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Far-Field Radiated Energy Scaling in Elastodynamic Earthquake

Fault Models
by Bruce E. Shaw

Abstract Measurements of the far-field radiated energy in very simple elastodyn-
amic fault models is presented, and the scaling of the radiated energy with moment
and rupture length is examined. The models produce a complex sequence of events
having a wide range of sizes as a result of a frictional-weakening instability. Thus,
radiated energy from a broad range of sizes of events can be measured. Using con-
servation of energy, I am able to measure the far-field energy very accurately and
efficiently. I study a range of frictions, from velocity weakening to slip weakening,
in order to examine the effects of the physics of the rupture source on the radiated
energy. Examining the scaling of radiated energy as a function of moment and rupture
length, I find differences for slip-weakening as compared to velocity-weakening fric-
tion. I find distinct differences in how the apparent stress scales with moment and
also how the apparent stress divided by the stress drop scales with moment for the
different frictions. Most dramatically, the apparent stress divided by the stress drop
is significantly smaller for slip weakening relative to velocity weakening. This sug-
gests that measurements of radiated energy versus moment and rupture length in
earthquakes, combined with forward elastodynamic modeling, can be used to con-

strain possible source physics.

Introduction

What we experience as earthquakes are the dynamic
elastic waves that are radiated by motions on a fault. These
radiated elastic waves are perhaps the most important aspect
of earthquake behavior because they are what cause nearly
all of the destruction and loss of life. The radiated waves are
additionally significant because, through the shaking re-
corded on seismograms, they provide our greatest source of
quantitative measurements of earthquakes. From the point
of view of trying to model earthquake behavior, trying to
translate a complex physical phenomena into the language
of mathematics, radiated waves are therefore a central be-
havior to study: It is the behavior for practical reasons we
would most like to understand, and, due to the wealth of
observational data, it is the behavior that provides the most
constraints on theory.

The motion on the fault is also of fundamental impor-
tance. It is what causes the radiated waves, and it is the
conserved quantity, the net slip across the plate boundary,
that plate loading constrains. The relationship between these
two fundamental quantities, radiated energy and moment, is,
however, not trivial. Even in the far field, at distances large
compared to the source size, the amount of radiated energy
is not only a function of the net slip but also a function of
how the slip occurred. Thus, the scaling of radiated energy
with moment is a constraint on the possible source physics.

Measuring the total radiated energy in earthquakes is
made difficult by attenuation of the energy far from the
source. Thus, there is some contention as to how much en-
ergy is radiated. A number of techniques have been used and
different results obtained. Teleseismic measurements of far-
field P-wave energy by Choy and Boatwright (1995) (Boat-
wright, 1980, 1984) have shown very low values of radiated
energy, with a roughly linear scaling of radiated energy as
a function of moment. Inversion for source motions at dis-
tance to compute radiated energy has yielded conflicting es-
timates. Vassilou and Kanamori (1982), for example, found
values consistent with the Gutenberg—Richter scaling rela-
tions of a linear radiated energy-moment trend (Gutenberg
and Richter, 1956), whereas Kikuchi and Fukao (1988)

. found a linear trend as well, but much lower values of the

radiated energy for a given moment. Direct estimates from
integrating near-field records have been made by numerous
authors beginning from Gutenberg and Richter (1956) and
continue to be used and improved (e.g., Kanamori et al.,
1993). Singh and Ordaz (1994) have pointed out discrep-
ancies between estimates using some of the different tech-
niques. Mayeda and Walter (1996) used coda-wave enve-
lopes to estimate energies and found a systematic increase
in radiated energy with moment beyond linear scaling, with
radiated energy scaling as moment to the 5/4 power. In per-
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haps the cleanest measurements, due to the great depths at
which the instruments were located, which reduced attenu-
ation considerably, Abercrombie (1995) measured very low
values of radiated energy for very small earthquakes. She
also found what appeared to be some slight nonlinear de-
pendence of radiated energy scaling with moment.

A thorough review of this extensive literature is beyond
the scope of this article. There are, however, two things we
can gleam from this abbreviated summary. First, while many
studies have suggested radiated energy scales linearly with
moment, some others have not. It is neither an obvious nor
a necessary tesult, despite its simplicity. Radiated energy
need not scale linearly with moment; its scaling is an inter-
esting physical constraint on models of the source physics.
Second, there have been a number of reports of very low
values of radiated energy in a variety of contexts (Beroza
and Jordan, 1990; McGarr, 1994), although this is also a
subject of considerable discussion. This does, however, raise
the question of whether some physical systems might behave
this way.

What kinds of physical models produce behavior con-
sistent with the various observations? In this letter, I present
measurements of the far-field radiated energy in very simple
elastodynamic models and examine the scaling of the radi-
ated energy with moment and rupture length. Using conser-
vation of energy, I am able to measure the far-field energy
very accurately and am able to measure very small seismic
efficiencies. I study a range of frictions, from velocity weak-
ening to slip weakening, in order to examine the effects of
the physics of the rupture source on the radiated energy. I
find the scaling of radiated energy versus moment and rup-
ture length, at least in these simple two-dimensional models,
differs for slip-weakening as compared to velocity-weak-
ening friction. This points to the importance of this quantity
in helping distinguish observationally between different
models of the source physics.

Previous Modeling Work

Various models for generating radiated energy have
been proposed. There is a long history of research in which
the source motions have been specified, and the resulting
radiation emitted is calculated, beginning from the pioneer-
ing work of Haskell (1964) (e.g., Aki and Richards, 1980;
Brune, 1970; more recently Anderson, 1997). An interme-
diate level of modeling where some aspects of the rupture
are specified, such as the rupture propagation velocity, while
other aspects are solved more dynamically, have also been
studied (e.g., Andrews, 1976). Energy radiated from dy-
namic ruptures beginning from specified initial conditions
has been studied for some time (Madariaga, 1976; Das and
AKki, 1977). Recently, some fully elastodynamic methods for
reconstructing near-field motions have been developed and
applied to individual earthquakes (Mikumo and Miyatake,
1995; Beroza and Mikumo, 1996; Olsen et al., 1997); these
authors imposed various heterogeneities along the fault sur-
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face and, using slip-weakening friction, examined near-field
records.

The Model

We seek to generate radiated energy from first princi-
ples, from a dynamics coupling boundary and bulk motions
self-consistently. To get radiation, we need inertial dynam-
ics, and we need a dimension perpendicular to the fault. To
get a range of sizes of events, we need at least one dimension
along the fault. Thus, at a minimum, we need two-dimen-
sional elastodynamics. Here, we study one such model, in-
troduced by (Shaw, 1997), a long two-dimensional ribbon
of the scalar wave equation, bounded along one boundary
by a frictional fault, and along the other by a slowly moving
boundary. The slowly moving boundary represents the effect
of stable creep at depth, while the frictional boundary rep-
resents the stick-slip unstably sliding fault. The wave
equation couples the two surfaces elastodynamically. We
nondimensionalize everything, to obtain a minimal parame-
terization. Mathematically, we have, in the bulk, the wave
equation

2
vU _ V2, 1)

where U is the displacement field, 7 is time, and V? = ¥
x> + 9%8y” is the two-dimensional Laplacian operator for
the direction x, which we will take to be along the fault, and
the direction y perpendicular to the fault. The wave speed is
scaled to unity, so it takes unit time to travel unit length.

The fault is located at y = 0 with the boundary condi-
tion

iy

o = @, 2

y=0

where @ is the friction. Opposite the fault is the loading
surface at y = 1, where the boundary condition is

U

= =, 3)

y=1

. where v < 1 is the slow plate-loading rate. Without loss of

generality, we scale all the lengths in the problem to the
distance from the fault to this loading surface, located a dis-
tance unity away. Thus, the length unity corresponds to a
seismogenic fault width.

To maintain a spatially uniform fault, we use periodic
boundary conditions along the fault:

Ux + € = U®X), )

where € is the length of the fault. The geometry of the model
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is illustrated in Figure 1. To complete the description of the
model, we need to specify @.

All of the nonlinearity in the problem is in the friction
function ®. A central feature of the model is that in the
presence of frictional weakening, when the friction de-
creases with increasing slip or slip rate, there is a dynamical
instability in the problem, and a complex, deterministically
chaotic sequence of slip events ensues. Thus, even on a fault
with completely uniform material properties, an attractor
nonuniform in space and nonperiodic in time results. The
frictional weakening is a crucial ingredient in obtaining the
complexity: Friction that only strengthens, increasing with
slip or slip rate, leads to noncomplex periodic solutions.
There are both similarities and differences in the behavior
that arises from different kinds of frictional weakening. We
therefore want to study a range of frictions and compare the
resulting behavior.

The form of the friction @ we examine in this article is
chosen for two reasons. One is mathematical: it encompasses
a range of frictional-weakening mechanisms, from slip to
velocity weakening. The other motivation is physical: The
form represents a simple quantification of a physical idea
that goes back to Sibson (1973), that heat from frictional
sliding will raise the temperature and, therefore, the pressure
of pore fluids, thereby decreasing the effective normal stress
and therefore friction. If the dissipation of heat is taken to
occur over some time scale, then slip weakening results if
the dissipation is slow compared to the rupture time scale
(Lachenbruch, 1980), and velocity weakening results if the
dissipation is fast compared to the rupture time scale (Shaw,
1995). The friction used here is the same as in Shaw (1997),
where it is discussed in more detail.

There are four aspects to the friction. First, it is a stick-
slip friction, which resists motion up to some threshold
value. Second, there is a rapid drop in friction once sliding
begins. Third, there is a siower overall weakening that de-
pends on some mixture of slip and slip rate. Fourth, there is
a viscous term, which stabilizes the small scales. In a general
form, we represent the friction as

as aS as
= — ¢ = —] - 2 2
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Here

y=0

is the slip rate on the fault, with ¢ depending on the past
history of slip. The function H is the antisymmetric step
function, with . :
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Figure 1. Geometry of the model. (a) The long cy-
lindrical geometry of the space (rectangular, with pe-
riodic boundary conditions denoted by dashed lines).
The fault is located at y = 0, while the slowly loaded
driving surface is located parallel to the fault, a dis-
tance unity away aty = 1. The (+) symbols represent
the locations of an array of velocity-meters placed
near the fault. (b) The geometry of a typical solution
for the displacement U. There is constant displace-
ment along the loading surface at y = 1 and irregular

" displacements that have developed along the fault at
y = 0. The wave equation connects the two bound-
aries; in this example, where the fault is stuck, the
acceleration is zero on the interior, and the Laplacian
operator smoothly interpolates between the two
boundaries. The x axis is compressed relative to the
y axis in the figure; the aspect ratio £ = 100 in this
example.

where 5:8‘/61‘ is the unit vector in the sliding direction. Thus,
H represents the stick-slip nature of the friction, being multi-
valued at zero slip rate.

The parameter # is a constant that sets the amount of
viscosity and sets the scale at which the small wavelengths
are stabilized. The subscript on the viscous term Laplacian
denotes that it is the derivative paraliel to the fault, which
gives Vﬁ = 9*/ox” for the geometry we consider here in
equation (2) (Langer and Nakanishi, 1993).

We choose the particular form for the history depen-

. dence of ¢ taken in this article for two reasons. First is its

simplicity. Second, it is motivated by a physical picture of
how frictional heating can produce frictional weakening. We
use

aQ
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The first term @, is a constant that sets the sticking threshold.
It turns out to be an irrelevant parameter in the problem, as
long as it is large compared to the maximum friction drop,
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so as to prevent back slipping. Thus, only stress drops matter
in the dynamics, not total stress. @, does affect the heat
generated, but that is an effect we will consider here only
indirectly, insofar as it feeds back and affects the friction.

There is one other symmetry in the problem that we
have used. The symmetry is the rescaling of the equations
of motion, which remain invariant under a rescaling of U,
®, and v by the same constant. Thus, without loss of gen-
erality, we have set the stress change of the last term in (7)
to unity and scaled all the other stresses to this stress change.

For the second term g, which represents the rapid drop
in friction that occurs in going from sticking to sliding fric-
tion, we make a major departure from how usual friction
behaves and make it a time-dependent function:

t -t
Op
o= T

t— 1, <1,
UO t‘tsg

®

so that ¢ increases linearly with time once the fault becomes
unstuck, up to a maximom value ¢, over a time scale 7, and
is reset to zero when the fault resticks. The time ¢, is mea-
sured from the last unsticking and is reset during an event
if the fault resticks and then slips again. This term neglects
all the complicated rate- and state-dependent effects that are
observed to accompany the nucleation of slip in laboratory
friction experiments (Dieterich, 1979, 1992; Blanpied et al.,
1991). We do this for two reasons. First, it allows us to take
the limit of the loading rate v — 0, so that this parameter is
irrelevant to the dynamics, and only sets the time scale be-
tween events. Consequently, we have a much more efficient
numerical algorithm. Second, many of the aspects of small
events do not depend on the details of the nucleation process,
and we would like to use as simple a system as is valid for
what we are interested in. Our claim is not that this is the
most realistic description of nucleation but, that the prop-
erties of the system we are measuring in this article are not
sensitive to the details of the nucleation mechanism.

The third term in equation (7) contains the key depen-
dence on slip and slip rate in the friction, through the variable
Q. The variable Q is something like heat, which accumulates
with increasing slip rate and dissipates on a time scale 1/y:

as

_ = - +____
12 ‘61‘
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The dissipation with y gives a simple, physically motivated
healing mechanism, which also turns out to give a nice range
of properties.

An equivalent integral solution of Q,

t

as

> dar, (10)
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shows that when y is small compared to unity, the inverse
rupture time scale, Q is just the slip in an event, while when
y > 1, Q is 1/y times the slip rate.

The constant « sets the slope of the stress drop with heat
Q, with o > 0 giving weakening with Q, and a < 0 giving
strengthening with Q. This parameter plays a crucial role in
the problem. Because Q is nonnegative, the denominator in
equation (7) only gets larger with Q, eventually saturating
the change with aQ.

Further discussion of the physical motivations behind
this formulation of friction can be found in (Shaw, 1995,
1997). What is convenient for us in this article is that we
can study a range of types of weakening, with slip weak-
ening and velocity weakening as end-member cases, by
varying the parameter .

The fault remains stuck until the stresses reach the max-
imum sticking threshold, whereupon sliding commences.
Beginning from any nonconstant initial condition, when
there is frictional strengthening, nothing interesting happens,
and a periodic solution develops. In contrast, when there is
frictional weakening, there is an instability, and a complex
sequence of events develops. Figure 2 shows an example of
a complex sequence that has developed in the weakening
case. Two different ways of looking at the same sequence
of events are shown. In Figure 2a, we plot the times at which
various points along the fault have slipped. In Figure 2b, we
plot the net slip when the fault is at rest.

There are a variety of ways of quantifying the complex
behavior that develops in the elastodynamic models; previ-
ous work has examined the distribution of sizes of events
(Carlson and Langer, 1989), the correlations of small events
with upcoming large events (Shaw ez al., 1992; Pepke et al.,
1994), the moment source spectra (Shaw, 1993), and the
scaling of moment with source length (Myers et al., 1996),
among other things. In this letter, I consider a new quanti-
fication of behavior of these complex events, the radiated
energy in the far field.

Results

Motions on the fault cause motions in the bulk. In the
near field, much of the kinetic energy goes to rearranging
the displacement field and thereby goes into rearranging the
potential energy density. Only some of the kinetic energy
manages to escape to the far field and is radiated away. One

. way to visualize the near-field motions is with an array of

velocity records. Taking an array of records located near but
off the fault and spaced evenly along the fault, as indicated
in Figure la, we can observe the coherent motions created
by an event. Figure 3 shows two events, one small (Fig. 3a)
and one large (Fig. 3b). The small event illustrates a sort of
empirical Greens function for the medium. The horizontal
axis is time, and the vertical axis is velocity, v = dU/at,
with neighboring velocity records offset vertically by a
constant amount. We see an initial short-velocity pulse, cor-
responding to the short event, followed later by a broad
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Figure 2. Two different ways of looking at a se-
quence of events that has developed in a weakening
case. The horizontal axes are distance along the fault.
The vertical axes are (a) the time at which different
portions of the fault have slipped, and (b) the net slip
in the stuck configuration. The same sequence of
events is shown in Figures a and b. The parameter
values used in this figure are « = 4,y = 1, 05 =
0.03, 7 = 0.1, # = 0.005, and J, = 0.1.

reflection of the waves scattering off of the stiff, slowly mov-
ing boundary a distance unity from the fault. A large event
is shown in Figure 3b, with a decreased magnification of the
time and velocity axes. We see the relatively messy epicen-
tral region organizing into two large pulses of slip emanating
bilaterally down the fault. The pulse traveling down the page
dies out, while the pulse traveling up the page continues on,
and dies later, beyond the array. Coherent packets of scat-
tered energy ring on behind the passage of the main rupture
pulses.

This visualization provides a qualitative picture of some
of the complex spatial and temporal aspects of the radiative
field in the bulk. To provide a more quantitative measure of
the behavior, we step back to the far field.

One could measure, directly, the far-field radiated en-
ergy by integrating the energy flux through a far surface that
enclosed the source. One would, however, have to wait a
long time for the waves to travel to the far surface and for
all the scattered waves to finish passing through it. I circum-
vent this difficulty by using conservation of energy. I keep
track of the work done on the boundaries, which, because
there is no work done at the far boundary during an event
(in the limit as v — 0, as we use here), is just the work done
on the fault:

W = f d5%]dxdt. (11)

I also calculate the potential energy P

P = J L vuyav (12)
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Figure 3. An array of near-field velocity records
for (a) a small and (b) a large event. Note the differ-
ence in velocity scale on the vertical axis and a dif-
ference in the time scale on the horizontal axis in the
two plots.
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in the static solution before and after the event (V is the
volume). Then the difference between the potential energy
before and after an event, AP, minus the work done on the
fault is the radiated energy E, because there are no other
energy sources or sinks in the model (i.e., no dissipation in
the bulk):
AP — W = E. (13)

This conservation of energy method works because we are
solving things in a consistent dynamic—as opposed to ki-
nematic—way.

There are a few other quantities that need defining. The
Moment M of an event is the net slip on the surface

M= J(SU(x)dx, (14)

where SU(x) = Uxt)l,—o — U(xfo)l,—o is the slip on the
fault in an event, the difference in displacement between the
initial time f, at the start of an event and the final time &
when the event is finished.

The length L of an event is the net length of the fault
that slipped:

L= J IOU()1dx, (15)

where @ = 1 if the fault slipped, and 8 = 0 otherwise.
In our dimensionless units, the apparent stress g, is de-
fined by Wyss and Brune (1968):
E = oM. (16)
The stress drop Ao depends on the slip and rupture length
and has some fault dimension dependence:
Ao = MIL" a7
with # = 3 for earthquakes in three dimensions, and 7 = 2
in two dimensions, which we study here. This expression for
stress drop neglects finite-depth effects occurring at large

rupture lengths, but it is simple and sufficient for our pur-
poses.

To check the consistency of the methodology, I have

done a number of tests. First, I have checked that the results
are independent of the spatial grid resolution and temporal
time-step resolution. Second, I have tested the method on a
reduced one-dimensional model, where the loading bound-
ary is only one grid-element away [the model of Burridge
and Knopoff (1967)], and measured that indeed, as expected,
there is no radiated energy (to the resolution of 10~ ¢ of the
method). Third, I have checked that the radiated energy is
independent of the absolute level of stress and only depends
on the stress drop; changing @ leaves the results unchanged.
Fourth, I have checked that in the limit where the friction
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drops very rapidly with time to a nearly constant value, when
6, > gy and T < 1, the apparent stress g, approaches the
stress drop Ao as expected. Finally, though it is much less
efficient and only approximately accurate, I have done a fur-
ther numerical check on the results by looking at the time
integral of the square of the velocity on two bounding planes,
on both sides and away from the rupture, which go from the
fault aty = O to the far edge aty = 1. (Because the boundary
opposite the fault is steady, no energy is radiated through
it.) This gives an approximate estimate (neglecting angle of
incidence) of the radiated energy by a completely indepen-
dent method. The results are consistent with the conservation
of energy approach.

Our first set of results are shown in Figure 4. This shows
the radiated energy E, as a function of moment M, for dif-
ferent values of the parameter y going from slip weakening
at small y to velocity weakening at large y. Each point cor-
responds to an individual event, with the different symbols
representing different values of y. In this plot, and the plots
that follow, we fix g, = 0.03 and v = 0.1. Note that there
are significant differences between slip and velocity weak-

Figure 4. Radiated energy E versus moment M,
comparing different-sized events and different
amounts of velocity versus slip weakening. Each
point in the plot corresponds to an individual event.
The different symbols correspond to different friction
parameters. For the velocity-weakening cases, we
vary y while keeping ofy fixed, at a value of 3. For
these cases, the symbols are (o) for y = 1, () for y
= 10, and (*) for y = 100. The (+) symbol corre-
sponds to the slip-weakening case, with @ = 3 and y
= 0.1. Increasing y corresponds to increasing the
amount of velocity weakening. Note the increased ap-
parent stress 6, = E/M for bigger y. Note also that
for large values of y, E scales linearly with M; the
solid line, for comparison, shows a linear scaling of
E versus M, with apparent stress g, = 0.1.
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ening. Larger values of y, more velocity weakening, gives
more E for a given M. Small values of y, slip weakening,
gives very little radiation, and a nonlinear scaling of E with
M. This suggests apparent stress as a function of moment
may be a useful quantity in trying to distinguish different
source physics. Let us push this question further and look at
other scaling laws.

Figure 5 shows moment M as a function of rupture
length L, for the slip- and velocity-weakening cases. In con-
trast with the previous figure, the differences between these
two types of frictional weakening here appear relatively sub-
tle. Thus stress drop as a function of moment does not appear
to be very useful, in this case, in distinguishing between the
different source physics.

What happens when we combine the two types of stress
and plot apparent stress versus stress drop (Savage and
Wood, 1971; Abercrombie, 1995)? Figure 6 shows this plot
for the model data, and the two types of friction, slip weak-
ening and velocity weakening. The striking differences be-
tween the two frictions on this plot suggests this may poten-
tially be an excellent way of distinguishing the source
physics. Note that the two types of frictions collapse into
two quite distinct sets, with the velocity-weakening data
clustering near the line where g, = Ac. In contrast, the slip-
weakening shows o, being an order of magnitude smaller
than Ao. This is a significant, potentially observable differ-
ence. How does this compare with real earthquakes? Both E
and L are difficult to measure accurately, so there are large
uncertainties in the real data. Abercrombie (1995) used deep

10

Figure 5. Moment M versus length of rupture L,
comparing different-sized events and different fric-
tions. Two different frictions, slip weakening denoted
with the (O) symbol and velocity weakening denoted
with the (+) symbol, are shown. The parameters are
a=6,7=0.1,and afy = 6, y = 10, respectively.
Each point in the plot corresponds to an individual
event. Note that there are differences between the two
frictions but only relatively subtle ones.
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borehole measurements that had the advantage of minimiz-
ing attenuation effects. Though her data come from only a
relatively narrow magnitude range, it is useful to compare
the earthquake data with the model. In Abercrombie (1995,
Fig. 12), we see remarkable similarities in both the relative
values of g, to Ao and in the scatter, compared to the slip-
weakening case here. Both show ¢, being about a factor of
10 smaller than Ac. (The axes on her figure and the figure
here are reversed.) This is an important number. It says
earthquakes are relatively quite quiet. They could shake an
order of magnitude harder and still have no problems with
their energy budgets. Velocity weakening, in contrast, ap-
pears to be much louder. Due to the uncertainties in the
earthquake measurements, the low dimensionality of the
models, and the restricted range of the friction studied, one
should be cautious about pushing these quantitative com-
parisons too far at this point. Nonetheless, this does appear
to be a potentially extremely useful plot to quantify the be-
havior and distinguish between different models of the
source physics.

While the plot of apparent stress versus stress drop ap-
pears to be quite useful, we can go further and note that there
is additional information potentially available in the data. In

-1
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Figure 6. Apparent stress vs. stress drop. Each
point in the plot corresponds to an individual event.
There are two types of friction shown, with slip weak-
ening denoted by a (O) symbol, and velocity weak-
ening denoted with a (A) symbol. The parameters are
a =6,y =0.1,and afy = 6,y = 10, respectively.
The size of the symbols are scaled with the magnitude
of the events, with the largest events having the larg-
est symbol size. There is an additional redundant gray
scale indicating the magnitude as well, with the
lighter color for a given symbol being larger. Note the
complete separation of the two populations, with the
slip weakening showing an order of magnitude lower
apparent stress to stress drop ratio. The solid line in-
dicates the line where apparent stress equals stress
drop.
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particular, there may be a magnitude dependence to the de-
pendence of the apparent stress on stress drop. Following
Savage and Wood (1971), we define a measure of earth-
quakes, a dimensionless number we will call the earthquake
loudness, which is the ratio of the two stresses:

o, E/M

=Ja 27 18
= N MIIP (18)

with D = 2 here in this 2D model. Savage and Wood (1971)
examined very simple ruptures and found bounds on & of
order unity. Because of the approximate way we are esti-
mating stress drop in equation (17), however, for large
events, when L 3> 1, we can get values of ¢ exceeding unity.
Nonetheless, this is a useful measure for comparison. Figure
7 shows these results of ¢ as a function of moment M. Again,
we see significant differences between slip and velocity
weakening. Again, the velocity weakening is much louder
than the slip weakening. We also see a difference in how
loudness changes: slip weakening shows ¢ decreasing with
M for small events, while velocity weakening shows ¢ in-
creasing with M for small events. This appears to be a very
promising measurement to attempt to make with real earth-
quake data.

How robust are these results? Changing the grid reso-
lution does not affect things. Changing 7 and o (as long as
it is not too large) do not change things much. If we replace
the time-dependent ¢ we use here with a o that has only a
very small time-dependent part, along with a part similar to
the Q-dependent part of the friction, but with a larger slope,
things are unchanged for the velocity-weakening case, while
for the slip-weakening case, the small events are somewhat
quieter still. Changing « (as long as it is not too small) does
not have much effect over the range we can vary it. Chang-
ing # does have some quantitative though not qualitative
effect. Changing # changes the small length scale above
which the friction becomes unstable. Thus, changing # af-
fects the sharpness of the rupture pulses, with smaller # giv-
ing smaller unstable length scales. The effect on the radiated
energy is primarily seen in the smallest and largest events,
with larger # leading to slightly smaller loudness ¢ for these
events. In summary, for the frictions we have studied, the
results are quite robust.

I have, additionally, checked whether the overall ge—ﬂ

ometry of the system is important. I have carried out the
measurements using an alternative two-dimensional crustal
plane geometry where the loading was placed in the bulk
rather than on the boundary as in (1). This gives the Klein
Gordon equation for the bulk dynamics (Myers et al., 1996);
equation (1) is replaced by

FU o,
Ez————VU+vt U. (19)
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Figure 7. Apparent stress to stress drop ratio ¢ as
a function of moment M, comparing different sized
events and different amounts of velocity versus slip
weakening. Each point in the plot corresponds to an
individual event. The different symbols correspond to
different friction parameters. The (©) symbol corre-
sponds to the slip-weakening case, with @ = 6 and y
= 0.1. The (+) symbol corresponds to the velocity-
weakening case, with a/y = 6 and y = 10. Note that
for the small events with slip weakening, the loudness
& decreases with increasing moment. In contrast, for
the velocity-weakening case, it increases slightly.

Using the same frictions on that two-dimensional model as
here, the results look the same.

Conclusion

The puzzie of small apparent stress has been pointed to
for a long time (e.g., Kanamori, 1994). Here, I have shown
that they can arise naturally in the context of elastodynamics
with friction. In particular, slip-weakening friction was seen
to have a low apparent stress to stress drop ratio, a ratio of
order 1/10. Velocity weakening, in contrast, was seen to
have a ratio closer to unity. More generally, we can ask what
scaling relations show differences between slip and velocity
weakening, and, therefore, which ones may help us place
constraints on possible source physics. This loudness ratio
of apparent stress to stress drop was thus seen to be a good
measure to distinguish slip weakening from velocity weak-
ening. In contrast, measurements of stress drop alone from
moment-rupture length scaling showed little difference be-
tween slip and velocity weakening. Some difference in ap-
parent stress versus moment was seen, so that may be a
useful measure. A clear difference was seen in plots of loud-
ness versus moment, suggesting that this would be a useful
plot to examine in real earthquake data.

By finding significant differences in the behavior of dif-
ferent types of friction, this work suggests measurements of
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radiated energy in earthquakes, combined with forward elas-
todynamic modeling, can be used to constrain possible
source physics. It supports continued efforts to improve and
reconcile the different and difficult measurements.

Much discussion in self-organizing models has focussed
on the question of what is the distribution of sizes of events.
Independent of that issue, however, is the very important
question of what the events themselves look like. In this
letter, I have examined, qualitatively, coherent near-field ve-
locities and, quantitatively, far-field radiated energies. This
work opens up new axes to compare self-organizing models
with observations, where there is potentially a vast amount
of observational constraints, and with potentially great prac-
tical uses.
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