M;"")F, so matching reduces to

Mg+M, =0, (43)
where

M, =M, V+Mt . (44)

The mismatch that comes from the global shape of the
finger is Mg, while M; is the mismatch that comes from
the local perturbations. The selection condition is (43):
that the mismatch should vanish. The hard work ahead
comes in calculating these constants.

D. Calculating M

I first consider Mg, as Tanveer essentially calculates it
in his paper, and it will help to follow what he has done.
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The calculation is going to get grungy, but there is really
no way around that. There are two parts to the calcula-
tion. The first is to find the connection formulas for the
F’s, and the second is to evaluate the steepest descent in-
tegrals and residues around the poles. We begin with the
connection formulas.

The connection formula problem has an extensive
literature in applied mathematics.>*3! It is most highly
developed for second-order equations, both because it is
the simplest equation with the connection problem, and
because many of the most important differential equa-
tions in physics are second order. This is one complica-
tion in attempting to do this singular perturbation ap-
proach in the time-dependent case: there we are working
with a third-order equation.’> We will be using the tech-
nique of matched asymptotic expansions to get the con-
nection formula in this paper. The idea is to look very
near a singular point, where the differential equation
looks quite simple, and then transform it into a form with
special function solutions. From the known asymptotic
properties of the special functions, we can then match to
the far region WKBJ solutions and get the connection
formula.

Near the turning point {=1/p, Tanveer introduces
the local variable

py=e'™783 (14 p,£) (45)
where
8,=p3"(p1+p)*M(1=p3) 21 +p,p)' PG . 46)

The resulting differential equation for u, has two
homogeneous solutions WKy (4/Tu17%) and

W:K 4 7(4/7u)%e ~'™), where K,,, are modified Bessel
functions (MBF).?’ Using the asymptotic expansion for
the MBF, that

172
K, ~ 571'_ e % for |z|— o, |arg(z)|<~31 (47)
We can match these to the WKBJ solutions, so that
Fﬁ~k2)’§/7K4/7(J’2) ’ (48)
F,~ik,y5 K, q(e " yy) (49)
where
v, =4u3" (50)
and

J
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k2._. ‘1/271/1425/14 —illw/28 1/14(p +P )1/14
x(I_P%)—]/M(1+p1p2)—1/7G1/28[T(_I/Pz)]~1/4
(51)

(For the choice used here of —1/p, as the origin, since
we are expandmg/ about —1/p,, the WKBJ integral fac-

P(—1/p,)G

tor e f2 is just 1.) We want to look at the
asymptotic properties of the MBF for large arguments, so
we require 8,>>1. Then the restrictions on the analysis

are

A>>G (52)

and

p3%(p,+p,)*% >G . (53)
This latter restriction will be relevant when I consider the
comparison with the simulation later on. Now the ex-
pansion (47) for K, is only valid for |arg(y,)| <3m/2, or
equivalently |arg(u,)| <6m7/7 for Fg, and —2m/7
< arg(u,) <107 /7 for F,. That means this expansion
for F, is valid in all three sectors 1, 2, and 3 (see Fig. 2),
where 0 < arg(u,) <8 /7, while a new expansion is need-
ed for Fj in sector 3. We again use the properties of
MBEF that

K,=2cos(mv)K (e*"z)—K (e*'?7z) (54)
and find that
Fg~gpg+2icos(4m/7)g, (55)

in sector 3. These are our connection formulas, showing
F,~g, everywhere, and Fg~gg+b,g, in 3, with
b,, =2icos(4m/7) . (56)
Now to calculate M. Break up the paths of integra-
tion as Tanveer does into steepest descent paths and arcs
around poles. The constant ImP paths connecting
{=—1 to {=1 are through the singularity —1/p,. We
deform the contour to go along these legs. The line from
{=—1 comes in on arg(u,)=0, the line from {=0 on
arg(u,)=4mw/7, and the line from {=1 comes in on
arg(u,)=8m/7 (see Fig. 2). It will turn out there is a pole
at 1, =0 in the integrals, so we connect the steepest des-
cent lines with a circular arc of radius €. The drop-off
point p,, can lie anywhere on our path through sector 1;
let it be at ee’™. Then

Ms=b, [ dcF A [ acr, R~ [ acF,n

eeim eeiO Eeim Eei81/7 -
—bmf F—f,Fa—f,-o
f 1471'/7 i4m/7

[b 1417/7F + f 1411'/7

1417/7

ce
féei4ﬂ/7 FB ] '

Fg— fl Fg—

ffeiSW/7 ~ﬁ+ [b Fo— f-

eeim -
feei87/7 Fﬁ
eeio

cei8T/T _
1 FB— fl FB]

(57)
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(For the symbolic integrals written here, the limits of in-
tegration are in the variable u,.) Using the connecting
formula, the steepest descent integrals in the first bracket
cancel, and the arc integrals in the second bracket cancel
as well. As advertised, the result is independent of the
lower limit £,=0 in (35) and where we choose p,, to be.
Near {=—1/p,

R _ 16" 58)
W 2(14p,8)
For |z| >0
K (z)~iC(v)(32)7". (59)
Then
i4m/7 Gl/l d'uz
Ms= [5, kayd TGy
ee Ha

€€i4ﬂ/7

+J

. e_”’kzygﬁ%l“(%)(%yze"’”)“m

i8m/7

% iG!7? du,
2
4/7

=Gk, T () (1 4e777) | (60)

IV. NONCONSTANT 7

In this section I calculate the contributions of the non-
constant 7 to the mismatch at the tip of the solutions
good at each tail. This is done explicitly for one quadru-
pole, and more generally for multiple quadrupoles.

A. Calculating M

The mismatch term M; is clearly dependent on 7. Let
us do it first for a single quadrupole, and then later show
how to incorporate many of them. To calculate the
scattering, I will make the first and only inconsistency of
this whole calculation: I assume that the zeros and poles
are isolated, that is, that G is small enough so that they
can be treated separately. This turns out not to be true,
at least in the regimes in which we will be most interest-
ed. However, most likely the answer would only change
in a slight quantitative way, and when I compare the
theory to a numerical simulation it will be seen that there
already is very good quantitative agreement. Another
reason to present it this way is it is the easiest conceptual-

ly.
1. Sectors of T

Near the zero of 1 /7, we have
§—p,
G

where the subscript denotes the functions evaluated at
p;=E&N(1+0) [for example, R,=R(p,)]. Also,
1/7(p,)=({—p,)t. Changing variables in this neighbor-
hood of p,, we see the Q, f’ term is small compared to the

f"+0O,f'+L, tf =R, , (61)

others, and we drop it. That leaves, for the homogeneous
part, Airy’s equation. Two solutions are

. 1/3
| 1e "Lt
Ai G (&—p,)
—inp 4 |12 (62)
. € t i
Al’ G (E—p,le '2”/31 .
Airy functions also have a MBF representation
| 172
o z
Aiz)=— 1= K\ ,;3(22%273) . (63)
More generally, for differential equations of the form
f"+eyef=0 (64)

make the ansatz f =y°K (by9). Then it can be shown
that these trial solutions do indeed work with

f:yl/zKl/(a+2) a+2etiﬂ/261/2y(a+2)/2 . (65)

This is the form of the equation for any isolated singulari-
ty of 7, and thus all that is needed are the properties of
MBF under the approximation, which is made in this pa-
per, that the singularities are isolated. Observe that
dropping the first derivative term Qf' was justified, since
in the small parameter G this term is of order G /2
while " and c¢f are of order G ~!. The next task is to
study the arguments of the MBF’s around the two types
of singularities of the quadrupole so the scattering can be
found.

First, take a simplified version of the perturbation, a
dipole 1/7=T =§/(1+¢). Near the zero at {=0, ignor-
ing L (i.e., L =1), the form of Pis P~ [¢T'?d¢' ~£*"2,
so there will be three lines of constant real part coming
out, and three of constant imaginary part emanating
from the zero. Similarly, near {=—1 we get
P~(1+£&)"? so there is just one constant real and one
constant imaginary line coming out at this pole. The
Stokes and anti-Stokes lines are shown in Fig. 3, with a
branch cut in between O and — 1. Note that far away
T =1 so it should look like P~{, so the constant ReP
lines are parallel to the real axis. Now put L back in.
This local perturbation 7 has to be embedded in the field
due to L. That means rotating the dipole 7 /2 to line up
the increasing ReP lines; that is, for a perturbation at the
tip, and a symmetric finger. In the more general case,
there will be a slight shear as well. When it is sheared,
the branch cut from the zero and pole splits.

For the quadrupole, there are two cases, for 4 <0 and
for 4 >0. For 4 <0 the pole of 7 will be closer to the
unit circle than the zero as depicted in Fig. 4(a). For
A >0 we get Fig. 4(b). Now observe the Stokes lines
from the dipole below the unit circle; if they cross the cir-
cle, they do it twice, so that the two tails of the finger, at
{==1, are in the same sector. Thus there will be no
scattering from the bottom dipole. Also, when we de-
form the integral along the finger onto the steepest des-
cent paths, we do not go around these singularities below
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FIG. 3. Stokes lines (dashed) and anti-Stokes lines (solid) for
the simple dipole P = [ *[¢'/(1+¢)]'/2d¢". The wavy line is a
branch cut. The arrows are in the direction of increasing value.

the unit circle. For simplicity, then, I will no longer dis-
cuss the bottom dipole in the calculation, as its structure
does not enter into the problem. The next point is a bit
more subtle and interesting. Observe that the branch
cuts could have been drawn in a different way so that the
result for 4 <0 looked like Fig. 5(a) and that for 4 >0
like Fig. 5(b). The physics better not depend on this arbi-
trary choice. Let us study the 4 <O problem to see that
it indeed does not. To show that the results turn out the
same, we have to calculate M| V.

tip

A<O

tip

(b)

A>0

FIG. 4. Schematic figure of the branch cuts from a quadru-
pole perturbation. The anti-Stokes lines are solid, the branch
cuts are wavy. Scattering from p, after going around p; (a)
A <0,(b) 4 >0.
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tip

(a)

A<O

tip

(b)
A>0

FIG. 5. Schematic figure of the branch cuts from a quadru-
pole perturbation. The anti-Stokes lines are solid, the branch
cuts are wavy. Scattering from p, before going around p,. (a)
A <0,() 4 >0.

2. Branch cut independence

In this section I calculate M|~ ! for an 4 <0 quadru-
pole, and show that it does not depend on how the
branch cuts are made. To see what the scattering will be
from the singularities, we now study the arguments of the
MBF for the two different ways of making the branch
cuts. From the directions of the arrows, we can fix what
the arguments are. Each Stokes line corresponds to a
change of the argument of the MBF by 7. The arrows
are in the direction where g; is becoming exponentially
small. That means for gg~k,V'{—p,K,;(p,), using
(47), that arg(y,)=2nm on the lines with arrows pointing
away from p,. The branch cuts are at arg(y,)==+37/2.
Our two cases are Fig. 4(a) and Fig. 5(a). On the line
coming down in case I, arg(y,)=0, while in case II,
arg(y,)= —2m. Note the order that the cuts cross the cir-
cle: when continuing from the tail to the tip, in case I
our contour will go around p; before scattering from p,,
while in case II it will scatter from p, before going around
Ps-

First I calculate the scattering. Using the solutions
found previously, before scattering

1 —
F6~k;75—\/§—P:K1/3(y,> , (66)
t

where k, is a local algebraic constant, y, the local scaled
variable, and

E, = exp

Py
—1/2 ir 1/2,.—1/2 g ¢
G2 [, L' g | (67)

the WKBJ integral. Now, using properties of the MBF,
we get
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Fo~e ™™k, ENE=p,K, p(p,e ) . (68)

Define ﬁ'ﬁ~g5 after passing through the scattering.
Then use

K, (0))=K, 5(ye M =K ;(ye*i?m) . (69)

In case I, we get that arg(y,) goes from O on the line of
the contour path into p, to 27 on the line out of p, after
scattering. Therefore

1 —
F3~kz‘E‘\/§_PzK1/3(yt) »
t
5 1 —i2n
Fh~ =k VE—p K nlye M), (70)
t

Fa~e 'k, —\/§ pKyye ' .

Thus
Fy~FL+iE*F, (71

after scattering. In case II, we get that arg(y,) goes from
—2m to 0. Therefore
]
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Fp~—ki V' E=pK 3y,
t
A 1 o
F}il~ktf‘/§—PtKl/3(y1) ’ (72)
t
Fa~e”’/2k,EL\/g—ptK]/3(y,ei”) >
t
and again
Fg~F} +iE?F, . (73)
Therefore in both cases, after scattering,
Fg~gp+bg, (74)
where
b, =iE*. (5)

Now let us evaluate M}'~’. We have to be careful to

go around the poles in the same order as we would if we
went along the finger on the unit circle from the {=—1
tail to the tip. So we need to be able to keep track of
what Riemann sheet we are on. Denote &'~ the ¢ that
is on the same Riemann sheet as the tail at —1, and &'~

the § that is on the same sheet as the tip, before scatter-
ing at p,,. For one quadrupole between {= —1 and the
tip, and case I with scattering at p, after passing around

Ps

(- (—1)
SN=Fy [F AP —F, [C g
=(FL+b,F,) [ fogl‘wo'Fa— $, F, ]
Py P! Pon (=0)
—F, f—l F3+fp( Fﬁ+¢ Fﬁ+f<0)b"1F’1+fpl< Fﬁ+f§t 0) 1
. (—0) pi! o= 07
=FR[S FaE | [ Fet [ F
p[(*OD (*1) p’(n“())/\
TF, fo —b, ¢ F ~fpt—1l B ﬁpsFB— fp’wm F/I3]

:f(*O)+M£—1)Fa .

(76)

Here f'~9 is equal to the f we had from the constant-7 case, since both Fg and ff‘/’g are asymptotic to gz on the respec-
tive sheets. Now evaluating M|~ !, from the connection formula, we find that the straight line integrals cancel:

(=0) (—1) (—0)

P, t m -~
fol bFo— f:;:l)Fﬁ_ f[:—ou Fé:O.

Py

(77)

This cancellation is more apparent when a steepest descent approximation is made on the integrals and their asymptotic

representation near p, is examined. Near p,, R, is a constant (h, h’,

and I, are slowly varying there) as is W,, so we can

pull them out of the integral. (The subscripts on R and W denotes evaluation at p,.) Dropping the constants, we get

(—0) -1 ( 0)

P p, i
fO' bF,— fp’(:—n FB fp( 0) ﬁl f:;,:

Thus

— ’ R ’ R
M{TV=—b,, dC'F. -~ $, dCFp, -

.ay K, 3(ye

i2m

fee dyK1/3( iZTr)ZO i

we

; dy K1/3(y)—

i0
—iTT)_ fee
wel0

(78)

(79)
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That was for case I. For case II, we have
(—0)
f=(FY +b,F,) [ fog F,—§, F, }
p'(" 1 1) «_l 0) A
—F, f,l Fﬁ+f(1|Fﬁ+¢ bF+f«0)bF+¢F+f<0F+f<o>
=f+M,'F (80)

0) l*lh 1 0)

(
D=p, f F,—2b, Sﬁ,,xFa— f,,( y gﬁ FY fl . Fh (81)

m

In the same way as before, the straight line integrals cancel. Then
Mli;ll) =—2b, ¢Px Fo— ¢ps ﬁ};: —b, ﬁpy Fo— ﬁps F/3 , (82)

which is the same as before. I have shown that case I and II give the same results, so from now on I will use case I, the
one on which we go around the pole before scattering.

3. Multiple Quadrupoles

Now let’s generalize the result to handle multiple 4 <0 quadrupoles on the finger. I will first consider the case of
two quadrupoles and then show how to generalize further Let Fg~ F +b2 F, be the scattering at the zero p?~ and
Fg~ ~Fg +b,_F, be the scattering at the zero pl~. Then Fj Fﬁ '+b_F, near the tip at £'~%, where
b_=b,_ +bl and Fj; ® ~gz. Then

{—0)
FU=(BY O b, F, )[fog Fom$,. Fo=$ - F,

P P P2 -
“Fo | [0 Ft [ Eat $ o Fat [+ [ b F,
T _ P g §—0) ., _
+ fpz— Fy +$, Fj +fp17 Fg + fplf bi-Fo+ [, F
=f"04+M3F, , (83)
where
My =- ﬁpf“ by—Fo— Sﬁpf’ by_Fo— ¢pf’FB' ﬁpxl’bl—Fa_ ¢ps‘" Fg-

== ¢,;3"P‘/3~ ¢p)1-F,3’_b2 [ﬁpqz Fa— ¢,,X‘*Fa ]_b]— ’ﬁpxz*Fa_F ¢p‘1*Fa] . (84)

Generalize (84) to an arbitrary number of wires; we get a gﬁFB for each p, and a —b $ F,, but with a plus or minus sign

depending on whether the particular coefficient scattered before or after going around the pole in question. The contri-
butions of the quadrupoles are summarized as follows:

_ n—n— R R
M V=SS — ¢ (de'Fy—e€b, § (dEF, -, (85)
L i p; /J’W 777 p! w
where
1 if |j < k]
€T =1 df > Ik (86)
and
=2
b, =iE[?, (87)
with
2
Ejziexp [G*I/Z f,l/pz iLl/ZT*I/Zdé—I . (88)

Let us calculate M, ! for the case of just one quadrupole between the tip and the £=1 tail,
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(+0)
=(Fy" +b,F,) [ fog F+$, F,,]
p1+1) pl(+l) §(+0) pr(n+0) H+0)
moogs B i (+0) (+0)
—F, fl Fg+ fPH—l) Fg ﬁp: Fg+ fl’z(+0) biFo+ fp,‘*"” Fgo'+ pLFO Fpg
=f*O+MTVF, (89)
|
where £=—1 and the tip, arg(y,)E€(—m,7/2). That means on
- the contour path around
M{tW=—§, Fy—§, b, F,. (90) P Ps

The only difference between M{*" and M;™" is in the
sign of the terms. There is an extra minus sign in the b’s:
B, = —iE;>. That done, we have

Mf”:né g - ﬁpskdé"FBl;?*fkjbj ﬁpsdeFa% ;
o1
where
b;j=—iE;* for j=n+ 92)

and €,; is the same as (86).

4. Evaluating a single quadrupole

Finally, let us evaluate the expression for a single quad-
rupole. We are left with M, being integrals around the
poles. Near p,, R is dominated by the pole of 1/7, so that

Ro=—Ls——r |1, 93)
g_ps Ds
where
1 1
= 94
1/p,) E—p, 04)

and as was the convention before, with the subscript s
denoting evaluation at {=p;.
s 1

Ps g_Ps ’

1
ps

=—G_‘/Zé|hs|f1 (95)

w.

s

What about F, and F p? First, I will treat the case of
A <0. We will then see how the result is modified for
A >0.

For 4 <O,
Fg~ky(&—p)' K (y,)ES! (96)
where
. 1/2
e S
=" | &P 97)
k =2Tr—l/2e‘*i1r/4hl/ZG—l/4 (98)

and E; is the WKBJ integral evaluated at p,. For 4 <O,
ReP is larger at p, than at p,. So the argument of y; on
the anti-Stokes line is 0. For perturbations between

F,~e'"k (E—p,)V*K (p,e'™)E, . (99)

So arg(y,e’™)E€(0,37/2) and neither F, nor Fj scatter.
Alternatively, for perturbations between the tail {=1 and
the tip, arg(y, )€ (7, —7/2) so

F,~e ™2k (E—p,)?K (y;e "ME, . (100)

Using the asymptotic properties of MBF for |z]| — o we
find in both cases that

2

s
b,Fa~E—r2FB . (101)
So
R
M{V== @, de'Fy |1+ | (102)
t
Now
—inp —-1/2
Fa~k, | £ e 2 E! (103)

at p,, which is just a constant. So the integral around p,
is a simple residue of R :

M= —G 34712 12, A | imsa
s
172 2
E
x| = | E! l1+Ef2—‘. (104)
Ps ‘
The expression
s ro—r, re—1/r,
—= —_— 105
pS rS rS_l/rS ( )
for small o and o A4 is to lowest order
S Ado (106)
p, 2V1+4

For A >0 things are a bit different. Keeping the con-
vention that we go around the pole before scattering, we
have the cuts looking like Fig. 4(b). Now things are a lit-
tle backwards, in that perturbations placed between the
—1 tail and the tip have their cuts cross the unit circle on
the right. That means

—iE j—z for j,

b.

= iEj'z for j_ A>0. (107)
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For perturbations between the —1 tail and the tip, Fj is
as in (96) with arg(y,)€(—37/2,0). On the other side,
though,

FB~eiTrkS(é«_px)l/ZKl(yXeiZ‘n')ES*l ,

(108)

with arg(y,)€(37/2,0). In both cases (99) holds, with
arg(y,e’™€(—m/2,m) for —1 to the tip, and
arg(y,e’™)E(m /2, —m) for the other side. Once again
(101) holds. What changes is ﬁPSFB: now there is a

difference between evaluating it on the right versus the
left. There is a minus sign between them, with

Cin —1/2
k, | £ GLS E”' for B,
Fg~ ) —1/2 , A>0. (109
e '"Ls 1
—k, G E; " for B_
Our result for one quadrupole per side, valid for all 4, is:
M. =G 7\ 2h, |\ 2, A | insa
T N pS
172 2
E
X || E =1, (110)
pS E[
M7 V=M, (111)
Mi*V=—M_sgn(4), (112)
where
A
sgn( A)=—— . (113)
& 4]
5. General expression
Finally, I summarize the results valid for all A4:
n—m+ n—,m+
w="5" S 6 acn
—eyb; § udL'F, ﬁ/ (114)
where
1if ] <k
€x; —1 if [j|> k| (115)
) —iEj_ngn(A) for j . 116
i iE %sgn(A4) for j_ .

B. Simplifying general expression and method

1. Physical interpretation of WKBJ solutions

Let us try to get some feel for what the results mean.
If we change into the more physical variables / and 0,
with [ the arclength along the interface, and 6 the angle
the normal to the interface makes with the axis down the
length of the channel, then (18) becomes
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fut(1—ei%) de f,+— i0f = %15 R (117
and the WKBJ solutions
—1/4
: T i0
ga:e19/4 _; e®
I \
X exp —7—172_/‘ ie'072r=12qp (118)
2G
—1/4
g —eib/4 | T ee“’
B 4r
__m L. i0/2_—1/2 470
X exp 3G 172 f ie'%*r dl ] (119)

Bensimon, Pelce, and Shraiman®? (BPS) have given a

quite elegant interpretation of these functions. One looks
for the modes £=e* W+ which are marginally stable
(i.e., with ®=0) on a curved front with surface tension.
As is usual with WKBJ, we assume 6 is a slowly varying
function of / on the length scale of G!/2. It is quite
straightforward to generalize their derivation to allow for
nonconstant 7. The resulting marginal modes are

—1/4
1/2 f

— T —
e i6/4 2 :9/2 1/2d1
T

exp

(120)

which are the same as (118) and (119) in the dominant ex-
ponential order, and the same in the algebraic order when
0 is small.

2. Exponentially small contribution
of far quadrupoles

In the experiments, wires far from the tip had no ob-
servable effect on the selection. This result can be seen
(104) and (118): The contribution to M, for a perturba-
tion away from the tip becomes exponentially small. Ata
position / on the interface, it has decreased by

exp[—G ' ['sin(6,/2)dl'] .

Thus I can drastically simplify (114) when the separation
of the quadrupoles is large. For a separation d, we need
only consider the quadrupole closest to the tip on either

side when
dzG'Y*. (121)

This is the loosest limit, and is found by taking 6 small.
Even tighter bounds can be obtained when 0 is bigger.

V. RESULTS

A. Analytic results

Symmetry relations and scalings for selection are de-
rived. The expressions for quadrupole perturbations de-
rived in the previous parts are used, and then the results
are shown to be more general.



18

1. Summary of equations to be used

Let us summarize the expression found in the previous
section which I will be using here. The selection condi-
tion is that the mismatch at the tip of the two solutions
good at each tail vanish:

Mg+M, =0 . (122)

The global contribution to the mismatch from the finger
shape is Mg. The local contributions from perturbations
M, is made up of two parts: contributions between the
tip and the lower tail of the finger M, "), and contribu-
tions between the upper tail and tip M, "V,

1177

7 ei‘rr/14 , (123)

Ccos 14

MS=G‘/2k2r(;)7r2

where
— . —1/291/1495/14_ —in11/28, 1/14 1/14
ky=m 7775277 e P2 Y (pi+py)
-1

x(l_pg)1/14(1+p1p2)~1/7G1/287.—1/4
P2

(124)

For 7 a quadrupole between the lower tail and tip given
by (23), (27), and (28), and for 0,0 A << 1 we have

1/2
_ A 1
M{V=_g3isH o = | g2
L 2V1+ A4 /i Dy
2
insa 1 E;
X |hg |24 — 11+ 125
|hy|!%e E. £ (125)

The term |Ag| is |h]| evaluated at the pole p, =¢&yr,, and
E; and E, are the WKBJ integrals, with

E; = exp(P;)= exp

— Py . — ’
G 172 fﬁl/pzlLl/zT 1/2d§ ] (126)

and E, the same but with the upper limit of the integra-
tion p,. For a quadrupole between the tip and the other
tail, M; " has the same form as M}~ " for 4 <0, but
when A >0 there is an extra minus sign.

I now use these expressions to derive some analytic re-
sults. As we saw in Sec. IV B 2, the quadrupole closest to
the tip dominates the selection when (121) holds. Thus
the following sections hold more generally when there are
additional quadrupoles away from the tip.

2. Symmetric and asymmetric solutions

The first thing to notice are the phases. The symmetry
of the solution will be found by matching the phases of
the terms. For 4 <0,

arg(Mg)=—mt +mLlarg(p,)— arg(1—p3)]
—targ[r(—1/p,)]. (127)

For a symmetric finger and a symmetric perturbation,

arg(Mg)=— (128)

m
7
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Consider a symmetric 7 with on quadrupole on each side
of the tip. Then

arg(M; V+M|*D)

e
= + 2 arg( A4)
+ f L E;
ar, —_ |
g ! P2 Es E[Z
1| 1* E}?
s t

Here the + is for 4 <0 and the — for 4 >0, and I used
the symmetry properties of f, and E to relate the terms
in M{"" and M. Since ReE, >0 and Ref, <0 we get
for both 4 <0 and A4 >0 the phase matching the phase
of M,. Thus symmetric solutions are allowed. Note
however, that in the case of 4 >0, the two quadrupoles
near the tip cancel each other. In fact, as the separation
goes to zero (i.e., a single wire) the contributions vanish,
and the solution will be unstable. For a single perturba-
tion, then, we see that negative perturbations have sym-
metric solutions, while positive perturbations do not. Let
us turn now to this more interesting 4 > 0 case.

3. Asymmetry scaling

Consider a T with one quadrupole to one side of the tip.
Say it is on the side so M}~ V70, so that M{*!'=0. For
the perturbation close to the tip, and the asymmetry of
the finger small, arg(f,) is small. Similarly, for small
asymmetry arg(My) is close to 7/4. Therefore, for an
A >0 quadrupole, the 7/2 phase shift in M| ! has to
come from the (1/E,(1+E?/E?) term. To evaluate the
WKBJ integrals analytically, I make the approximation
that the constant 7 contribution to the integrals can be
neglected, thus setting 7 equal to 1. For the integral from
the tip to —1/p, this is a fine approximation, but for the
leg from the tip to p,, we will find that it breaks down.
Still, if the integral is done numerically with the proper
form of 7, it is found that setting 7=1 is not too bad an
approximation. Setting 7==1, gives the appropriate scal-
ing, and a good picture of what is going on. For r=1,

E?
arg |1+— |=0, (130)
El
so the resonance condition is
1 Ps g T
Im—7 f_l/pzzL dg'=="-+2nm, (131)

where n is any positive integer. This countable infinity of
eigenvalue solutions correspond to the solutions of Van-
denbroeck in the constant-r case. Other work on stabili-
ty analysis has shown, however, that there are n unstable
tip splitting modes associated with these higher n solu-
tions.>3* I do not consider the stability of the solutions
in the paper, and simply assume the analogous stability
results carry over. Thus I will be concerned only with
the n =0 mode.
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The integral from the tip to —1/p, is pure real, so we
can drop that leg. This gives

1 Ps g T
Im 75 fﬁp iL'dg' == (132)
or, equivalently in /,0 coordinates,
1
™ S . i60/2 370 — T
Im G2 fo ie'?’=dl 5 (133)
This equation, for @ small and setting |p;| ~1, gives
I,2=G"?*, (134)

where [ is the arclength from the perturbation to the tip.
The integral can also be done for small asymmetry and p,
complex, when the perturbation is fixed in the center of
the channel. On the finger,

2A

Imz =A—v—+a (135)
T

(recall £=e'" on the finger). The center of the channel, at
Imz =0, is at

T a
Vcemer:? [1+I . (136)
To lowest order, the tip is at
_m a
VipT S T (137)
Near {=i for small a, L = —AZ%, s0
_ 1 "ccnler , s
P=Im s fvﬁp —rdg=7, (138)
which gives
-1
A2
—12 £ (139)
a=G 1+ 7

Thus the asymmetry parameter also scales with G'/2.3°
This all is consistent with the scaling results of ZSLK;
calling & the linear displacement of the wire from the tip,
they found &8~G%#%*092 in the simulation and
~ GO-40%0.04 i the experiment over the commonly ob-
servable range of G between 5X1073 and 5X 1072
Note, however, that the approximations are inconsistent:
I ignored the structure of 7, but now the result is coming
from a neighborhood ~ G!/? near the nonconstant part
of 7, while the original expression was derived assuming
0,04>>G!2,

4. A scaling and Q effect

We now look at how A scales with G. The magnitudes
of Mg and M, involve algebraic terms in A, G, and the
exponential E;. Again the exponential term will dom-
inate the magnitude. For perturbations close to the tip (8
small) the real part of the argument in the exponent
comes from the integral from the tip to the singularity at
1/p,. For symmetric fingers, changing variables to
x =i tanf gives
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i J
Up 240 A
L'/df=—, 140
f_,/pzl & Kup (140)
where
_ 1=
Kup——rz (141)
is the curvature at the tip and
1 (1“‘X)3/4(1+X)1/4
J, = dx (142)
A fo 1—x2A2/(1— 1)

is some function of A. Observe, as in the previous sec-
tion, I have neglected the contributions of 7—1 to the in-
tegral P,. However, unlike the last section, since the
dominant contributions to the integral are coming from
the regions where 7=1, the end result will be consistent.
For A<1/2, J, is a slowly varying function of A, and is
nearly constant for small A. Thus, looking at how A
changes for a fixed perturbation as G varies, using (122),
(123), (126), and (140) gives

K. ~G~17? (143)

tip
for the symmetric finger. This scaling result has been ob-
tained by Hong and Langer,?® in their model of bubbles
as kinks at the tip. Here the result holds as well for per-
turbations off-centered from the tip, as in the wires. Nu-
merically, I find this scaling is valid for large asymmetries
as well. ZSLK found exponents —0.49+0.02 in the
simulation and —0.46%0.02 in the experiment.

For small 4 and o, f, is close to its unperturbed
value, and continuing the approximation of neglecting 7
in the WKBJ integral, the lowest-order way 4 and o
enter into the resonance is through the V' 4o factor in
M} " and M;*V. The perturbation can be characterized
by this “strength ” Q= A o. For small G and small Q,

1 Ql
2~ yIno=

K ,

K (144)

tipl ~— Dip
Rabaud, et al.’® carried out a set of experiments with
three different types of perturbations: a bubble, a wire,
and grooves along the length of the channel. They found
a relative insensitivity to the particular perturbation used
in the selected K;, at given G. This logarithmic depen-
dence on ) explains the relative insensitivity they found.
Their conjecture that the selected tip curvature was in-
dependent of the kind of perturbation used seems, howev-
er, not to be borne out by this analysis.

5. Universality

The universality in the locally perturbed problem
comes from two sources. The first is the nature of the
terms being balanced. The term M, comes from an in-
tegral over the boundary of the finger. Thus small local-
ized variations leave it essentially unchanged. It depends
on the shape of the finger. On the other hand, M, is a
very localized contribution. Its exact form is not impor-
tant, except to the extent that the symmetry of the solu-
tion will depend on the phase difference between it and
M. The equation for the shape correction (18) could be
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dramatically altered in some localized region, and again
the net effect would just result in some contribution M; .
This is the reason the exact form of 7 is not important.

The second element which produces the universality is
that in balancing the two terms—one local and one
global—the dominant contribution for small surface ten-
sion and small perturbations comes from the exponential
E,. This exponential is an integral which, over typical
parameter spaces ) and G observed exponentially and in
simulations, has its major contributions again coming
from the shape of the finger. Further, as we saw in sec-
tion Sec. IV B2, the effects of perturbations farther away
from the tip fall off exponentially. Thus the contributions
to M; come from only the very closest perturbations to
the tip. Together, these effects give the scaling laws ob-
served, and the independence of the exact form of = and
even the exact equations that apply in the local region of
the perturbed interface. That is the reason the modeling
of the physical perturbations by a varying surface tension
was possible.

These arguments allow us to expand the suggestion of
universality to other systems as well. Using the BPS
derivation of the WKBJ solutions—that they are the
marginal modes for a curved interface with surface
tension—the phenomenology ought to be observable in
other problems where a small parameter on the curvature
is a singular perturbation on a growing curved front.
What changes is (/). In particular, this should hold for
dendrites. This work was all done for two-dimensional
systems, though it may hold three-dimensional ones as
well.

6. Limitsof Q and G

As was pointed out in Sec. III D, the analysis required
that |p3/2(p, +p,)*?| > G. This becomes relevant when
I consider the Q—O0 limit. Observe that M —0 as
p>—0, so we can satisfy (122) with (123) and (125) for all
Q, with a solution which has A <1/2. The discrepancy
comes from the breakdown of the applicability of (123)
for p,—0. A discussion of the numerical techniques
needed to treat this regime are given in Tanveer. The
A>1/2 selection with quadrupole perturbations can also
be studied. The region where these solutions can be ob-
tained numerically is, however, within this range of inap-
plicability of the analytic techniques. I thus do not con-
sider it in this paper. [The local mismatch (125) still
holds, and the modification of (123) is quite straightfor-
ward. Our symmetry results remain valid.]

The other limit, as G —0, is intriguing. There, the
universality breaks down and we begin to see the struc-
ture of 7. The finger turning point —1/p, and the pole
p, coalesce. The limit is extremely singular: the selection
becomes driven by the intimate structure of the singulari-
ties of 7, rather than its more averaged properties on the
finger. How can this wild behavior be reconciled with a
real system? Note that this is precisely the limit where
the approximation of isolatedness of the singularities
really is true. The deviation must come from a more
basic level, the breakdown of our ability to model the
physical system with the variable surface tension. The
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mathematics remains interesting; a thin veneer of univer-
sality holding back, for a while, the many-headed beast
lurking below.

B. Numerics

In the numerical analysis, it is not necessary to make
the approximation that went into the previous sections
deriving the scalings. I compare a numerical simulation
of the perturbed problem with a numerical solution of the
derived resonance condition, providing a stringent quan-
titative test of the theory. In the simulation, I can put in
any perturbation, in particular, the quadrupole used in
the theory. The simulation was done using a conformal
mapping technique developed by Bensimon.}” We follow
the time evolution of the function which maps the unit
circle onto the finger using a fourth-order Runge-Kutta
code for the time stepping, and fast Fourier transforms
(FFT) for the derivatives and analytic continuations. Nu-
merical instabilities limit how small G can be, and
averaging routines are used to try to control them. 512
points evenly spaced on the unit circle were iterated
about 10000 times until a steady state was reached.
Periodic boundary conditions were used. This meant
that the finger would be symmetric; for 4 > 0 the pertur-
bation would drift to an asymmetric final state, while for
A <0 the perturbation would remain at the tip. Thus
what was measured was A and the asymmetry given by
8, =(2/m)Mvy—vyp,) in the final state. These were mea-
sured as G, A4, and o were varied. Finite spacing of the
points limited how small o could be; 0 20.03 for 512
points. On the CRAY XMP, the code took about 10 min
for 1000 iterations. Most of the time, about 80%, was
spent averaging. 15% of the time was spent doing fast
Fourier transforms (FFT’s), and the rest of the code used
the remaining time.

The selection condition balancing (123) and (125) was
solved with a two-dimensional Newton’s method of itera-
tion. The analytic continuation f,(1/p;) was done with
an FFT technique. The integrals E; and E, were done
with a variable step fourth-order Runge-Kutta code.’®
Six parameters were used: A, a (8, for a =0), G, 4, o,
and y, where y, was the fixed value of y of the wire in
the channel. Out of the six, any two could be solved for
as a function of the other four. A 0.19% accuracy for the
fitted parameters was typically obtained after five itera-
tions. Each iteration took about 1 min on a Sun III com-
puter, with the majority of the time being spent on the in-
tegration.

The results show very good agreement between theory
and simulation. There are no adjustable parameters in
the theory, with the result entailing finding a point in a
two-dimensional plane. Figure 6 shows A as a function of
G for different strength negative perturbations, which
produce a symmetric state. The solid curves are the
theory, and the data points come from the simulation.
As pointed out in Sec. V A6, for a =0 as in the simula-
tions, (123) is valid only for |- —A[>>G?/3. In Figs. 6
and 7 I show with a dashed line the curve %—k=G2/3.
Figure 7 shows A as a function of G for positive perturba-
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FIG. 6. Finger width A vs 1/G for one 4 <0 quadrupole
perturbation. The solid lines are theory, and the data points are
from the simulation. Stronger perturbations correspond to
smaller A curves. The dotted line is the line + —A=G?"; near
and above this line the theory is not valid. <>, A=-—0.5,
0=0.03; ¥, A =-—0.125, 0=0.05; 0, A =—0.1, 0=0.03; 0O,
A=-—0.01,0=0.03; A, A =—0.001, 0 =0.03.

tions. Figure 8 shows 8, and A for different positive per-
turbations as G is varied. From (134) we see that for
small values of Sy, the lines of constant G in Fig. 8 will be
vertical. One more comment on the figures: because the
simulation is so expensive—about 1.5 h on the Cray per
data point, the number of data points from the simulation

0.1+ -
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0 200 400
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FIG. 7. Finger width A vs 1/G for one 4 >0 quadrupole
perturbation. The solid lines are theory, and the data points are
from the simulation. Stronger perturbations correspond to
smaller A curves. The asymmetry of these fingers is not shown
in this plot. In each case 0=0.03. The dotted line is the line
1 —A=G?" near and above this line the theory is not valid. O,

A=1.0;0, 4=0.1;0, 4 =0.01, A, 4 =0.001.
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FIG. 8. One 4 >0 quadrupole perturbation. Solid lines are
theory, data points are simulation. Stronger perturbations cor-
respond to smaller A curves. The finger width A is plotted on
the vertical axis, and the asymmetry 8, is plotted on the hor-
izontal axis. The lines correspond to varying G for a given A4,
o. Ineach case 0=0.03. O, 4 =1.0; 0, 4=0.1;0, 4 =0.01;
A, 4 =0.001.

was quite limited. That is the reason for the sparseness of
the data in the figures.

1. Comparison of theory and simulation

For A near 4 we run into the range where the analytic

theory breaks down. Unfortunately, most of the data I
could obtain fall outside the range where Eq. (123) is val-
id [the solid lines for the theory were calculated with
(123)]. Noise in the simulation limited how small G could
be. At the smallest values of G, A became unsteady giv-
ing a larger uncertainty in A at the smallest values of G.
The uncertainty for 8, comes from the finite grid spacing
of the points, and is ~A /512 with the number 512 com-
ing from the number of points used in the simulation.
The size of these contributions to the uncertainty is
smaller than the size of the points in the figures. There is
an additional source of error in the simulation data, as to
when a steady state is reached. The criterion used was
that there be no change in A for at least one finger width
growth down the channel. This criterion is not always
sufficient, however, and there are unknown uncertainties
for each simulation data point associated with possibly
not having reached a steady state.

In all cases, as mentioned in Sec. IV A the assumption
of isolatedness of the singularities, that o << G '7? was not
at all true. In addition, the theory is done with n in (131)
large, while in the end I took the lowest mode. The size
of these last two effects is not known. The astonishing
thing is how well the theory and simulation actually
agree; again, there are no free parameters to do the
fitting. The best region for quantitative comparison is for
A away from 4 and G small. For the data there, the devi-
ations are less than 5% in A and in §, between theory and
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simulation. Putting it another way, for the data below
the %—)»:GZ” curve, we would only have to multiply
one of the mismatch functions by a constant between 0.8
and 1.5 in order to superimpose the theory curve on the
simulation data.

C. Connection to Experiments

There are a number of features of the theory that
ought to be observable experimentally. Of course, the
form of the experimental perturbation is not known, but
to the extent to which that does not matter, the
theory will have things to say. The essential source of
the universality, as discussed in Sec. VIA 'S5, is how the
WKBIJ integral drives the selection; there, it is the sign
and strength of the perturbation, and where it is on the
interface that matters. Physically, the differential equa-
tion can be thought of (117) as representing some
response of some stiff object to a displacement. We have
basically an oscillator equation, with complex coefficients
varying slowly compared to the length scale G!/2. That
perturbations far from the tip have a smaller effect makes
sense physically, as much of the growth is happening at
the tip. What is less obvious is the phase associated with
the magnitude of this effect; a perturbation moving along
the interface would alternately constructively and des-
tructively interfere with the scattering from the finger
singularity. By considering a stiff object, with a length
scale of bending of G'/2, the origin of this phase can be
seen: pushing down on a neighboring maximum and
minimum tend to cancel each other.

1. Two-wire interference experiment

One way to probe this phase effect experimentally is to
set up an experiment with two wires on one side, looking
at the variation in A as the spacing is varied at a given G,
and compare it to a single wire. For G'/? large compared
to the wire spacing, the two wires look like one stronger
wire so A for the two wires is smaller than for the single
wire. As G'!/? becomes comparable to the separation,
though, there is some phase difference between the two
wires, so that eventually they destructively interfere, and
A is larger than for the single wire. As G172 is further re-
duced, they begin to constructively interfere again. Thus
the width oscillates about the single wire values as the
wires alternately constructively and destructively inter-
fere. As the wire separation is changed, this crossover to
the oscillating region changes. We are only concerned
with the phase difference between the wires. This leads
to the restriction of the case of both wires being on the
same side of the tip. At the same time, the phenomena
will be present for asymmetric fingers as well. For sepa-
ration of the wires d in the channel of width w, the peaks
and valleys of the A oscillations will occur at integer
values n:

peak, n odd
a/w _, (145)
G valley, n even .
The relation is valid in the limit of
o <<d/w<<A . (146)
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The number of oscillations that could be seen can be es-
timated as follows: take A=1; the wire separation can be
about { of A, or about & of the channel width. Values of
G'/? of L can be obtained (ZSLK). That gives n =4.
This of course assumes the wires have the same strength.
To get cancellation, they would have to be quite close in
magnitude; they should be observable if they do not differ
by more than a factor of 2. Using (126) and (140) this
then puts a limit on 6 of the second wire:
(m/4)G V2K 162 <1 .

tip “wire

The problem is that for a wire separation of -5 the chan-
nel width, for k;,~m and G~ '/?~80 the effect of the
second wire is reduced by e “2. Thus it will be extremely
difficult to see anything past » =2. One way to compen-
sate for this effect is to replace the wire farther away
from the tip with a stronger () wire. One would measure
an effective () for a wire by performing experiments with
that single wire in the channel, and then match two wires
of different strengths. The procedure seems difficult, but
it also becomes a test of the falloff in the real part of the
WKBJ integral.

From the arguments on universality given in Sec.
V A5, this interference effect is a general one for growing
curved fronts where surface tension is the singular per-
turbation giving selection. Thus this relation should be
valid for two-dimensional dendrites as well.®* It may also
be valid for free three-dimensional dendrites.

2. Phase difference from tip experiment

The prediction that the wires lie a phase 7 /2 from the
tip should be studied. A direct quantitative test of (134)
can be performed. The problem is that there is no regime
where it actually is valid. The agreement with (134) will
depend on how much of the 7/2 phase is coming from
the WKBJ integral with 7=1; that is, we want o <<1 and
the wire close to the tip, but not too close. Qualitative
agreement may be the best that can be hoped for.

The requirement that the perturbation be close to the
tip can be loosened if the phase from f, is included, and
any phase from the asymmetry of the finger. These are
calculable constants which can be subtracted out, though
they make the expression for /, messier.

A test that might be less sensitive to the phase contri-
bution from 7— 1 might be performed as follows. Place a
single wire in the channel a distance d from the center.
Find the value of G where the asymmetry parameter goes
to zero; call is G,. This tells us how far away from a
symmetric finger the wire would optimally be. Now ex-
plore the phase structure by putting in four symmetric
wires in the channel: two at =d and two at £D, where
D >d. As D is made larger, there will be oscillations in
A, about the two *d wire curve, wich die out as D be-
comes large compared to d. At fixed G, there should be
a maximum in A when D =3d. Let us see what happens
if the contribution to the phase of the local structure of
the perturbation can be ignored, as was done in Sec.
V A 3. The contribution to the phase by the wire and the
other position dependent terms will not be zero. The best
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place to minimize the other contributions will be a bal-
ance between the desire for large d to minimize o effects,
and small d to minimize 6 and f| effects.

3. Characterization of experimental perturbation strengths

Another quantitative test of the theory may be possible
if the “‘strength” Q of the wire remains relatively con-
stant as we vary G or the lateral placement of the wire in
the channel. Then, given a measurement of Q and the
asymmetry at one value of G and placement of the wire in
the channel, it would be possible to predict the values of
A for other values where Q is invariant. Note that we
most likely do not have predictability of the asymmetry:
the details of the perturbation enter in quantitatively
there. All this depends on the three dimensional flow
around the wire; it is an experimental question whether
the effective () remains constant enough to give predicta-
bility in any region.*°

VI. CONCLUSION

I have developed a theory for localized perturbations
in the Saffman-Taylor problem. The source of the univer-
sality in the locally perturbed problem has been dis-
cussed, giving some explanation of why the physically
complicated experimental perturbations can be modeled
by locally varying surface tension. The results are in
agreement with the phenomenology reported by ZSLK
for perturbed fingers. I have obtained very good quanti-
tative agreement between theory and simulation, with no
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adjustable parameters to fit. Finally, I have outlined ex-
periments to observe new effects predicted by the theory.
An important physical effect is the presence of a phase
associated with the magnitude for perturbations on the
interface. This effect is a general one for growing curved
fronts with a surface energy term. A quantitative rela-
tion illuminating this effect has been given; this predic-
tion should be observable experimentally.
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