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Cqmplexity in a spatially uniform continuum fault model
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Abstract Recently, Rice [1993] pointed out that, up to now, the
self-organizing models which have produced complex nonperiodic se-
quences of events have all been sensitive to the spatial discretization
used, and thus did not have a well defined continuum limit. He went
on the suggest that spatial ponuniformity or “inherent discreteness”
.may be a necessary ingredient in allowing the complexity to develop
in these systems. In this paper, I present a counterexample to this
suggestion: a spatially uniform model with a well defined continuum
limit is shown to give rise to complex nonperiodic sequences. The
complexity arises in the deterministic model from inertial dynamics

with a velocity-weakening frictional instability, with the instability

being stabilized at short lengthscales by a viscous term. The numer-

ical results are shown to be independent of the spatial discretization

for discretizations small compared to the viscous lengthscale. Fur-

thermore, the qualitative features of the complexity produced are

seen to be invariant with respect to two very different types of small

scale cutoffs, implying a universality of the results with respect to
" the details of the small scale cutoff.

1. Introduction

Earthquakes are complex in many ways. Where they occur, when
they occur, how big they are, and what kind of shaking they produce,
are just some of the complicated features we would like to under-
stand. In trying to develop models that displayed the richness and
‘complexity exhibited by earthquakes, seismologists were led to pro-
pose models with spatially inhomogeneous properties. The general
belief was that material inhomogeneities were essential to generate
the observed complexity. Recently, this point of view has been chal-
lenged by a class of models in which complexity arises along a uni-
“form fault from the self-organization of repeated ruptures when iner-
tial effects and velocity-weakening friction are included {Carlson and
Langer, 1989]. In contrast, quasistatic models which neglect inertial
dynamical terms seem to require some degree of heterogeneity in ei-
ther driving or material properties, to produce complex sequences
[Bak, Tang, and Wiesenfeld, 1987; Xu, Bergersen, and Chen, 1992;
Cowie, Vanneste, and Sornette, 1993]. Real faults are, of course,
spatially inhomogeneous, showing geometrical irregularities— fractal
fault traces, steps, and bends— as well as frictional variations. The
question is whether it is these fixed irregularities (which, while vary-
ing on a geological timescale, are essentially unchanging over the
timescale on which the complexity is occurring) which are the domi-
nant control of the complexity seen, or whether the dynamical fields
which evolve during the earthquake cycle itself~ the stresses and
strains— are the dominant control. It is clear that models where the
dominant control is fixed inhomogeneities can show sufficient com-
plexity to mimic the observations. The disadvantage of these models

is that what determines the distributions of inhomogeneities remains |

unexplained, and how one might measure the corresponding distri-
butions for the real system remains unclear. The hope would be that
there might be properties of these systems that are, though, somehow
universal, and thus are independent of the distributions of inhomo-
geneities. The ability to circumvent this whole issue is a major reason
why the spatially uniform models, which achieve complexity through
dynamical instabilities, appear so attractive. For the spatially uni-
form self-organizing models, the question of whether they can show
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siifficient complexity in the case relevant to real earthquakes— fully
dynamic three dimensional elastic interactions~ is still unanswered.
The main thing standing in the way of answering this question is
the numerical costliness of dynamic elasticity. Typically, then, mod-
els neglect either the true dynamic aspects or the long range elastic
aspects, and study a reduced less costly model. Thus the current.’
situation regarding the self-organizing models is that there are hints

‘that they may work to give sufficient complexity in the full case of

interest, but no clear answers. Of course, even if they did give suf-

" ficient. complexity, the Earth might still be in a regime where the

fixed inhomogeneities were dominant. As we learn more about what
the self-organizing models can and cannot do, though, the choice
between the two alternatives should becomme clearer.

In a recent paper, Rice {1993] has raised a serious concern regard-
ing whether the self-organizing explanation can give rise to complex-
ity on a truly spatially uniform fault. He points out that, up to now,
all of the results from the self-organizing models have been sensitive
to the spafial discretizations used. He further comments on results
fromn his numerical model, which involves the quasistatic evolution of
three dimensional elastic interactions, and which contains no inertial
term. Again, the fully dynamic case is too costly to study; he de-
cides to make the tradeoff by neglecting the dynamic part. When he
numerically evolves the system with sufficiently refined spatial dis-
cretization so that the continuum limit is well resolved, he gets only
periodic sequences, while if the spatial discretization is made too
coarse, so that the system is “inherently discrete”, he observes non-
periodic complex sequences. He goes on to suggest that this property
may be true of all the self-organizing models as well: the complexity
they produce may be a result of their inherent discreteness, and that
models with a well defined continuum limit will not give complex
nonperiodic sequences. This issue is fundamental to the fixed ir-
regularity versus self-organization debate, since if the self-organized
models require a discontinuous nonuniform partitioning of space to
generate sufficient. complexity, then they too ultimately rest on fixed
irregularities. .

In this paper, I present a counterexample to Rice’s suggestion.
A spatially homogenéc;ns model with a well defined continuum limit
is shown to give a complex nonperiodic sequence of events, with
a distribution of sizes of events that is independent of the spatial
discretization. Previous work, by Horowitz and Ruina [1989] found
evidence that complex nonperiodic slip modes could develop in con-
tinuum fault models with a number. of unstable modes. - Because
of the numerical costliness of their model, however, they were not
able to study the self-organized complexity that can arise in those
models. . Here, I present an example of a continuum fault model
which dynamically generates self-organized complexity. The partic-
ular form of complexity produced shows, generically, a power law
distribution of small events, and a peak of large events, with both
features being seen for two very different types of small scale cutoffs.

The model used here differs in three important ways from the
model Rice used: the dimensionality of the space used here is smaller,
fully dynamic interactions are solved here as opposed to quasistatic
interactions used by Rice, and, finally, the constitutive laws relating
friction to motion on the fault are different. Which of these differ--
ences may be crucial to the different answers obtained- complexity or.
not- and, more importantly, which is relevant for earthquakes? The
reduced spatial dimeunsion used here is a significant alteration, and it
is essential that higher spatial dimensional extensions of this model
continue to show complexity if the results are to be relevant to earth-
quakes. This question is as yet unanswered, and is a topic of current
research. The simplified temporal dynamics used by Rice is also a
severe alteration with respect to true elastodynamics; by the same
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token, extensions of Rice’s model which include complete temporal
dynamics are also crucial to its relevance to earthquakes. The final
difference, in the constitutive law, is a complex issue that, despite ef-
forts in the laboratory, has not been resolved. We really do not know
what effective constitutive equations are relevant at the slip rates,
pressures, and temperatures where earthquake occur in the presence
of gouge, fluids, and fractured surrounding rocks. Rice has chosen
to use constitutive laws obtained from laboratory measurements of
materials at relatively low slip rates [Dieterich, 1979]. There is, how-
ever, a fundamental problem that arises if one tries to directly apply
laboratory derived constitutive relations to earthquake settings, and
that is that so much heat would be generated from frictional slid-
ing that rocks would melt [McKenzine and Brune, 1972]. As this
is rarely seen [Sibson, 1975}, and would, in any case, substantially
alter the constitutive equations, some other effect must be going on.
Theze are a number of possibilities, including ones involving pore
fluids [Sibson, 1973] and ones involving new modes of rupture [Shal-
lamach, 1971; Brune, 1994], any of which could substantially alter
the constitutive equations that represent the effective friction in an
earthquake. In the absence of a sufficient understanding of what con-
stitutive relations do apply to real earthquakes, the best any of us can
do is discuss what classes of relations have what effects. I have made
a different choice than Rice, choosing to look at the s'implest con-
stitutive relations; in this case, that means no history dependence.
Despite all these differences, and the unanswered questions relat-
ing the work to real earthquake, this work does address one impor-
tant point concerning the role of discreteness in dynamical models:
geometrical irregularities or “inherent discreteness” is not a neces-
sary condition for producing complex nonperiodic sequences.

2. The Mode!

The model is a partial differential equation representing the evo-
lution of slip S along a fault [Myers and Langer, 1993]

a?s  o’s as.  o%s
Z 2 _ t— i
g = gaz S vt )t g (1)

where t is time and z is space. This is Newton’s equation in dimen-
sionless form for the acceleration of the slip § subject to four forces:
a compressional stress 925/9z2, a shear stress vt — S, where v is the
fault loading rate, a nonlinear friction ¢ which is a function of the
velocity, and a viscous force of strength 1. All the complexity arises
from a dynamical instability associated with ¢, which is a stick-slip
velocity-weakening friction. By stick-slip, we mean the friction re-
sists sliding up to a threshold force; once this threshold is exceeded,
sliding occurs. By velocity weakening, we mean that the friction
gets smaller as the velocity gets bigger, for some range of velocities.
When the friction is velocity strengthening when evaluated at the
slip rate v, the solution 85/8t = v is stable. When it is weakening
there, however, this solution is unstable, and a nonconstant motion
ensues.
The particular form of ¢ used here is:

(00,1}, %—f =0;

as
¢(E[) = 1m0 a5 0 . (2)
g >0

While the total forces on the fault remain less than the threshold
force of 1, the fault remains stuck with 85/8t = 0 , and is slowly
loaded at rate v < 1. When the threshold force is exceeded, the fault
begins to slide with initial acceleration o. As the velocity initially
increases, the friction decreases with the velocity at a rate o. The

velocity weakening is a crucial ingredient; a linear stability analysis -

shows that all Fourier modes with wavelengths larger than 2m\/n/a
are unstable when sliding in the velacity weakening regime.

The velocity weakening also causes pulses of slip to sharpen into
shock fronts. The dynamics then becomes sensitive to the small
lengthscale in the problem. The new term in this equation is the
viscosity n9°S/0z%9t , which has been added to give the equation a
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small lengthscale which then allows a well defined continuum limit
[Myers and Langer, 1993; Langer and Nakanishi, 1993]. Together,
the friction ¢ and the viscosity define the constitutive laws used here
to relate dissipation on the fault to motions on it.

To solve this equation numerically, a finite difference approxima-
tion of the spatial derivatives are used:

9%5; 1
ath = =5 [Si+1 =285 + Sj-a] = S + vt
05_7 n aSj+1 05] OSj_l
(4 L S Dt R i hud 3
G+ a2l at el ©

where j is the label of the j** element, and the parameter a repre-
sents the degree of refinement of the lattice, with the small cutoff
lengthscale being «, and ¢ — 0 being the continuum limit. This
discretized equation without the viscous term, setting n = 0, is the
classic Burridge-Knopoff model [Burridge and Knopoff, 1967]. Pre-
vious work with 7 = 0 found that complex sequences of events were
observed with a power law distribution of small events and a peak of
large events above the extrapolated small event distribution {Carlson
and Langer, 1989]. This distribution was seen to be sensitive to the
spatial discretization, however, with both the small and large events
scaling with « [Carlson, Langer, Shaw, and Tang, 1991}. The main
result of this paper is the demonstration that the addition of the
viscous term 793S/9z28t , which introduces a small lengthscale

e=m/nfa (4)

below which the equation is stable, displays complex behavior that
is essentially independent of a, for a small enough compared to e.
The small parameter 5 replaces the small length a as being relevant
in setting the lower cutoff of the small event power law region, and
the upper cutoff of the size of the largest events. For these two
very different types of small scale cutoffs, the distribution of sizes of
events looks very similar. This result points out the universality (i.e.
insensitivity) of the complexity produced with respect to the details
of the physics of the small scale cutoff.

3. Resulfs

Beginning from any nonsmooth initial condition, the system
evolves within a few loading cycles to a statistically steady state,
with a broad distribution of sizes of events. As in the case of =0,
there are two different types of behavior displayed by the model.
When « X1, there are only small events which scale with ¢. In

‘contrast, when a2 1, there are small events that scale with o and

large events that scale with 1. While a is a crucial parameter in
the problem, the value that best corresponds with the Earth is very
uncertain. Fortunately, from the point of view of the model, the im-
portant question is only whether o is small or large compared to 1;
the two different types of behavior depend on whether « is small or
large, but the behavior is otherwise relatively insensitive to the ex-
act value of o, with the velocity-weakening friction we examine here.
Since the large « case is somewhat more robust and interesting, pro-
ducing both small and large events, we will focus our attention on it
in this paper.

The size of an event is given by the moment, which is the sum
of slips 65 of all the blocks that moved during an event:

M:aZéS’j , " (8)
i

where the factor « comes in because each element is size a. The
magnitude of an event is just the logarithm of the moment

p=InM . . . - .(8)

In Figures 1-3 the rate R of events (per unit fault length per unit
loading time) having magnitudes between g and p + &p is plotted.
The friction parameters o and o are held fixed, with o = 6 and
o = .01 in all the figures, while ¢ and n are varied. The results
shown are generic for a broad range of « and o, holding for ¢ small
(¢ < 1) and « large («22 ). Periodic boundary conditions are
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Fig. 1. The distribution of sizes of events for the small lengthscale
being «. The differential rate of events R{x) having magnitudes be-
tween g and g + dp is plotted. The rate is expressed as the number
of events per unit fault loading per unit fault length. The two differ-
ent curves differ only in the value of a, having the same parameters
a =6, 0 = .01, and n = 6. The top curve has a = .25 while the
bottom curve has ¢ = .125 . Each curve has two different types of
events. The small events show a power law in the rate versus mo-
ment, seen in the straight line on the log R versus magnitude (log M)
plot. The large events occur at a rate that is larger than the tate
that would be obtained by extrapolating from the small event rate.
Note that the distribution continues to change as a changes.
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Fig. 2. The distribution of sizes of events, for the distribution going
from depending on « to depending on 5. to €. As in Figure 1, the
rate of events R versus magnitude p is plotted. The different curves
are for fixed @ = 6, ¢ = .01, a fixed nonzero n = .02, and differing
a. These values of 11 and « correspond to a value of € = .25 . The
values of a shown are decreased by a constant factor of v/Z, with a =
.353, .250, .176, .125, .088,, and .062 plotted. Note the transition
from a distribution that depends on a, to a limiting distribution
that collapses onto a curve that is independent of a. This transition
occurs at around a = .15, which is of order e.

used. The system size is N, but as long as N is large enough, and
v € 1/N, the largest events will be smaller than the system size,
and N does not enter into the problem. In Figure 1, n = 0, while a
is varied. The change in the distribution as a function of the smal}
lengthscale a can be seen. Note that while the smallest and largest
events scale with « [Carlson, Langer, Shaw, and Tang, 1991], the
magnitude where the transition between the power law small events
and peak of large events occurs is independent of a, and the exponent
of the power law distribution of small events is also independent of
a [Carlson and Langer, 1989].

In Figure 2, 7 = .02, and again « is varied. Here, we can see the
crossover as a becomes small enough and the distribution becomes

independent of a. When a becomes small enough, all the curves col- -

lapse onto the same distribution. The only difference between the

curves is the cutoff of the very smallest events, which scale as oa3,

with the ¢ — 0 limit being well defined. Finally, in Figure 3, two
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Fig. 3. The distribution of sizes of events for the distribution de-
pending on 7, for two different values of . As in Figures 1 and 2,
R(p) is plotted for fixed « = 6, & = .01. Here, two different values
of 1 are shown: 7 = .25 and n = .0625. Two different values of
a are used for each value of 5. Since a is small enough the curves
having the same 75, but different a, collapse onto each other. The
two solid curves have a = .0625 and two different values of 5, with
n = .25 and n = .0625 . The are also two dashed curves, which have
a = .25 and the same two 1 values as the solid curves, 7 = .25 and
1 = .0625 ; since the dashed curves overlay the solid curves so well,
they are difficult to see. Note the similarity of these distributions,
which depend on 7, as compared to the distributions in Figure 1
which depend on a— two very different types of small scale cutoff.
Note also the similarity of the change in the distribution with € seen
here, as ¢ 1s changed by a factor of 2, compared to the change in the
distribution in Figure 1 when « is changed by a factor of 2.

different. values of 5 are used, n = .25 and n = .0625, along with two
different a’s, which are small enough so they collapse onto the contin-
uum limit distributions. Here, the curves having different values of
a but the same value of 1 collapse onto the same distribution, while
the two different values of 7 yield different distributions. Note that
the change in the distribution when the small lengthscale is changed
by a factor of 2 (corresponding to the change in n of a factor of 4) in
Figure 3 looks very similar to the change in the distribution under a
factor of 2 change in the small lengthscale in Figure 1.

4. Conclusion

What is the relevance of the complexity produced by this model
with respect to real earthquakes? Two big questions arise when we
try to answer this one. First, the model used only 1 dimensional
elastic interactions, which are all short range, while the higher di-
mensional elasticity of real faults produces interactions between dis-
tant parts of a fault. Whether or not higher dimensional extensions
of the model continue to produce complexity is the key open ques-
tion, a concern also raised by Rice [1993] (the 2 dimensional case
will be sufficient to answer the question, and is an active area of
current research). The second set of questions, assuming that the
higher dimensional models do continue to produce complexity, is
what types of constitutive laws produce what types of complexity,
and how we might distinguish between different constitutive laws,
whether thirough the types of complexity produced, through labora-
tory measurements incorporating the full range of relevant physical
processes occurring in earthquake settings, or through a derivation
of a constitutive law from physical processes.

In this paper we have seen that a spatially uniform self-organizing
mode} with a well defined continuum limit can produce complex non-
periodic behavior. This provides a counterexample to the conjecture
of Rice [1993] that “inherent discreteness” might be an éssential in-
gredient in allowing the self-organizing models to produce complex-
ity.  An additional result was that the ualitative features of the
complexity produced by the model were invariant with respect to
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two very different types of small scale cutoffs, suggesting a univer- Horowitz, F.G. and A. Ruina, Slip patterns in a spatially homogeneous

sality of the complexity with respect to the details of the small scale fault model, J. Geo. Res., 94, 10279, 1989.

cutoff. Langer, J.S., and H. Nakanishi, Models of crack propagation II: two
dimensional model with dissipation on the fracture surface, preprint,

. . 1993.
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