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Model quakes in the two-dimensional wave equation

Bruce E. Shaw
Lamont-Doherty Earth Observatory, Columbia University, Palisades; New York

Abstract. This paper presents a new two-dimensional wave equation model of
an earthquake fault. The model generates a complex sequence of slip events on
a fault with uniform propertles when there is a frictional weakening mstab1hty
Previous models of long faults in one and two dimensions had the driving in the
bulk, giving the Klein-Gordon equation in the bulk. Here, I place the driving on
the boundary, giving the wave equation in the bulk. The different models are,
however, shown to behave similarly. I examine a whole range of frictions, with
slip weakening as one end-member case and velocxty weakening as the other end-
member case, and show that they display a generic type of slip complexity: there
is an exponential distribution of the largest events and, for sufficient weakening,
a power law distribution of small events. With the addltlon of a viscous-type
friction term on the fault, I show that the results are independent of grid resolution,

indicating that continuum limit complexity is achieved.

i Introduction

Earthquakes are complex in many ways. The distri-
bution of slip along the fault, the radiated waves that
are emitted, and the timing and correlation between
events are just some of the ways that earthquakes ex-
hibit complexity. Not only are earthquakes complex,
but the faults on which earthquakes occur are them-
selves complex. Faults are parts of whole systems of
faults which accommodate deformation. Faults them-
selves are not simple linear features but have bends,
steps, jogs, and even smaller-scale roughness. Across
the fault there is structure as well, from gouge to brec-
cia to rock. As well, along the faults there are different
types of rocks. And these are just the relatively static
features of a fault that evolve over geological time. Dur-
ing earthquakes, a whole slew of processes, such as in-
teractions with fluids, to mention just one, evolve on
quite rapid timescales. How does one even begin to try
to deal with such a complicated system?

One approach has been to start with the simplest sys-
tem, try to understand how this system behaves, and
then, piece by piece, systematically add in more compli-
cations. This has the advantage of helping to separate
which ingredients are affecting which outcomes. Sim-
plifying the problem in this manner is not only useful
but necessary: even if one wanted to try to include ev-
erything, current computers would not be capable of
solving the complete systems. Hence one has to sim-
plify things.

The simplest elastodynamic model of a fault was pre-
sented by Burridge and Knopoff [1967], who described
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. a one-dimensional model. Carlson and Langer [1989]

showed that with an appropriate frictional instability,
the one-dimensional models could develop complexity
dynamically, everi in the case where tlie fault itself had
completely uniform properties. They observed a power
law distribution of small events and an excess of large
events that occurred above the extrapolated small event
rate. A variety of earthquake-like properties have been
observed in the simple one-dimensional model, includ-
ing a cycle of small event activity preceding large events
[Shaw et al.; 1992] and moment source spectra consis-
tent with real earthquakes [Shaw, 1993].

Despite the impressive array of behaviors exhibited in
one dimension, there were a number of features missing
in one dimension: stress concentrations do not develop
as they do in higher dimensions, and there is no radiated
elastic energy. Questions remained as to whether this
complexity would persist when the model was extended
to higher dimensions to include long-range elastic in-
teractions. This question was answered recently in a
two-dimensional extension which showed that, indeed,
dynamic complexity was produced on a uniform fault
[Myers et al., 1996]. In Myers et al. [1996]’s model, the
loading was placed in the bulk, so that, as in the one-
dimensional model, a Klein-Gordon equation for the
bulk was obtained. A different two-dimensional geom-
etry was considered by Cochard and Madariaga [1996]
and Nielsen et al. [1995], who considered a finite fault
which was pinned at the ends in unbreakable barriers.
This gave a two-dimensional wave equation for the bulk.
This geometry is limited, however, to short faults, where
the fault length is less that the width of the seismogenic
zone. Thus the large events in this geometry break or
scale with the whole fault length and are controlled by
this imposed geormetry. Further, since faults are not
allowed to grow, stress singularities develop at the un-
breakable ends. Rice and Ben-Zion [1996] considered a
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two-dimensional geometry where only the depth direc-
tion was retained; thus the length of the fault was again
limited to the width of the seismogenic zone.

In this paper, I present an alternative two dimen-
sional model in which the loading occurs on a boundary
which is away from, and parallel to, the fault. In this
way, as did Myers et al. [1996], I construct a fault which
is valid for arbitrary lengths, but now the equation for
the bulk is the two-dimensional wave equation. I com-
pare the results of these two different loading geometries
and, nevertheless, show that they behave essentially the
same way. ‘

To specify the model, net only the geometry of the
fault is needed, but also the friction along the fault.
In this paper I show that a whole range of frictions,
with slip weakening as one end-member case and veloc-
ity weakening as the other end-member case, display a
generic type of slip complexity: The largest events are
distributed exponentially, and for sufficient weakening,
the small events show a power law distribution. With
the addition of a viscous-type friction term on the fault
to stabilize the smallest scales, I show that the results
are independent of grid resolution, indicating that con-
tinuum limit complexity is achieved.

The existence of complexity in the small events has
been the subject of much discussion in the literature. In
addition to the different geometries the different groups

~ have used, different frictions have been used, and dif-

ferent results have been obtained. Nielsen et al. [1995]
did not see complexity, using a friction with only a time
dependent drop and neither slip nor velocity weakening.
Rice and Ben-Zion [1996], using a laboratory-based fric-
tion with a single logarithmic weakening also did not
see small event complexity. Myers et al. [1996], us-
ing a small time dependent drop and slip weakening
friction, saw ¢omplexity in the small events. Cochard
and Madariaga [1996], using highly velocity weakening
friction, also saw some complexity in the small events.
Sorting out to what extent these differences in results
arise from differences in friction, or from differences in
geometry, is an important and unresolved question. To-

ward this end, I study the same friction in two different

long fault geometries; interestingly, I get very similar
results, thus showing a genericness in the response to
the friction which transcends at least some aspects of
geometry.

The rest of the paper is organized as follows. In sec-
tion 2, I present the model and discuss the friction used.
The results of the numerical simulation follow in section
3. I conclude in section 4.

2. The Model

The simplified picture of a fault we have in mind,
which I will even further simplify, is as follows. The
fault is a planar surface on an elastic bulk which is
slowly, uniformly, loaded. Friction on the fault pla.ys
a central role in the problem. At depth, below the seis-
mogenic zone, there is frictional strengthening, and the
fault slides stably, creeping along at the slow plate load-
ing rate. At seismogenic depths, there is frictional weak-

ening, and the fault slides unstably in sudden stick-slip
events [Brace and Byerlee, 1966; Blanpied et al., 1991].
The coupling of the stuck seismogenic fault to the lower
stably sliding creeping region loads the stuck fault. It
also ties the displacement field to a reference field, which
then constrains the maximum amount of slip when the
whole seismogenic depth ruptures in a large event. This
coupling is neglected in the short-fault models.

The two-dimensional model we consider simplifies
this picture by treating the long two-dimensional seis-
mogenic fault surface as a long one-dimensional line,
treating the creeping lower fault as a separate paral-
lel one-dimensional line, and connecting the two by a
scalar elastic field. Thus the model consists of an elas-
todynamic bulk, along with boundary conditions, with
the fault being a frictional weakening boundary. In this
paper, we consider the simplest elastodynamics, a scalar
wave equation (general elastodynamics being two cou-
pled scalar wave equations). We use dimensionless vari-
ables throughout, to minimize the number of intrinsic
parameters. In the bulk

U
oz T

where U is the displacement field, ¢ is time, and V2 is
the two-dimensional Laplacian operator V2 = 82/0z2+
0% /8y? . We will choose z to be the direction along the
fault, and y the direction perpendicular to the fault.
As we want to study the intrinsic complexity of the
dynamics, we will choose uniform boundary conditions;
by Studying the most uniform case, which is most likely
to give a periodic response, we give a lower bound to
the complex1ty

The fault is located at y = 0, with the boundary
condltlon that the strain is equal to the traction applied
on the surface:

=V | (1)

au

ay y=0

=s (2)

where @ is the friction. All the nonlinearity in the prob-
lem is contained in ®. We will return to a discussion of
& shortly; first let’s specify the other boundary condi-
tions.

The loading surface is placed parallel to the fault, a
distance away. There, the displacement field is moved
at a slow steady rate. Without loss of generality, we
scale all the lengths in the problem to the distance to
this loading surface, so it is located at y = 1:

U

i
=

3

=1

where v < 1 is the slow plate loading rate.
Along the fault direction, we use periodic boundary
conditions:

U(z+ L) =Ulz) . 4)

The geometry specified here is illustrated in Figure
1. It remains to specify the friction ® to complete the
description of the model.
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Figure 1. Geometry of the model. (a) The long cylindrical
geometry of the space (rectangular, with periodic boundary
conditions denoted by dashed lines). (b) The geometry of a
typical solution for the displacement U. There is constant
displacement along the loading surface at y = 1, and irregu-
lar displacements along the fault at y = 0. The wave equa-
tion connects the two boundaries; in this example, where
the fault is stuck, the acceleration is zero on the interior,
and the Laplacian operator smoothly interpolates between
the two boundaries. The x axis is compressed relative to the
y axis; the aspect ratio L; = 100 in this example.

The friction & is a stick-slip, weakening friction; that
is, it resists motion.up to a threshold stress value, and
then, once sliding begins, it reduces in resistance. In
this paper we will use a drastically simplified descrip-
tion of friction, chosen for its relatively simple func-
tional form, because it produces dynamics with a well-
defined continuum limit, and because it contains both
slip weakening and velocity weakening as end-member
cases. Our main justification for departing so severely
from more standard formulations of friction is that we
are interested in the dynamic behavior at large slip
rates, where large frictional heating effects can dramat-
1cally alter behavior [Sibson, 1973; Lachenbruch, 1980;
Shaw, 1995]. .

There are four aspects to the friction. First, it is
a stick-slip friction, which resists motion up to some

threshold value. Second, there is a rapid drop in fric-’

tion once sliding begins. Third, there is a slower overall
weakening which depends on some mixture of slip and
slip rate. Fourth, there is a viscous term, which stabi-
lizes the small scales. In a general form, we represent
the friction as

_ 05 , oS 2 08
¢ = ¢(W:t < t)H(‘g) 77V||5t‘ (5)
Here %f— = i’;.,itj-ly=1 is the slip rate on the fault, with ¢

depending on the past history of slip. The function H
is the antisymmetric step function, with
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H= ot :; # , (6)
|H| <1 3% = 0 .

Where%—f is the unit vector in the sliding direction. Thus
H represents the stick-slip nature of the friction, being
multivalued at zero slip rate. ‘

The parameter 7 is a constant which sets the amount
of viscosity, and sets the scale at which the small wave-
lengths are stabilized. The subscript on the viscous
term Laplacian denotes that it is the derivative parallel

to the fault, which gives Vﬁ = 3% /0x? for the geometry

considered here in (2) [Langer and Nakanishi, 1993).

We choose the particular form for the history depen-
dence of ¢ we take in this paper for two reasons. First
is its simplicity. Second, it is motivated by a physical
picture of how frictional heating can produce frictional
weakening. We will return to the physical motivation;
let us first present the mathematical form. We use:

__eQ
1+]0]Q

The three terms have the following meaning. The first
term @ is a constant which sets the sticking threshold.
It turns out to be an irrelevant parameter in the prob-
lem, as long as it is large compared to the maximum
friction drop, so as to prevent backslipping. This can
be seen for the following reason. Since the bulk equa-

¢ =V(VI>0 -0 (7)

- tions and all the other boundary conditions are linear

in U, adding or subtracting a solution of the U field
with a constant value of strain on the fault boundary
and adding or subtracting that same constant from &
is also a solution. The additional constant changes the
threshold of motion in the opposite direction, which, if
there is no backslipping, will be irrelevant. Thus it is
only stress drops that matter in the dynamics, not total
stress. ®¢ does affect the heat generated, but that is an
effect we will consider here only indirectly, insofar as it
feeds back and affects the friction. We will say a bit
more about this shortly.

There is one other symmetry in the problem which
we have used. The symmetry is the rescaling of the
equations of motion, which remain invariant under a
rescaling of U, ®, and v by the same constant. We have
thus, without loss of generality, set the stress change of
the last term in (7) to unity, and scaled all the other
stresses to this stress change.

For the second term, o, which represents the rapid
drop in friction which occurs in going from sticking to
sliding friction, we make a major departure from how
usual friction behaves, and make it a time dependent
function:

(8)

goSh t—t, <1
o=

o t—t,>71 .

so that o increases linearly with time once the fault
bpcomes unstuck, up to a maximum value oy over a
timescale 7, and is reset to zero when the fault resticks.
The time ¢, is measured from the last unsticking and
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is reset during an event if the fault resticks and then
slips again. This term neglects all the complicated rate

and state dependent effects that are observed to accom-.

pany the nucleation of slip in laboratory friction exper-
iments [Dieterich, 1979, 1992]. We do this for two rea-
sons. First, it allows us to take the limit of the loading
rate v — 0, so that this parameter is irrelevant to the
dynamics, and only sets the timescale between events.
Consequently, we have a much more efficient numerical
algorithm. Second, many of the aspects of small events
do not depend on the details of the nucleation process,
and we would like to use as simple a system as is valid
for what we are interested in. Our claim is not that
this is the most realistic description of nucleation, but,
rather, that the properties of the system we are mea-
suring in this paper are insensitive to the details of the
nucleation mechanism.

The third term in (7) contains the key dependence
on slip and slip rate in the friction, through the vari-
able Q. The variable Q is something like “heat,” which
accumulates with increasing slip rate and dissipates on
a timescale 1/ :

Q as
heh 2 = 9
= —1Q+ 1] )
The dissipation with v gives a simple, physically moti-
vated healing mechanism, which also turns out to give a
nice range of properties. An equivalent integral solution

of Q: .
n, 08
_ —y(t~t) '
Q= [ e By

shows that when 7 is small compared the inverse rup-
ture timescale of unity, @ is just the slip in an event,

while when v 3> 1, Q is 1/~ times the slip rate. (The

large v limit can be seen by noting that lim, ;o ye~7% =
&(z) , where § is the Dirac delta function.)

The constant « sets the slope of the stress drop with
heat @, with o > 0 giving weakening with Q, and o < 0
giving strengthening with Q. This parameter plays a
crucial role in the problem, as we will see. Because Q
is nonnegative, the denominator in (7) only gets larger
with Q, eventually saturating the change with aQ.

This third term in (7) , which depends on @, contains
the basic instability in the problem. It is presented here
in a way which gives a simple mathematical form while,
at the same time, preserving a connection to the phys-
ical motivation. The physical picture goes back to Sib-

son [1973], who considered how frictional heating raised -

the temperature and pressure of pore fluids, thereby
decreasing the effective normal stress and thus induc-
ing frictional weakening from frictional heating. Shaw
[1995] presented a simplified self-consistent dynamics
of this effect, showing that one got slip weakening and
velocity weakening as end-member limits, depending on
whether the dissipation of heat was slow or fast, respec-
tively, compared to the rupture timescale. Earthquakes
would be able to dissipate excess pressure with an elas-
tic expansion mode [Mase and Smith, 1987], a mode
which can happen on the fast rupture timescale. This

i

(10)
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fast relaxation mechanism suggests values of 7 of order
unity or larger as the most appropriate values. Thus, a
mixture of slip and velocity weakening effects are likely
occurring,.

Here, we simplify this even further. First, we simplify
the heating by ignoring changes in the dynamic friction
heat generation, assuming ®, > 1, that @, is large com-
pared to the dynamic stress drop of unity, so that the
heat generation in 9) can be taken to be proportional to
|0S/8t| rather than ®,8S5/8t. Then, since we need some
nonlinear saturation at high @, we specify the nonlinear
saturation to have the form of the velocity weakening
limit for the fully coupled case [Shaw, 1995). Specify-
ing the nonlinear saturation is not a serious constraint,
however, as the details of the nonlinear saturation have
been shown to be unimportant: an exponential, poly-
nomial, and piecewise linear connection from an initial
linear decrease to final constant value were shown to
give the same qualitative results in the one-dimensional
model [Shaw, 1995]. We could, or course, use the fully
coupled case; the advantage of this formulation is the
simpler form of (9) and (10).

3. Numerical Simulation

To solve the partial differential equation (1), we dis-
cretize the bulk into equal finite rectangular blocks,
approximating the spatial derivatives with finite differ-
ences, and then solve a set of coupled ordinary differen-
tial equations in time. The time steps are taken to be
small compared to the fastest frequencies in the prob-
lem, and are completely resolved in a continuum time
sense. It is one of our purposes in this paper to show
that a continuum space limit is also achieved. -

The numerical procedure is as follows. Starting from
any nonsmooth initial condition, the system self-organizes
into a statistically steady state, with the attractor be-
ing independent of the initial conditions. We begin
collecting data after the self-organized state has been
reached. The system is loaded continually at the slow
loading rate. The fault remains locked while the stress
at the fault boundary is less than the frictional strength.
When the stress exceeds the sticking friction, the fault
begins to move. Depending on how close to threshold
the neighbors are, they may or may not come unstuck
as the epicentral region begins to slide. The event ends
when the whole fault becomes restuck.

One technical point concerns the way the radiated
elastic waves are handled. Because we are solving the
full inertial dynamics, we have radiated elastic waves.
These waves reflect off of the loading boundary at y = 1
and travel back to the fault at y = 0, telling the fault
that it is tied to the loading surface. The waves hit-
ting the fault can either, if it is close enough to failure,
unstick it or, if it remains stuck, reflect off of it. Be-
cause there is no explicit dissipation in the bulk, the
far-field radiation, which consists of the elastic waves
which do not go into rearranging the local elastic strain
field, and which would travel off to infinity, continues
traveling away from the source region. Waiting for these
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waves to travel to infinity is obviously impractical, and
so they need to be damped out. The waves are damped
out between events using the following procedure. Once
the whole fault has restuck for some amount of time,
we check to see whether the static elastic solution for
the current boundary displacement has all the stresses
not exceeding the friction strength. This static solu-
tion is found by solving the Dirichlet boundary value
problem for Laplace’s equation (the static scalar elas-
tic equation) with the stuck fault and loading surface
as boundaries and, as in the dynamics, periodic bound-
ary conditions along the fault. There are two possibili-
ties. If the static solution has a stress at some point-on
the fault which exceeds the friction strength, then we
know the event is not finished. Hence, we resume the
full elastodynamic simulation as before, continuing from
where we had interrupted to do the check. If, instead,
the static solution indeed has all parts of the fault be-
low the sticking friction strength, then we consider the
event done. We then replace the kinetic bulk with the
static bulk elastic solution, and analyze the properties
of the event that has just been completed. Next, load-
ing is continued until the following event occurs, and
the whole process is repeated.

There are three parameters specifying the geometry
of the grid we use, all of which can be made to be ir-
relevant. One physical parameter is the length of the
fault Ly (Recall that L, is in units of L, = 1; see the
discussion above 3).) As we will see, if L, is big enough,
in the frictional weakening case the largest events will
not break the whole fault length; then L, does not play
any role in any of the statistical measures we examine,
and is thus irrelevant.

There are two numerical parameters, both of which
can be made irrelevant. They are the grid resolution in
the z direction along the fault d,, and the grid resolu-
tion in the direction perpendicular to the fault dy. We
have found numerically that when the grid resolution
in the perpendicular direction is at least twice the res-
olution in the fault parallel direction, it is irrelevant; so
we use d, = 4,/2. We will show, in the next section,
that §, can also be made irrelevant, in the sense that
behaviors at the larger scales do not depend on it. We
are, at the same time, limited in how resolved we can
go. Increasing resolution in the algorithm is expensive
numerically. It costs O(d;3), one factor coming from
dz, one from &y, and one from the smaller time steps
needed to resolve the smaller spatial scales. .

Finally, there is the issue of finite differences and
stress concentrations, and accuracy of the numerical
simulations. The finite resolution inherent in any nu-
merical treatment implies an inability to resolve changes
over very small length scales. Because of the nature
of the equation for the bulk, the wave equation, the
largest gradients will be generated on the fault bound-
ary. Figure 1b illustrates this for the case when the
field is static; when there are dynamic waves, the gra-
dients on the fault propagate into the bulk but do not,
however, sharpen. This makes the contribution of the
viscous term in the fault friction (5) more clear: it lim-
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its the generation of large velocity gradients and there-
fore large strain and stress gradients from forming on
the fault boundary, and therefore from forming in the
system. By stabilizing the smallest length scales, it pro-
vides a lower scale to the spatial structure that must be
resolved, and thus makes it possible for finite numerical
resolution to simulate a continuum system.

What about accuracy? The system is, in the com-
plex regime, highly chaotic, so the specifics of a partic-
ular long-term configuration are sensitive to the details
of the initial conditions (and thus, ultimately, on the
resolution). However, as we are only interested in the
statistics of the attractor we observe, and not any par-
ticular sequence, this kind of sensitivity should not af-
fect the results. The understanding of the results based
on the observed attractor rests on the nonlinear dynam-
ics idea of “shadowing”; the idea that the attractor we
solve for should follow closely, albeit not exactly, the
true attractor of the system. As we have no evidence
to the contrary- further temporal and spatial resolution
do not alter the results— we interpret the attractor we
observe as indeed shadowing the true attractor.

A last point is how we measure how big an event was.
The size of an event is given by the moment M, which
is the sum of the net slip in an event:

M= / §Sdz (11)
where 65 is the slip ih an event. The length of the event
L is given by the length of the patches which slipped.
While most events are simply connected, some events
slip in multiple patches.

Results

There are two fundamentally different types of be-
havior which occur, depending on whether the friction is
weakening (a > 0) or strengthening (a < 0). When it is
weakening, beginning from any non-constant initial con-
dition, the system self-organizes into a complex, nonpe-
riodic rough slip distribution, with, when the fault is
long enough, events which do not propagate along the
whole fault. In contrast, when the friction is strength-
ening, the system evolves into a smooth slip distribution
with events which propagate along the whole fault, no
matter how long the fault is. In this strengthening case,
any irregularities are associated with small residual slip
heterogeneities in the epicentral region left over from
the event wrapping around the whole fault; irregulari-
ties are not maintained along the whole fault, only at
one place, where the rupture wraps around and meets.
This is completely different from the weakening case,
where the rough slip distribution is maintained along
the whole fault. Figure 2 illustrates this difference, with
the sequence of slip distributions for a weakening case
shown in Figure 2a, and a sequence for a strengthening
case shown in Figure 2b. In Figure 2b, we begin from
a rough configuration, just to show that even then the
strengthening case smoothes the fault. Note in both
cases how rapid the approach to the attractor is; the
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Figure 2. Slip complexity in the weakening case and slip
noncomplexity in the strengthening case. The Tiet-slip in a
sequence of stuck configurations, as a function of position
along the fault, is plotted. (a) The complex slip distribu-
tion that has developed in the weakening case. Parameter
values are @ = 2, ¥y = 1, 00 = .03, 7 = .1, p = .005,
6z = .1. (b) The smooth slip distribution which develops
in the strengthening case; despite beginning from a rough
slip initial condition, the fault rapidly smoothes. Parameter
values are the same as in Figure 2a, except that o has the
opposite sign; so now @ = ~2. To emphasize that the im-
portant difference arises from the dynamics, the same initial
conditions have been used in both figures.

transition from one type of roughness to another ap-
pears almost immediate. The dynamics appear highly
dissipative, generally, to motions orthogonal to the at-
tractor, both for the strengthening and weakening cases.
We turn our attention to the more interesting weaken-
ing case o > 0 for the remainder of the paper.

Figure 3 shows a weakening case with a different set
of parameters than the weakening shown in Figure 2a,
to give a sense of the variations in behavior with pa-
rameters in the weakening regime. Figure 3a shows
the net slip when it is stuck. Figure 3b shows a dif-
ferent plot of the same sequence of events as in Figure

SHAW: MODEL QUAKES IN THE TWO-DIMENSIONAL WAVE EQUATION

'

3a, only now the time at which a given place on the
fault moves is marked. This is a more standard plot
in seismology, only here we show it for vastly longer
times than can be observed seismologically, the equiv-
alent of tens of repeat times for large events, or many
thousands of years. We will take the parameter values
used in this Figure 3 as the standard ones which will
be used in all the figures which follow, unless explicitly
noted otherwise. They are a = 6, v = 1, o = 0.03,
T =0.1, 7 = 0.005, §; = 0.1 and L, = 200. The first
five of these parameters are friction parameters; the last
two are geometry parameters. In the weakening case,
a > 0, when L, is large enough, the largest events
will not propagate around the whole fault, and L, be-
comes an irrelevant parameter to the statistics. And,

() 80
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6.0 F
5.0 T
4.0

B3

30 F

100.0

Figure 3. Two different ways of looking at the sequence
of events that has developed in a weakening case. (a) The
net slip in the stuck configuration, as in Figure 2. (b) The
time at which different portions of the fault have slipped.
The same sequence of events is shown in Figures 3a and 3b.
The parameter values are the same as in Figure 2a, except
for a which now has the value o = 6, The parameter values
used here, a = 6, v = 1, 00 = .03, 7 = .1, n = .005, and
8: = .1 are the standard values which will be used in all the
following figures, unless noted otherwise.
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as we will see shortly, the small numerical discretization
length 8, will also turn out to be irrelevant, for large
enough 5. The largest events are many times the one
physical length in the problem, the crust depth length
which has been scaled to unity. What sets the size of
the largest events is still not understood. Whether the
largest. events will be finite or not depends only on «,
with the other parameters playing at most quantitative,
but not qualitative roles in this issue. And again, when
a > 0, and when L. is large enough, the largest events
are finite and independent of L.

We choose a “standard” set of parameter to se¢ the
variations in behavior as one parameter is varied and
the others are held fixed. There is nothing particu-
larly special about this choice of parameters being the
standard. They represent a reasonable compromise be-
tween three sometimes conflicting factors: the values
estimated as the most realistic, the numerical tractabil-
ity, and the values which would prov1de the clearest
illustration of the behavior. The one really important
parameter is ar; however, I will first discuss all the other
parameters.

We chose: the pa,rameter 4 = 1 as a standard value
based on a desire to study a range of values of v from
simall to large; with this bemg an intermediate value.
We will study the whole rarige of values of 7, and see
that, mterestmgly, it does not change the behaviors we
will be examining much. We chose ¢ = 0.03 as a stan-
dard value as a compromise between the desire to illus-
trate the behavior of the smallest events, which are best
seen with small oy, and estimates of the most realistic
values of og, which tend to be larger to match constant
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stress drop observations. The behavior is not very sen-
sitive to this parameter. The choice of 7 = 0.1 as a
standard value was made to have the value small, so
the initial o stress drop would happen rapidly, but not
so small that it would be smaller than the timescale for
a signal to propagate along the grid. The behavior was
insensitive to a wide range of values of this parameter.
We chose /) = 0.005 as a standard. value so that it would
be big enough to provide a stabilizing effect, but not so
big that we lost too much of a scaling regime and the
numerics became too inefficient. As long as 7) was not so
large that it quenched the time dependent ¢ nucleation
we used, or so small that it did not regularize the grid,
its value did not qualitatively affect the behavior. We
chose 8, = 0.1 as a standard value as a compromise be-
tween a desire for the smallest possible value to get the
best resolution, and numerical costliness of higher res-
olution. We will show the independénce of the results
on this pa.rameter We chose L, = 200 as a standard
value as it is long eriough to be an irrelevant parame-
ter, and not so long as to swamp our finite memory and
speed capabilities. Our results do not depend on this
patameter. For this geometry of §; = 0.1, §, = 6,/2,
L; = 200, the corresponding numerical grid was 2000
elements long by 20 elements wide.

The final parameter we must discuss is &. Again, this
is the one parameter which makes a big difference in be-
havior. To the extent that we have selected any special
parameter values to obtain a regime of interest, it is a.
When « is very small, or a is very large, we get almost -
all large events, and few small events. For intermedi-
ate values of a we get lots of small events. Since we
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Figure 4. The distribution of sizes of events for different values of the viscosity parameter y and
different spatial discretizations é.. The rate of events R(M) having moments between M and M + §M
is plotted. (a) Two diflerent values of n are used, n = .02 and n = .005, along with four different
values of the spatial discretization, §, = 1/12, 1/ 10 1/8, 1/6, for a total of eight curves. The four
different values of the spatial discretization all collapse onto the same distributions for a given value of
1, showing the grid resolution independence of the results. In contrast, the two different values of n give
different distributions, with the n = .02 curves lying above the 1j = .005 curves. (b) The viscosity term is
absent, n = 0, and now we can see different values of the discretization give different distributions. Here
8. = 1/10, 1/8, and 1/6 are plotted with é; = 1/10 lying at the bottom, and §. = 1/6 lying at the top.
Note the similarity between the distributions with different §, when n = 0, and as compared with the
distributions with different  when n # 0 in Figure 4a.



21,374

10 . . ;
10° }+ §
c 10° .
10" | |
10° ' L .
0.0 20.0 40.0 60.0 80.0
L

Figure 5. The distribution of lengths of events, for differ-
ent values of the weakening parameter . The vertical axis is
the rate R(L) of events having length between L and L+4L,
while the horizontal axis is the length L. On this log-linear
plot, the linear fit for the largest events shows that they fall
off exponentially. The largest events are finite and intrinsic
to the dynamics, and do not span the whole length of the
system. The values of a used are a = .5, 1, 2, 4, 8, and 12,
with the curves having the higher values of a being below.
Note how weakly the exponential length scale depends on
a.

are interested in a range of events, the standard value
has been set within this intermediate range. We will
- further discuss the variation of the béehavior with this
parameter later. All these preliminaries accomplished,
let’s se¢ how the model behaves! o
First, we show that we obtain events which are inde-
pendent of grid resolution, and, thus, we have a good
continuum solution. As in the 1-D model, the viscosity
provides a lower cutoff to the smallest unstable length-
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scale, which becomes the relevant small length in the
self-organization [Shaw, 1994]. In the absence of the
viscous term, when 7 = 0, the grid resolution plays this
role. In that case, things are still observed to be qualita-
tively similar, so that details of the small-scale physics
do not appear, qualitatively, to control what happens
at the large scales. Figure 4 illustrates this result. Fig-
ure 4a plots the distribution of sizes of events for events
with different grid resolutions, and with two different
values of 7, while all the other parameters remain fixed.
Four different grid resolutions, &, = 1/6, 1/8, 1/10,
and 1/12 are used. The two values of 7 are 7 = .02
and .005 . Note that the curves collapse onto two sets,
corresponding to the two different values of 7, with the
collapse being independent of the grid resolution. In
contrast, Figure 4b uses the saine parameter values, ex-
cept now with 7 = 0. Thus the grid resolution now pro-
vides the small scale cutoff. Notice here that the curves
no longer collapse. Interestingly, niote that the curves
for n = 0 are similar to the curves with 5 # 0, only now
they change with smaller grids as they did with smaller
5. This is also seen in the 1-D model [Shaw, 1994].
Having shown grid independence for nonzero 7, we will
restrict our attention from here on to that regime.
Figure 5 shows the distribution of lengths of events
for different values of weakening a. Here, the straight
line on the log-linear plot shows that the largest everts
are exponentially distributed. This exponential distri- .
bution of the largest events has been seen in experi-
ments on gel analogue fault models [Rubio and Galeano, -
1994]. It has also been reported as occurring in the 1-D
model in the limit of the discretization length becoming
large [de Sousa Vieira, 1996]. In fact, it is quite ubiq-
uitous, and not at all limited by discretization lengths
or dimensionality in the system: in general, the largest
events on long enough faults are seen to fall off expo-
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Figure 6. The distribution of sizes of events, for different values of the weakening parameter a. The
curves are for the same catalogues of events as in Figure 5. (a) On a log-log scale, with the straight lines
on the larger negative a lower curves showing the power law distribution of smiall events. Note the excess
of large events with respect to the extrapolated small event rate. For small negative values of «, the
curves converge to the same limiting distribution. (b) The distribution of sizes on a log-linear scale, with

the straight line for the largest events showing their exponential distribution. The values of o plotted

are a = .25, .5, 1, 2, 4, 6, 8, and 12.
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nentially in the frictional weakening models. Note, in
addition, the very weak dependence of the length scale
of the fall off in Figure 5 with . The length scale does
vary some with 7, and does have some a dependence;
but it varies surprisingly little.

The key parameter affecting the distribution of sizes
of events is . Figure 6a shows the distribution of sizes

of events for different values of a, plotted on a log-log -

scale. We plot the differential rate of events R(M) hav-
ing events between M and M + §M; an integral of this
distribution would give the cumulative distribution of-
ten used for sparse real data. When o > 0 there are two
regimes of behavior, depending on how large o is. For
small a, all the events scale with o. For larger o, there
is a transition to where there are small events which
scale with o, and large events which now scale with the
full stress drop of unity. The transition between the two
regimes occurs at a critical value of @, where there is the
broadest range of scaling. On the log-log plot of Figure
6a, the straight line shows the power law scaling for the
small events in the larger a regime. The very smallest
events are suppressed below the power law scaling by
the viscous term. The large events occur in excess of
the extrapolated small event rate. This is consistent
with what is observed for real earthquakes on a single
fault [Wesnousky et al., 1983; Singh et al., 1983;Stirling
et al., 1996]. Averaging over fault systems, which con-
tain many faults of different lengths, gives earthquake
distributions which show power laws out to the largest
events— the Gutenberg-Richter scaling [Gutenberg and
Richter, 1954; Pacheco et al., 1992]. Note that the slope
of the small events changes somewhat as a changes.
Comparing to the real data, the most realistic values
of the slopes of small events, and the relative rates of
small events to large events, occur for values of a near
the critical value, For these intermediate values of o,
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Figure 7. The scaling of moment M with length L of an
event. Two different values of o are used, the smallest and
largest values.shown in Figure 6, with @ = .25 denoted by
crosses and o = 12 by the circles. The two solid lines show,
for smaller values of L, M ~ L? scaling, which corresponds
to “constant stress drop” scaling in two dimensions, with slip
scaling linearly with L, and, for larger values of L, constant
slip scaling M ~ L.
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the friction drop occurs over the scale of slip of a large
event. Such a large scale for weakening is obviously un-
related to microscopic friction, and would have to have
some other origin; the heat weakening effects we dis-
cussed previously would be one possible origin. Other
values of o correspond better with other types of fault
regimes: negative values of o for faults above and be-
low the seismogenic zone which are in the stable sliding
regime, larger values of a for the most developed ma-
Jor faults, like the San Andreas, which have the largest
events, and relatively few smaller events. As in the case
of the lengths, the largest moments in the model are
exponentially distributed; this is shown in Figure 6b,
as a straight line on the log-linear plot.

A plot of moment M versus length L of an event
shows the scaling of slip with slip zone size. In Fig-
ure 7, we plot M as a function of L for a number
of events. Two different values of o are shown— the
largest and smallest values of a in Figure 6. As in
[Myers et al., 1996] we see scaling which is consistent
with observations in real earthquakes; for all but the
largest events, slip increases linearly with slip zone size,

‘the “constant stress drop” scaling seen in earthquakes

[Scholz, 1982]. In two dimensions, as we have here, this
implies M ~ L?, which is shown by one of the solid
line in Figure 7. The other solid line shows constant
slip scaling M ~ L for the largest events; again we see
consistency with real earthquakes [Romanowicz, 1992;
Scholz, 1994].

Changing the parameter y changes the relative amount
of slip and velocity weakening. It changes things much -
as changing o does. Figure 8 shows the distribution of
sizes as v is varied. In Figure 8a, we vary v, keeping
a fixed. This looks similar to what is seen when o is
varied. In Figure 8b, we vary both « and « for larger
values of v, showing that the effective weakening for
large v goes as /7, as equations (10) and (7) imply.
Figures 8a and 8b also show the continuity of behavior
across the different relative amounts of slip and velocity
weakening.

Changing the size of oq changes things quantitatively,
but not qualitatively. For small oy, the large events are
independent of 0. Also for small o, the distribution
of small events is independent of o, with only the size
of the cutoff of the very smallest events changing. o
sets the scale of the stress drops of the small events.
Stress drops of earthquakes are observed to be roughly
equal for small and large events, so this suggests that
a value of g¢ close to unity would be the most realistic
value. We chose, however, to study smaller values of oy
n this paper for two reasons. First, when oy is small,
the large events become independent of ¢q, and also the
small events scale in a simple way with o; this therefore
makes it easier to classify a generic behavior and to
study the behavior varying each parameter separately.
A second reason for studying smaller values of oy is
that it extends the small event scaling regime to smaller
magnitudes; since this is a regime which has been the
source of some contention, clarifying the behavior in
this regime is of particular interest. In any case, larger
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Figure 8. The distribution of sizes of events for different values of the healing parameter v. (a) Values
of y =0, .1, .5, 2, and 10. Note the convergence for small values of v onto the same pure slip-weakening
limiting distribution, while larger values of 4 correspond to smaller values of /. (b) Both v and « are
changed, to show the /v scaling. The curves here area=6vy=1,a =12 y=2, and a =60 v = 10,

values of o, up to a few tenths, are qualitatively similar
in their behavior. The parameter 7 is also seen to not
effect all but the very smallest events. Of course, if oy =
0, events which scale with o¢ will not exist any more.
That does not, however, mean that events which scale
with o are an artifact of the particular time dependent
nucleation mechanism used here. The relevant part of
the friction for obtaining the small events is a rapid
initial drop in friction, followed by a much slower overall
drop represented by a. (By rapid, we mean rapid as a
function of slip, or slip rate, or of some other variable.)
The rapid initial drop gives, more generally, nucleation,
with the small events scaling with the nucleation stress
drop scale. Speculation that the small event complexity
we observe is somehow a result of the “zero nucleation
size” of the nucleation mechanism used here has not
been supported by our observations. For example, a slip
weakening nucleation driven with a finite loading rate,
a nucleation mechanism which has a finite nucleation
size, has also been seen to give behavior similar to that
described here [manuscript in preparation].

Different Bulk Geometries

Are the results sensitive to the details of the geometry
of the system? Myers et al. [1996] considered a crustal
plane geometry where the loading occurred throughout
the bulk. This gave, instead of the wave equation, equa-
tion (1), the Klein-Gordon equation in the bulk:

o*U

B = VU +vt-U
where the length scale of unity was now set by the cou-
pling strength to the loading surface being unity. The
different bulk equations lead to different wave prop-
agation properties in the two models. In the Klein-
Gordon equation we have dispersion, as the different

(12)

wavelengths travel at different speeds, due to the reflec-
tion off the bulk loading. In the wave equation model,
by contrast, reflections off of the loading happen off of a
stiff boundary through a dispersionless bulk. Thus the
reflected unloading waves from the loading surface (a
real effect in the real Earth, but one which is modeled
quite differently in the two models) are very different.
Do these differences, and others, show up in the results
we have been examining?

Figure 9 shows the distribution of sizes of events us-
ing the same friction, but the two different model ge-
ometries: the wave equation model from here (equations
(1)-(4)) and the Klein-Gordon equation model of Myers

107 10°
M

Figure 9. The distribution of sizes of events for the wave
equation model described in this paper compared with the
distribution of sizes from the Klein-Gordon equation model
of Myers et al. {1996}. The same frictions are used in both.
Note that the two models produce nearly identical distribu-
tions.
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etal. [1996] (equations (12), (2), and (4)). Observe that
the distributions are essentially the same, with only a
slight change in the overall scale of events, as the bulk-

loaded ‘model is slightly less stiff. The similarities of -

the behavior extend beyond the distribution of event
sizes as well. Remarkably, looking only at the bound-
ary motions on the fault, it appears very difficult to tell
the two models apart. This further demonstrates the
generic nature of the results in this paper.

4. Conclusion

I have presented a new simple (perhaps the simplest)
two-dimensional elastodynamic model of an earthquake
fault. It is modeled by the wave equation in the bulk,
a uniform frictional boundary, and a parallel loading
surface. The model was shown to behave similarly
to previous bulk-loaded models which had the Klein-
Gordon equation for the bulk. A range of frictions
mixing slip and velocity weakening effects was stud-
ied, with slip weakening being one end-member case
and velocity weakening being the other, and all of them
being shown to display a generic type of slip complex-
ity: An exponential distribution of the largest events
and, for sufficient weakening, a power law distribution
of small events. The addition of a viscous frictional term
which stabilized the smallest scales was shown to give
a behavior which was independent of grid resolution,
thereby indicating that a continuum limit complexity
was achieved. This paper extends the class of elastody-
namic models, and the class of frictions that have been
shown to produce the generic types of slipcomplexity
described in this paper. This lends further support to
the suggestion that this dynamic complexity may play
a role in some aspects of earthquake complexity.
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