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Abstract A theory of the time dependence of earthquake fore-
shocks and aftershocks is presented. The theory involves the re-
sponse to sudden forcing of a dynamics of self-driven acceleration to
failure. The empirically observed Omori law, which says that the
rate of aftershocks as a function of time falls as a power law in time,
is derived theoretically. The exponent of the falloff in time is shown
to generically give a value close to one, for rapidly accelerating dy-
namics. To see if the theory is consistent with other features of real
data, foreshocks and aftershocks of small magnitude mainshocks are
analyzed in a catalogue of real earthquakes. Results show ‘that the
spatial and temporal distribution of aftershocks is separable into a
dependence on space and a dependence on time, that the spatial dis-
tribution of aftershocks is consistent with the hypothesis that stress
changes from the mainshock cause aftershocks, and that the number
of foreshocks approaches the number of aftershocks as the magnitude
of the mainshock becomes smaller. ‘ -

I. Introduction

Earthquakes do not occur in a purely random way. Quantifying
and trying to understand the correlations between events has been
an ancient task. One of the most robust and important empirical
relations in seismology was obtained one hundred years ago by Omori
[1894], who examined the rate of occurrence of smaller events as a
function of time ¢ following the largest event- the mainshock. He
found that the rate R of aftershocks decayed like:

R(t) ~ 1/t . ' (1)

Later, Utsu [1961] introduced a generalization of Omori’s law, that
1

R{t) ~ o, 2
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with ty being a constant, and p being an exponent that can differ
from 1, though typically a value near 1 is observed. Foreshocks
preceding a mainshock have also been shown to satisfy this law, with
tin this ca.s;being the time before the mainshock [Papazachos, 1975].
The timescales over which foreshocks and aftershocks occur— minutes
to months— are too long to be explained by purely elastic processes,
which change during ruptures on timescales of order seconds, and too
short to.be explained by tectonic loading, which produces a cycle of
activity on a timescale of hundreds of years. In this paper, a simple
dynamical explanation of the time dependence of foreshocks and
aftershocks is given. ’

. The rest of the paper is organized as follows. In section II, some
previous explanations of Omori’s law are briefly reviewed. In section
II1, the basic theory proposed in this paper is presented. In section
IV, a series of measurements of real aftershocks and foreshocks is
made from an earthquake catalogue, and compared with the theory.
" The main results are summarized in the conclusion, in section V.

' " IL. Previous Work

Aftershocks ‘and foreshocks are defined as follows. First, a clus-
ter of events is identified which are believed to be causally connected
to each other, and not independently triggered by tectonic loading.
Then, the largest event in the cluster is defined as the mainshock,
and all the events preceding it are defined as foreshocks, and those

Copyright 1993 by the American Geophysical Union.

Paper number 93GL0105 8 _
0094-8534/93/93GL-01058$03.00

following it are defined as aftershocks. There is general agreement
that stress changes are the causal field connecting events. What is
not agreed upon is the process that leads to a time delay which is
much longer than the time over which the stress field is communi-
cated.

Many explanations of Omori’s law, using a variety of mecha-
nisms of time delays, have been proposed. Mikumo and Miyatake
[1979] assumed a distribution of viscoelastic relaxation times, which
then numerically gave a power law decay in the rate of aftershocks.
Yamashita and Knopoff [1987] assumed a power law distribution of
crack sizes, and combined with a power law for the rate of growth of
the cracks, obtained a power law decay in the rate of aftershocks.

A different kind of explanation was offered by Scholz [1968] and
Das and Scholz [1982], who assumed an exponential stochastic pro-
‘cess to get p = 1. The main way their work differs from the theory
proposed in this paper is the underlying process which causes the
time delay rests, in their work, on the fluctuations of some field— the
temperature field- so that each stressed state has a distribution of
time delays, while here, the time delay comes from the determinis-
tic dynamical evolution of a field, so that each stressed state has a
unique time delay.

Nur and Booker [1972] and Booker [1974] sought a dynamical
explanation of time delays using the diffusion of pore fluid pressure.
Nur and Booker, however, got p = 1/2 when they coupled compres-
sional stress changes to pore volume and pressuré effects. Booker
was able to get p = 1, but only along the fault surface that had
previously ruptured during the mainshock.

Nakanishi [1992] proposed a dynamical explanation based on the
viscous postseismic relaxation of the crust. He obtained a power law
decay in the rate of events following a mainshock. However, p differed
from one, and he only obtained a power law when the time over which
the decay of events occurred was comparable to the loading time.

The explanation that is closest to what is proposed in this paper
is by Dieterich [1992]. Both his explanation, and the explanation
proposed in this paper, seek to describe a deterministic dynamics
for the nucleation of an event, with the dynamics being a self-driven
acceleration to a critical threshold. Motivated by laboratory fric-
tion experiments, he proposes a dynamics described by a set of cou-
pled nonlinear ordinary differential equations. I seek the simplest
mathematical representation of the physical picture, and propose a
dynamics described by a first order nonlinear differential equation.

III. Theory of the Triggering of Events

The theory proposed here concerns the nucleation of events. Be-
fore writing the equations that represent this process, it is useful to -
describe the physical picture of the earthquake cycle that is being
used, and the context in which the nucleation occurs.

"While the earth is complicated, and there may be many pro-
cesses going on, we will be concerned here with the three processes
that give the basic timescales in the problem: tectonic loading, nu-
cleation, and rupture. With these processes, a cycle works as follows.
Begin from the situation where the fault is stuck, so that nothing
would happen if the fault were not loaded further. Slow tectonic
loading uniformly raises the stress. Eventually, at some point on the
fault, the stress becomes large enough so that a new process, nucle-
ation, begins to dominate the time evolution of stress at that point._
The physical process we have in mind for the nucleation phase is
subcritical crack growth. During this phase, the crack length and
stress grow slowly at first, then rapidly accelerate until a critical
stress is reached. At that point, an event is triggered and unstable
rupture occurs. The event occurs in a very short time, compared

" to the loading or nucleation times.-The event relieves stress,~and
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also redistributes stress to neighboring regions. It may be the case
that the stress added to neighboring regions has loaded them enough
that they will now be in the nucleation phase. If so, an event is soon
triggered there. The process continues until all parts of the fault are
below the stress threshold where subcritical crack growth is faster
than tectonic loading. This is the end of a cluster. Tectonic loading
reloads the fault until another pomt reaches the nucleation phase,
and a new cluster occurs.

The distribution of time delays in the cluster, given by Omori’s
law, comes from a combination of two things: the acceleration of the
stress during nucleation, and the fast redistribution of stress during
an event. Consider a population of sites that have been suddenly
loaded by a mainshock, some of which are then above the thresh-
old for nucleation. The highest stressed sites will fail soonest, while
those at lower stresses will take longer. The distribution of stresses
in the nucleation regime, which was depleted before the mainshock,
is, following the sudden loading of the mainshock, independent of the
stress, on average. The fall in the rate of events with time occurs
because, in the nucleation regime, a distribution uniform in stress
gets stretched by the acceleration dynamics into a nonuniform dis-
tribution in time. This verbose description will become much clearer
when we consider the equations that describe this nucleation process.

To represent the accelerating dynamics of subcritical crack growth,

consider the equation

F= ®
where the field ¢ evolves with time ¢, n is a constant-exponent, and
a is a constant. The magnitude of a can be scaled out by a rescaling
of time ¢, so only its sign is important. The field ¥ is related to the
stress intensity factor; when the exponent n is positive, ¢ can be
taken to be the stress intensity factor, while for negative n, it is the
difference between the stress intensity factor and the critical stress
intensity factor for unstable rupture.

Suppose an event is triggered when the field ¢ reaches some
critical value 1,bc The tlme T 1t takes the field to evoIve from a value
P to . is

Ve dy

T=¢zi—1-l)—/—gz. (4)

For a dynamics of ¢ given by (3), this gives, forn # 1,
Yo dy : _n4l _ g-ntl
R e et e WO

or

=1

T a(n—1)

with the constant 7o depending on .. In order to have = have a

positive contribution from the 3 dependence in (6), the sign of a
must be related to the value of n by .

“a(n—-1)>0 . (7
Now consider the distribution of event times R(r) given some distri-

bution of initial values of the field R() following a sudden loading.
Then, because of the deterministic dynamlcs,

R{r)dr = R(¢)d¢l [ (8)

with the sign term —a/|a| coming from whether = is an increasing
or decreasing function of 1/' Dropping constants, we have )

- R(y)
~R(r)~ R ~ R . — 9
() B FE ~ Rlgpn e = ©)
If R(¢) is mdependent of 1/:, “then this is exactly the generahzed
Omori law, Eq. (2), with

AMEEEE ‘ (6)

n
= ) 0
P= . (10)

Note that as n gets large, p approaches 1. This relation works, in

fact, for all n, except n = 1; thus, it is a general result for nonlinear
self-driven growth.

To derive the generalized Omori law from (3), the only assump-
tion needed was that the initial distribution R(3) following the main-
shock is independent of 3. Let us examine this assumption. We use
the fact that the mainshock gives a sudden kick to the distribution
of ¥, in a way that is independent of the value of 4. The kick will, in
general, be different for different positions along the fault. What is
important, though, is that the kick does not depend on . This leads
to an R(y) that is roughly independent of 4. Bigger mainshocks will
push more sites into the nucleation regime, so R(1) will be bigger;
but the that doesn’t affect the lack of dependence on 1. Even if
there is some dependence in R on 4, as long as it is less strong than
¥~", it will only add a minor correction to the time dependence.
For example, suppose R(y) ~ . Then p = 220 which is still
close to 1 for n large. This msens)txv:ty to the exact form of R(y)
means that the time dependence in the theory is insensitive to any
long term changes in seismicity which may be occurring.

To get the generic Omori law exponent of 1 from the general-
ized Omori law, all we need is that the size of the exponent |n| be
large. Experiments examining the rate of increase in crack length as
a function of stress intensity factor during subcritical crack growth
can be fit by power laws with large exponents— n of order a few tens
or more [Atkinson, 1979], or by exponentials [Wiederhorn and Bolz,
1970}. Having ¥ grow exponentially, as in

(11)

also can be shown, in the same way (10) was derived, to give p =
1. Thus p & 1 is a generic value for the rapidly self-accelerating
dynamics.

A simple theory has been presented for the time dependence of
aftershocks. Foreshocks can also be explained by this theory. Fore-
shocks can be understood as events that triggered an afterevent that
happened to be bigger than the triggering event. With this hypothe- -
sis of the relationship of foreshocks to aftershocks, we can derive the
time dependence of foreshocks from Eq. (2). There are two regimes
where we can calculate things, depending on whether the number of
foreshocks per mainshock is small or large compared to one. When
the number is small compared to one, the time dependence for fore-
shocks is the same as Eq. (2), with time ¢ measured as time before the
mainshock. When the number is large compared to one, we need to
consider the distribution in time of other events that were triggered
by the initial event in the cluster. For the mainshocks occurring at
time 0, and the initial event that triggered all the foreshocks occur-
ring a time ¢’ before; we can calculate the rate of events at time ¢

. before the mainshock. Integrating over all initial triggering times ¢/

welghted by the joint probability that events occurred at tlmet t
and 0 glves the rate at time ¢: .

dt’ . "'n .
R(f) ~ / TTITOE T N

When p < 1 and £ > {5 we can scale out the ¢ dependence to get -
R(t) ~ ¢~} (13)

In addmon to their time dependence, there are other features of
aftershocks and foreshocks that can be measured. In the next section,
I examine aftershocks and foreshocks of small magnitude mainshocks
to see if the theory is consistent with those other features as well.

IV. Real Aftershocks

Many researchers have examined the foreshocks a.nd aftershocks
of individual sequences. We will be interested in the average prop-"
erties, and thus seek an ensemble of sequences that can be aver-
aged over. The properties we will be exammmg include the spatial
and temporal distribution of aftershocks, and the dependence on the
magnitude of the mainshock. . :

The catalogue of events used is the USGS catalogue for Centtal
and Northern California for magnitudes My > 1.5 for the years




1969 — 1990. The mainshocks are found by searching through the
catalogue, and checking whether, for each event, there has been a
larger event within some distance in space and in either the preceding
or following specified amount of time. If there has not been a larger
‘event, then the event is considered as a mainshock. The distance is
taken to be 50 kilometers, which is roughly three times the length
scale of the brittle crust depth in California. The time period is
chosen to be 100 days, and is chosen to be long enough so that any
effect of previous events will not change much on the timescale of a
few days which we consider, and short enough to obtain enough cases
to get good statistics. This way of choosing mainshocks differs from
standard declustering techniques, which use combined measures of
spatial and temporal distances to decide what events belong together
in a cluster. That is, however, exactly the kind of correlation we
do not want to introduce into our data selection. Because we will
be interested in the distances between events, it is desired that the
mainshocks be small in spatial extent. They must be big enough,
though, to produce an aftershock sequence significantly above the
background level of activity. The errors for locating each event differ
in the catalogue, but typical errors are of order 1 km.

To account for the variation in depth of seismicity the catalogue
is cut further. . Most events are concentrated in a band between
the depths of 4 to 10 kilometers. Over this range of depths, the
rate is roughly independent of depth. To avoid complicated depth-
dependent corrections in the plots, only mainshocks lying in this
band between 4 and 10 kilometers, and aftershocks of these main-
shocks that also lie in this band, are used. Finally, to get good
averaging, we do not want any single events to dominate the signal.
Two events in the Mammoth lakes region, a magnitude 5.5 on 11-
23-1984 and a magnitude 5.9 on 7-20-1986.produced large numbers
of aftershocks. These two events have been left out of the analysis.

We first check Omori’s law for the data that are considered.
Figure 1 shows the rate of foreshocks and aftershocks per mainshock
as a function of time from the mainshock. The lthree solid curves
show the rate of aftershocks per mainshock, for different magnitude
mainshocks. The lowest of the three curves is an average of 124
mainshocks having magnitudes between 3 and 4, the middle curve
is an average of 84 mainshocks having magnitudes between 4 and 5,
and the top curve is an average of 20 mainshocks with magnitudes
between 5 and 6. The two dotted curves are the foreshocks of these
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Fig. 1. Omori’s law for real earthquakes. The rate of aftershocks
and foreshocks per mainshock as a function of time T from the main-
shock. The three solid aftershock curves are for ‘mainshocks with
magnitudes between 5 and 6 for the top curve, 4-5 for. the middle
curve, and 3-4 for the bottom curve. The bottom dotted foreshock
curve is for only the largest magnitude foreshock, while the top dot-
ted curve js all the foreshocks except the largest magnitude one. A
long dashed line with slope —1 has been added for comparison.
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same 228 mainshocks with magnitudes between 3 and 6. In the lower
dotted curve, only the largest foreshock of each mainshock is shown.
In the upper dotted curve, all the other foreshocks except the largest
one are shown. The division of the foreshock data was done so as
to compare with the theory. Assuming the largest foreshock was
the one that triggered the mainshock, it should have a distribution
R(t) ~ t7?, while the otheér foreshocks that it would have triggered
would, by Eq. (13), have a distribution R(t) ~ t~2%1, A long dashed
line with p = 1 has been added to the figure for comparison.

There are a couple of things to notice in Figure 1. First, all the
aftershock curves have roughly the same slope, with a p value that
appears to be slightly less than 1. Thus we see that p seems to be
independent of the magnitude of the mainshock. The independence
of p on mainshock magnitude is a feature required by the theory: A
second thing to notice is that, to within the uncertainty in the data,
the p value of the foreshocks seems to be roughly the same as the p
value of the aftershocks. Unfortunately, since the data is noisy and
p is close to 1, we cannot test Eq. (13); the theory is consistent with
the data, but not confirmed by it.

The second figure is plot of the temporal evolution of the spatial
distribution of aftershocks. Figure 2 shows the results of an average
over the same 84 mainshocks having magnitudes between 4 and 5;
and 20 mainshocks between 5 and 6, as in the previous figure. The
plot shows the number of events that cccurred after the mainshock
and before.some time ¢, as a function of distance from the main-
shocks. Distances are measured between hypocenters of events. The
four solid curves in the figure show data for aftershocks following the
magnitude 4-5 mainshocks, for all the events happening within 1/3,
1, 3, and 9 days following the mainshocks. The four dotted curves
are the aftershocks following the magnitude 5-6 mainshocks, also for
the same time cutoffs. The long dashed line is a theoretical curve -
that will be explained shortly. The peaks in the curves occur at a
distance that corresponds to the radius of the mainshock rupture.

The main thing to notice from the figure is that the spatial distri-
butions appear stationary in time; what changes is the rate at which
events occur, not where they occur. We do not see an expanding pat-
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Fig. 2. Thé spatial distribution of aftershocks for real earthquakes.
The number of aftershocks per mainshock as a function of distance is
plotted, for events happening up to a given time following the main-
shock. Distance is measured between hypocenters, in units of kilo-
meters. The four solid curves are for mainshocks with magnitudes
between 4 and 5, while the four dotted curves are for mainshock
magnitudes between 5 and 6. The long dashed curve is a theoretical
curve (see Eq.(15)). The times of the four curves.in.each set are-all
the events before 1/3, 1, 3, and 9 days. Observe that the spatial dis-
tribution appears stationary in time; it does not broaden, and only
the rate of events changes. The finite size of the source can be seen
in the drop in events at small distances. -
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tern moving out from the rupture surface. (Observations of an ex-
panding aftershock pattern have been reported fot large earthquakes
[Tajima and Kanamori, 1985). There are two effects that may cause
the reported results, though. First, aftershocks of aftershocks tend
to broaden the distribution with time, and their effect was not con-
sidered. Second, coupling of the unstably sliding seismogenic crust
to the stably sliding crust below could cause an expanding pattern
for large events.) Another way of saying this, is that the dependence
on space and time is separable into a dependence on space and a
dependence on time:

R(s,t) ~ R(s)R(t) . (14)

This separability is required by the theory proposed in this paper,
and is an implicit assumption in writing down (3) as a dxfferentlal
equation with only time, and no space, dependence.

Is the spatial dependence of aftershocks consisterit with stress
changes being the cause? The Green’s function for the stress change
due to a point source falls off as 1/r3, where r is the distance fiom the
source. Averaging over mainshocks uniformly distributed at depth
on the strip of width w gives a distribution:

mlgu 1] N 15

—%[wsin'l%—r(l- -2 r2w ( )
The dashed curve in figure 2 is a plot of this expression, with w = 6
km, since we are only usmg events between 4 and 10 kilometers in
depth. Note that there is an overall multiplicative constant that
is left to be set. The aftershock data is qmte consistent with this
curve. While the hypothesis that changes in stress are what cause
aftershocks is generally believed in the seismological community, Fig-
ure 2 is an important plot is a new quantitative confirmation of this
hypothesis. This spatial distribution is consistent with what would
be expected by the theory, when the dynamical field ¥ in the nucle-
ation process is identified with the stress intensity factor.

_ The final plot using the real earthquake data is the number of af-
tershocks and foreshocks per mainshock , as a function of mainshock
magnitude, shown in Figure 3. Note that the number of foreshocks
approaches the number of aftershocks as the mainshock magnitude
becomes smaller. This is what would be expected for the coniection
between foreshocks and aftershocks proposed in the previous section.

-, V. Conclusion
In this paper, the dynarmics of self-drive acceleration to failure
has been proposed as an explanation of earthquake foreshocks and

aftershocks. The generalized Omori law was derived analytically
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Fig. 3. The number of aftershocks and foreshocks per mainshock, as
a function of mainshock magnitude, for real earthquakes. The solid
line is the aftershocks, while the dotted line is the foreshocks. Note
that the number of foreshocks approaches the number of aftershocks
. as the magnitude of the mainshock becomes smaller.

from the proposed dynamics. The exponent of the falloff was shown
to have a generic value close to one for a dynamics which acceler-
ated strongly. Foreshocks were explained as events which had an
afterevent which happened to be bigger than the triggering event.
With this understanding, the time dependence of foreshocks was de-
rived from the time dependerice of aftershocks.

To test the theory, an analysis of aftershock and foreshocks in
a real earthquake catalogue was made. An average over aftershocks
and foreshocks of small magnitude mainshocks showed: the distribu-
tion of aftershocks in space and time is separable into a dependence
on space and a dependence on time; the spatial distribution of after-
shocks is consistent with stress changes from the mainshock being
what causes aftershocks; the exponent of the decay of the rate of
aftershocks in time was seen to be independent of mainshock magni-
tude; the number of foreshocks approaches the number of aftershocks
as the mainshock magnitude goes to zero. All these observat,lons are
consistent with what is expected by the theory.-

While the discussion in this paper has centered around clustering
in earthquakes, the accelerating failure dynamics proposed in this
paper is quite general, and seems lxkely to hold in other physical
systems. The basic result is that a $ystem which undergoes self-
driven acceleration to a threshold where an event happens; when
kicked suddenly, responds with a power - law décay in time in the
rate of events. Work is being done to find other systems where this
result might apply.
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