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Patterns of Seismic Activity Preceding Large Earthquakes

BRUCE E. SHAW, J. M. CARLSON,! AND J. S. LANGER

Institste for Theoretical Physics, University of California, Sante Barbara

We analyze the patterns of seismic activity which precede large events in a mechanical model of a
fault. The model generates a statistical distribution of events similar to that observed for a single
fault, with a scaling region consistent with the Gutenberg-Richter law at small and moderate
magnitudes, and an excess of events at large magnitudes. We find only slight variation in the
scaling behavior during a loading cycle. However, we do observe systematic variations in space
and time of the overall rate of activity. In the model, the activity accelerates dramatically preceding
a large event and is usually a maximum in the neighborhood of the future epicenter. These results
are compared to California seizsmicity data, where we find that activity patterns vary regionally.
Looking at patterns of activity in the San Francisco Bay Area since 1948, we find an increase of
activity on the Calaveras fault near San Jose beginning in the 1980s which, if our model is relevant,
would forecast a large earthquake in that region. The 1989 Loma Prieta earthquake occurred on
the San Andreas fault within 30 km of the section of the Calaveras fault showing increased activity.

1. INTRODUCTION

Discovering reliable methods for predicting large earth-
quakes is difficult because of the infrequency of these events,
which have mean recurrence times of the order of 160 years
on the most active faunlts. On the other hand, smaller earth-
quakes are quite numerous. Thus any information one could
deduce from them about large events would be of interest
[Wyss and Habermann, 1979; Carlson, 1991]. In this paper,
we study correlations between small and large events for a
theoretical model of a fault. We present a series of statisti-
cal measurements of activity patterns for the smaller events
which precede large ruptures and discuss the relationship of
our results to seismological data. In particular, we look at
variations in the scaling behavior and activity rates and use
these to address specific questions of seismological relevance,
including locations of epicenters, preshocks, and quiescence.

We then make a very preliminary attempt to relate these
ideas to real data. Looking at patterns of activity in Califor-
nia, we observe that different regions display patterns that
are characteristic of those regions and are repeatable for dif-
ferent events. The types of patterns seen are more varied,
however, than the generic increase in activity preceding large
events in the model. While long-term increases in activity
are clearly not a necessary predecessor of large events, the
observation of a long-term increase, we believe, is a signal
of a coming large event. Looking at earthquakes in the San
Francisco Bay Area since 1948, we find patterns of activ-
ity that suggest a long-term forecast for a large earthquake
on the central Calaveras fault. The 1989 Loma Prieta earth-
quake on the San Andreas fault was very near this segment of
the Calaveras fault and possibly relieved the near-threshold
stress suggested by the patterns of activity. If this interpre-
tation is correct, patterns of activity on the central Calaveras
fault should change, with the activity dropping. If, instead,

1 Now at Department of Physics, University of California,
Santa Barbara.

Copyright 1992 by the American Geophysical Union.

Paper number 91JB01796.
0148-0227/92/91JB01796$05.00

after a few years the activity remains high, there may still
be a forthcoming large earthquake on this segment. Obser-
vations in the next few years should be able to test this.
The model that we use was studied recently by Carlson
and Langer [1989a, 1989}] and Carlson 1991], and belongs
to a class of block and spring models introduced more than
20 years ago by Burridge and Knopoff [1967]. The model is
of interest as an example of “self-organized criticality” — a
class of systems introduced by Bak, et al. [1987] which, due
to a dynamic threshold instability, generate scale-invariant
sequences cf events. The importance of the model comes
from the fact that, in the absence of spatial inhomogeneities
or stochasticity, it dynamically generates a statistical dis-
tribution of both large and small slipping events which is
consistent with that seen in nature for a single fault. For the

smaller events, the magnitude versus frequency distribution

R(p) of events of magnitude u is consistent with the fun-
damental statistical law, first introduced by Gutenberg and
Richter [1954], governing the rate of earthquake occurrence:

R(u) = Ae™™ , @)

where A is independent of g and b =2 1. The large events oc-
cur at a rate in excess of the value extrapolated from equa-
tion (1), as is seen along certain major faults where suffi-
cient data are available [Wesnousky, et al., 1983; Davison
and Scholz, 1985; Schwartz and Coppersmith, 1984].

In this paper we present a statistical study of the activity
patterns of smaller events, satisfying the Gutenberg-Richter
law (equation (1)), which precede large events. In equation
(1), the magnitude p is a logarithmic measure of the size of
an event. The parameter b is thus the exponent of the power
law relating frequencies of events of different sizes, and the
amplitude A is a measure of the activity.

Real earthquakes can be thought of as slipping events on’
a two-dimensional interface in a three-dimensional inhomo-
geneous linear elastic medium. The interfaces form a com-
plicated, possibly' fractal, network of faults. The friction is
some nonlinear stick-slip function of the relative motions of
the rocks on opposite sides of the interfaces. Our model,
on the other hand, is a one-dimensional interface in a one-

dimensional homogeneous linear elastic medium. We study .

a single, straight, isolated fault. The friction is a nonlinear
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stick-slip function depending only on the local velocity. The
point of studying this model is to see what kind of behavior is
exhibited by this stripped down, minimal, dynamical system:
How are the features similar to real earthquakes, and how
are they different? Where the model does differ, which of the
many aspects that we have neglected — the elastic medium
being of higher dimensionality than the interface, inhomo-
geneities, interacting faults, couplings to other physical pro-
cesses — can we add back in to find a closer correspondence?
In this paper we present some patterns of small-event activ-
ity during the loading cycle between large events, beginning
with the model and then turning to real data along the San
Andreas fault in California. The ambitious second question
— tracking down the sources of the complexity in the real
data — will have to wait for future work.

This paper is organized as follows: In section 2, we present
the model, reviewing briefly the features of relevance to the
work presented here. In section 3, we present our numerical
results on the activity patterns preceding large events in the
model. In section 4, we turn to real earthquakes. We present
evidence for the long term forecast of a large earthquake on
the central Calaveras fault. We then look at patterns of
activity from other regions of the San Andreas fault system.
Finally, we conclude and summarize our results in section 5.

2. TeE MODEL

The model (see Figure 1) consists of a series of identi-
cal masses connected to each other by coupling springs of
uniform stiffness. Another set of uniform pulling springs
connects each block to a fixed plate. The blocks rest on
another plate that moves with a small constant velocity rel-
ative to the fixed plate and experience a friction force that
depends on the velocity of each individual block. The only
nonlinearity in the problem is the friction ¢: a stick-slip,
velocity-weakening force (Figure 2). A detailed discussion of
the model is given by Carlson and Langer [19895).

The dimensionless equation of motion for the chain of
harmonic blocks is

U; = £ (Ujsa — 2U; + Uj1) = U; = $(2a(v + T5))  (2)

where U; is the displacement of the jth block, and the dots
denote differentiation with respect to time 7, scaled so that
the period of oscillation of a single block attached only to
a pulling spring, with no friction, is 2x. There are three
dimensionless parameters in the equation. The parameter
describing the rate of velocity weakening in the friction is o,
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Fig. 1. Theoretical, mechanical model of a fault. The block and
spring model consists of a one-dimensional chain of equal masses.
Each block is joined to its nearest neighbors by coupling springs
of equal strength. Pulling springs of equal strength attach the
blocks to a fixed plate. They are in contact with another plate
which is moving at constant velocity v. Between each block and
the moving plate there is a friction force ¢ which depends only

on the velocity of the block. The equilibrium spacing between the
blocks is a.
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Fig. 2. The velocity-weakening stick-slip friction force &(z), given
in equation (3). The friction ¢ depends only on the velocity z.

which is a particularly important parameter in the dynamics.
The ratio of the slipping time to the loading time (i.e., the
average time interval between large events) is ». For real
faults, slipping times are of the order of 1 8, and loading times
are tens or hundreds of years; thus v < 10~°. The ratio of the
stiffness of the coupling spring to that of the pulling spring
is £2. The equilibrium spacing between the blocks, a, does
not appear explicitly in the equation of motion; however, in
the continuum limit, ¢ = £a, is the sound speed. Here we
use periodic boundary conditions; however, our results are
not sensitive to whether the boundary conditions are free or
periodic.

The friction function that we use in numerical solutions
of equation (2) is illustrated in Figure 2. When z = 0
(£ = 4; + v is the relative velocity between a block and
the moving plate) static friction is in the range +1. When
# # 0, dynamic friction is given by

$(20i) = 7 +120:& (T:T) ‘ ®)

The crucial feature of the friction is that it exhibits veloc-
ity weakening; i.e., there is a range of velocities for which
d¢/di < 0. For this range of velocities, a linear stability
analysis shows that all Fourier modes grow exponentially
at finite rate, so that inhomogeneities are magnified during
slipping. As a consequence of this dynamical instability the
deterministic equation (2) generates a noisy chaotic sequence
of events.

Given any nonuniform initial condition, the system reaches
a statistically steady state within a few cycles of large events.

. An event occurs when a connected set of blocks undergoes

a slipping motion. The corresponding total moment is the
sum of the displacements 8U; of the blocks:

M=E§U,~,
)

and the magnitude g is p = In(M).

A typical magnitude versus frequency distribution R(p) is
illustrated in Figure 3. The key features of this distribution
are the scaling region ranging from small to moderate values
of p, in which the distribution Rs(p) is consistent with the
Gutenberg-Richter law (equation (1)) and the region of large
events is described by a separate distribution Rg(u). The
large events occur more frequently than would be expected

(4)
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Fig. 3. Rate R(u) of events of magnitude ;2. Microscopic one
block events have magnitude u;. The crossover from the scaling
region to the large events peak occurs at i 2 In(2¢/a). The
largest possible event has magnitude uy. The parameters used in
this figure are o = 2.5, £ = 10, v = 0.01, and N = 200, where N
is the number of blocks in the system.

from an extrapolation of the rate of smaller events and ac-
count for nearly all of the forward motion of the blocks. The
maximum large event that the system can sustain has a mo-
ment My (a) which scales with the length N of the fault. The
crossover from scaling behavior to large events was described
analytically by Carlson and Langer [1989}] and corresponds
to an initial triggering zome (i.e., a connected set of blocks
which are on the verge of slipping) of length approximately
2

inZmn [ﬁ'—] , (5)
o va

with associated moment M 2 2¢ Ja.

It is important to understand that, while this simple de-
terministic model exhibits a variety of more-or-less realistic
phenomena, it has definite limitations. It pertains strictly
to a single, isolated, one-dimensional fault with no extrinsic
irregularities, bends, or other major asperities. Its only irreg-
ularities are self-generated. Moreover, it has no mechanism
for generating aftershocks. There is no state dependence of
the friction law, nor is there any way for one region of the
fault to communicate with another unless all of the blocks
in between the two regions come unstuck.

We believe that it is possible, however, that this model
can be interpreted as describing some kind of average be-
havior of an interconnected and only roughly linear system
of faults. That is, it may be that this very simplified model
provides a crude but in some ways qualitatively accurate pic-
ture of the zone of interaction between tectonic plates, giving
only roughly localized regions of activity, and not discrimi-
nating between main events and their aftershocks. We will
not know whether this conjecture has any merit until we can
make comparisons between the behavior of this model and
observations in the real world. The remainder of this paper
contains a report of our first efforts to move in this direction.
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3. PATTERNS OF ACTIVITY IN THE MODEL

We now present a rumber of results for patterns of smaller
events preceding large events in the model. The sequence of
events generated by the model is divided into a series of
cycles, with each large event marking the end of a cycle.
We define a large event to be one for which the moment

" is larger than M = 2¢/a, which is the crossover moment

defined in the previous section. As shown by Carlson [1991],
there is a broad distribution of time intervals between these
large events. Here we study the smaller events, looking for
information about the forthcoming large event. A central
result is that the value of the scaling exponent b in equation
(1) does not vary in space and only varies slightly in time. In
marked contrast, the prefactor A, the activity, varies in both
space and time. The latter variation allows us to track the
behavior of all the events in the scaling region by studying
the more numerous smaller events.

To study the possible variation of b in space and time,
we separate events into different groups depending on how
long they happened before the large event and how far they
were from the epicenter. We then superimpose the partial
distributions R(p) for 1000 large-event cycles. No spatial
variation in b is seen for events that occur in a region of
size é around the future epicenter, as compared to events
farther away. The value of b does decrease slightly with time,
changing of the order of 20% between the earliest and latest
times in the cycle. While on average there is a slight change,
for each cycle the noise is much larger than this small signal.
Within the context of the model, the use of b values for
prediction of upcoming large events does not seem possible,
although some cases of significant variation of b values in real
earthquakes have been observed. [e.g., Smith, 1981].

While b does not vary significantly, A shows strong sys-
tematic variations in space and time, not only on average,
but also within each cycle. These variations appear to be
useful for predictive purposes. Here, we are interested in
how A varies in space and time; the actual value of A is
unimportant. Therefore instead of trying to measure A di-
rectly, we define a weighted activity Aw which is a sum over
all the events, with each event weighted by some function of
its size. This measure has two advantages. First, the main
advantage is that it does not depend on the exact distribu-
tion R(u); if it is of the general form given in equation (1),
one does not have to know the value of b and, even more
generally, the distribution need not even be of this form. A
second advantage is that the exact weighting does not mat-
ter, as long as the weighting is such that the more numerous
small events dominate the sum. We can thus choose the
most convenient weighting for a particular application.

The equation expressing this idea is

1
d.d, E

events such that:
s<s' <s+d,
t<t <t+d

Aw(s,t) = W(event) - (6)

where for each event, s’ denotes the position of the epicen-
ter, t' denotes the time at which it occurred, and W is the
weighting of the events (discussed in detail below).

Here, d, and d; denote the widths of the intervals in
space and time, respectively, into which the events have been
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grouped. By summing over events in these intervals and then
dividing by the product d,d;, we obtain a rate per unit length
of the fault.

Because the events are separated and distinct in time, it
is useful to comsider the integrated activity

‘ (9 4t
A”Waﬁ=/. Aw(s,t)dt’
¢(0)

where t(°) is some arbitrary time at which we start counting
events. Then the weighted activity is just the slope of the
cumulative activity in time: Aw = dA"™/dt.

To get the smoothest measure, we choose a weighting
so the most numerous smallest events dominate the sum.
This weighting should be contrasted with a weighting where
events of all sizes contribute, or one where only the largest
sizes dominate. For b = 1 a weighting by the moment M
would have events of all sizes contributing equally to the
sum. This would give a noisy signal, with the eccasional
bigger events dominating the local rate. Therefore we must
choose a weighting of events of different sizes which, in the
case of b = 1, increases less rapidly than the moment.

We find two weightings convenient. In the first we weight
all events with magnitudes in a given window equally:

Wo(event) ={ (1) ’

Mower < p < fupper (8)
otherwise

Our second choice is to assign to events with magnitudes in
the given window weights equal to the numbers of blocks
that slipped. That is,

Prower < B < frupper
otherwise

A(event) ,
0 ( ) (9)

Wa(event) = {

where A(event) is the size of the slip zone for the event, which
for the model is simply the number of blocks. For the upper
cutoff we use pupper = fi in the model. The lower cutoff is
taken to be as small as possible to get the best statistics.
For the model, we choose the lower end of the well-defined
scaling region. For real earthquakes, we pick the smallest
magnitudes that can be uniformly detected over the time
period that is studied.

To measure the variations of the activity A in space, we
use the weighting Wa of the slip zone size (equation (9)).
To measure the time variations, we use both the slip zone
size weighting Wa and also the equal weighting Wo of each
event. The results are not affected by which weighting is
used. To study the average behavior during a cycle between
large events, we look at the activity as a function of the time
before the large event and the distance from its epicenter.
We then superimpose many of these cycles and measure an
average weighted activity

Ne

= 1

As,T) =3 Y Aw(sn+5ta+T) (10)
n=1

where the integer n enumerates the loading cycles, N is the
total number of cycles counted, s, and i, are the epicenter
and occurrence time of the nth large event, and -1 — s <
T<o.

Numerically, we find that in the model the average activ-
ity is separable in the variables S and T. That is,

A(S,T) = As(S)Ar(T) . (11)

@
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Fig. 4. The time dependence of the average cumulative activity
per large event < Ar >*™ versus T (equation(13)). T is mea-
sured in units of the average repeat time (equation(12)) of large
events. The vertical axis is normalized so the cumulative activity
at T = 0 is 1. Note the sharp turn-on of activity and steady in-
crease up until the large event. The parameters used in this figure
are a = 3, £ =6, v = 0.001, and N = 200.
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We look first at the variation of Ar and then at As.

The variation of the average activity in time is shown in
Figure 4. We average over N = 1000 cycles and use the
weighting Wa. The horizontal axis is the time 7', measured
in units of the average repeat time

(12)

The large event happens at T = 0. On the vertical axis we
plot the average cumulative time-varying activity per large
event, < Ar >'™:

T v

Since not all cycles have the same time between large events,
we have divided by the fraction of events which have times

!
between large events greater than 7", [ T p(T")dT", where

p is the distribution of times between la;gog events. This way,

there is no increase in activity approaching T = 0 due to this

.distribution of times. We have also normalized < Ar >°*™

80 its value at 7" = 0 is 1, since we are interested only in the
variation of the activity. Examining the figure, we see a very
low level of activity for the first two thirds of the cycle. At
about one third of the average repeat time before the large
event, there is a sharp, steady increase in the activity.

The increase in activity leading up to the large event (and
the subsequent drop afterwards) is seen not only in an av-
erage sense but also for each individual cycle. A typical se-
quence of changes in activity is shown in Figure 5, where we
plot the cumulative number of events as a function of time,
in units of the average repeat time for large events. The
times when the large events occur are marked by arrows and
are seen to be associated with changes in the activity. In
fact, we see essentially every drop in activity associated with
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Fig. 5. Cumulative number of events as a function of time for a
typical sequence of events in the model. Time is in units of the
average repeat time for large events. The arrows correspond to
times when large events occurred. Observe that nearly every drop
in the activity (the slope of the curve) is associated with a large
event, and, conversely, nearly every large event is associated with
a drop in activity. The parameters used in this figure are o = 2.5,
£ =6, v=0.001, and N = 200.

a large event, and, conversely, nearly every large event is as-
sociated with a drop in activity. We interpret the increase
in activity as a precursor for large events. To see how this
might be used in practice, note that for a given power and
weighting W, there is an average cumulative activity per cy-
cle. With this as a basis we set some cumulative activity
threshold which is a small fraction of this average. Keeping
track of the cumulative activity during a cycle, we can then
monitor the time delay between when the cumulative activ-
ity crosses the threshold and when the large event occurs.
Typically, this time delay is less than 20% of the large-event
repeat time, when we set the threshold around a tenth of
the average activity. This is a useful measurement in the
model because of the sharp turn on in activity; one would
need large activity variations in real earthquakes if it were
to be useful there as well.

While these measurements reveal certain information re-
garding when a large event may be likely to occur, so far
we have not found any correlations in our data which would
allow us to predict how large it will be. The size of the
upcoming event does not seem to be correlated with the cu-
mulative activity, the activity rate, the time since the last
large event, or the time since the onset of increased activity.

The variation of the average activity in space is shown in
Figure 6. Here again we plot the cumulative activity on the
vertical axis, this time integrating over space:

S
AT™(S) = / Ag(S)dS' . (14)

The horizontal axis is S measured in units of the delocaliza-
tion length € (equation (5)). The vertical axis is again nor-
malized so the cumulative activity at the origin is 1. Note
the sharp peak in activity at the epicenter of the forthcoming
large event (S = 0).

The sharp increase in precursory activity near the epicen-
ter, like the increase in the activity with time, occurs in the

Fig. 6. The spatial distribution of the cumulative activity AZ*™
as a function of distance from the future epicenter of a large event,
measured in units of {. We normalize the activity so the cumula-
tive activity at the origin is 1. Note the strong maximum at the
epicenter S = 0. The parameters used in this figure are a = 3,
§ =6, v=0.001, and N = 200.

epicenter
o

-1 0 1

maximum activity center
Fig. 7. The large-event epicenter versus the center of maximum
previous activity, plotted in units of £. A 45° line stemming from
the origin is the line of exact correspondence. Note that most
of the points fall within £/2 of this line. Periodic boundary con-
ditions are used, so the points at the upper left and lower right
are close to the diagonal. The parameters used in this figure are
a=3,§¢=6,r=0.001, and N = 200.

individual case as well as on average. Therefore the spatial
variation can be used to predict the future epicenter. In Fig-
ure 7 we plot the position of the epicenter as a function of
the position of the center of maximum activity for 1000 large
events. To find the center of maximum activity, we measure
the “neighboring activity” of a site by summing the activity
at all sites within a distance £/2 on either side and then de-
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fine the center of maximum activity to be the site with the
highest neighboring activity. We find that more than 80% of
the events have their epicenters within £/2 of the center of
maximum activity.

The correlation between increased sma.l]-scale activity and
a future large event is a robust feature of this model. Perhaps
the most important implication of this correlation — the one
that seems most likely to persist in the real world — is that
locally increased activity is nmearly always a precursor to a
large event. The converse of this statement seems less likely
to be true. We can easily imagine adding to our model an
extrinsic mechanism for locking the fault at some point, for
example, by inserting a few blocks with anomalously large
sticking friction. Then the activity of these blocks would
remain small while stresses built up in their neighborhood,
and the eventual slipping of this group of blocks would be
likely to trigger a large event. In this case, a local precur-
sory increase in activity would not be necessary for a large
event; but such an increase would still be sufficient. That is,
while a lack of activity in some regions is by no means an
indication that nothing is about to happen, a rise in activity
seems almost invariably to be a signal that stresses are rising
toward a significant slipping point.

4. PATTERNS OF ACTIVITY IN REAL EARTHQUAKES

From the point of view of the model, we should search
the catalogues to look for long term changes in activity and
see whether or not they are followed by large events. This
search is made difficult by the presence of aftershocks, which
dramatically change to local rates of events. Instead, we will
do a simpler study of looking at big events and the activity
associated with their epicenters. The advantage of this ap-
proach is that it is a better defined study, and to some extent
addresses the question of whether the increase in activity pre-
ceding large events seen in the model is also typically seen
in the Earth. The disadvantage is that it does not address
the main hypothesis, which is that large events need not be
preceded by long-term increases in activity, but long-term
increases in activity do signal a coming large event. We will
do one case study where we look for long term increased ac-
tivity in the San Francisco Bay Area, finding it on the central
Calaveras fault, and argue that the Loma Prieta event was
associated with that increase. We then turn to the question
of whether this behavior is always seen: the answer will be
no. We will see, however, that the different patterns that are
seen are significant, in that they are charactenstlc of a given
area, and repeatable for different events.

We now turn to real seismicity data for two regions in
California. In this section we exclusively use the weighting
Wo (equation (8)) in which each event above a lower cutoff
counts equally, regardless of magnitude. The lower cutoff is
taken to be the local Richter magnitude My, below which ho-
mogeneous data are not available. (By homogeneous data,
we mean that within the time window we are considering,
events at the lower-magnitude cutoff had an equal prob-
ability of being detected. This avoids the possibility that
changes in instrumentation would affect the changes in ac-
tivity we are examining.) The two data sets are My > 2.5
since 1948 for an inclined rectangular strip surrounding the
San Andreas fault zone between 119° to 125° longitude and
35° to 40° latitude in the north, taken from the UC Berke-
ley catalogue, and ML > 3 since 1932 between 114° to 122°
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longitude and 32° to 36.5° latitude in the south, taken from
the Caltech catalogue. We look at the cumulative number
of events versus time along different faunlts, and near the
epicenters of relatively big earthquakes (M; > 5.5 in the
north, My > 6 in the south). We refer to these events as
“big”, as opposed to “large”, for which we have reserved the
technical meaning of magnitudes larger than . (Rough es-
timates suggest this transition magnitude may be between
6 and 7 [Carlson, et al., 1991]). The distinction between
“big” and “large” events needs to be emphasized. Ideally,
we would like to only study activity patterns prior to large
events, as was done in the model. There are not enough
large events in California, though, to restrict the study in
this way. This suggests looking at faults from other parts
of the world, where there are more data for large earth-
quakes. The advantage of California, however, is that it has
the longest record for small earthquakes. Thus we use “big”
earthquakes in this study. One must be careful in mixing
“big” and “large” earthquakes, as large ones release signifi-
cant amounts of strain, while smaller ones do not. One final
comment on the analysis we will be doing in this section: We
have been able to look at average properties in the model be-
cause of the large data set and the uniformity of underlying
conditions. The sparse data set we had available for real
earthquakes precluded a similar simple averaging. There is
an additional point that must be treated carefully, when one
is dealing with real data, and that is, What is one averaging
over? It is important to be averaging over similar things.
For example, if long-term activity changes are occurring on
a loading time scale, then the loading rate of a given fault
would need to be factored into the analysis. Thus one needs
to do much more complicated analyses to properly average
real data. We have chosen to do very simple analyses that
would have robust results and that are very immediately re-
lated to the cata]ogues themselves. Our results would be
a useful aid in deciding what regions and events could be
averaged over.

We observe patterns of activity that are characteristic of a
given area, which are repeatable for different big earthquakes
within that area, but which vary between areas. We consider
the possibility that the pattern of activity on the central
Calaveras fault was a precursor to the 1989 Loma Prieta
earthquake. We first present the evidence leading to this
interpretation; then, we look at patterns of activity in other
areas of the San Andreas fault system.

The northern data set is shown in Figure 8a. Figure
8b shows the main faults in this region, along with all the
ML > 5.5 events that have occurred since 1948. The vari-
ous symbols will be explained shortly. We begin by studying
the activity around the San Francisco Bay Area. In Figure

‘9 we plot the cumulative number of events for the northern

data set for the region between 36.9° and 38.5° latitude for
the San Andreas fault (SAF), Calaveras fault, and Hayward
fault. (The 36.9° lower latitude was chosen to encompass
the 1989 Loma Prieta event, which occurred at 37.0° lati-
tude, while remaining sufficiently high in latitude, to avoid
the numerous small events on the creeping section of the San
Andreas fault just below.)

These fault subsets are shown in Figure 85. We see there
has been a regional increase in activity during the last decade.
This increase has mostly occurred along the Calaveras fault;
the Hayward and San Andreas faults had nearly constant ac-
tivity. This points to an obvious weakness in our analysis if
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Fig. 8.a Map of seismicity in the region between 119° and 125°
longitude and 35° and 40° latitude. Earthquakes with M > 2.5
since 1948 are marked by dots. The solid line is the coastline.
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Fig. 8.b Map showing main faults and selected big earthquakes.
The solid thick line is the coastline, and the thin lines are faults.
The letters next to the faults denote faults referred to in the paper

as follows: S, San Andreas; C, Calaveras; and H, Hayward. The"

symbols mark the epicenters of big (ML > 5.5) earthquakes as
follows: plus, activity returns to same rate after the big event as it
had before; square, activity increases after the big event compared
to before; asterisk, 1989 Loma Prieta My 7.0 earthquake. The
rectangular box encloses the section of the Calaveras fault showing
increased activity beginning in the 1980s.

we are to interpret events in this region as belonging to dis-
tinct independent faults: we do not detect a significant signal
on the SAF preceding the 1989 Loma Prieta earthquake.
There have been 15 M1 > 5.5 earthquakes in the north-
ern region since 1948. These events are shown on the map
in Figure 8b. The 1980 Livermore magnitude 5.8 earthquake

cumulative events

2000

0 [ S S Lot

1950 1960 1970 1980 1990
year

Fig. 9. The cumulative number of events as a function of time
for various earthquake data sets in the San Francisco Bay Area
between 36.9° and 38.5° latitude. The top curve is for the whole
region. The curve marked C is for the Calaveras fault zone. The
curve marked S is for the San Andreas fault. The curve marked
H is for the Hayward fault. These faults are marked in Figure 8b
with the same letters.
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Fig. 10. The cumulative number of events as a function of time
in a radius of 20 km surrounding the 1980 M} 5.8 earthquake on
the northern Calaveras fault. The activity appears to return to
the same level after the big event as it had before the event. The
vertical line marks the time of the 1980 earthquake. The step in
the curve comes from the numerous aftershocks.

occurred about 20 km to the east of the northern part of the
Calaveras fault. The cumulative activity in a radius of 20
km (20 km equals the depth of strike-slip faults in Califor-
nia, and order of our estimates of £ for these faults. [Carlson
et al., 1991] around this earthquake is shown in Figure 10.
The sharp steps in Figure 10 arise because of the tremen-
dous number of aftershocks which accompany relatively big




events. Following a main event, the aftershock activity de-
creases steadily on a time scale which is much shorter than
the time interval between large events. The aftershock pe-
riod ends when the activity stabilizes or begins to rise. To
obtain information which is pertinent to the next large event
in a region, we must ignore the big steps in Figure 10, and
instead pay attention to changes in the slope (i.e., Aw) of
the cumulative activity curve. Observe that by 1985 the ac-
tivity appears to have returned to its pre-1930 level. (Our
discussion of patterns of activity in this paper is very quali-
tative. For more rigorous statistical methods, see, for exam-
ple, Reasenberg and Mathews [1988].) This equality of the
activity before and after a big earthquake is also seen in the
pair of 1969 earthquakes that happened to the north near
Santa Rosa. The epicenters of the six earthquakes showing
this type of behavior are marked in Figure 8 with the plus
symbol. This pattern contrasts markedly with all four big
earthquakes along the central CFZ, where the activity in-
creases after the big earthquakes. The 1979 magnitude 5.8
Coyote Lake earthquake, a clean example of this, is shown in
Figure 11. The epicenters of these four earthquakes, and of
the other three earthquakes showing this pattern of activity
are marked by squares in Figure 8b. This increased activity
is the signal we use as the basis of the forecast of a coming
larger earthquake.

The increase in activity triggered by a big event may be
the result of extrinsic inhomogeneities, or “asperities” [Sykes,
1983]. Breaking the asperity unlocks the fault and allows
neighboring areas to move. While this type of behavior is
beyond the homogeneous model we have studied, it is remi-
niscent of the way in which activity responds to the building
stresses when the system gets near the time of the large
event. We thus interpret the two patterns just described
as follows: when the activity does not change following a
big event, the system is not near the time of a large event,
and when the activity does increase, the system is near the
breaking threshold of a large event.

The epicenter of the 1989 Loma Prieta magnitude 7.0
earthquake is indicated by an asterisk in Figure 8b. Note
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Fig. 11. The cumulative number of events as a function of time
in a radius of 20 km surrounding the 1979 M 5.8 earthquake on
the central Calaveras fault. The activity increases after the big
event compared to before the event. The vertical line marks the
time of the 1979 earthquake.

that it is on the San Andreas fault opposite the region of in-
creasing activity on the Calaveras fault, marked in Figure 85
by the rectangle, and that the separation between the faults
at this point is only 30 km Did the Loma Prieta event unload
the Calaveras fault? (For a discussion of stress changes pro-
duced by events on these neighboring faults on each other,
see Oppenheimer, et al. [1988].) If significant stress has
indeed been relieved on the Calaveras fanlt, we would ex-
pect that, after the aftershock activity has died down in the
next few years, the activity level will drop down to, or be-
low, the level it had in the 1950s. If this does not happen,
there remains the possibility that the central section of the
Calaveras fault will rupture. (There is, of course, other infor-
mation seismologists use to estimate probabilities of various
segments rupturing. Our intent here is to point out the im-
plications of this particular feature.)

It is natural to ask whether there are other large earth-
quakes that have been preceded by the type of signal we have
just pointed out, to see whether it is typical behavior or not.
We have looked at the 16 My > 6 earthquakes that have
occurred in southern California since 1942. The earthquakes
having M > 3 since 1932 are shown in Figure 12a. The 16
M. > 6 events, along with the main faults in this region, are
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Fig. 12a. Map of seismicity in the region between 114° and 122°

longitude and 32° and 36.5° latitude. Earthquakes with M; > 3

since 1932 are marked by dots. The solid line encloses California

and marks the coastline down through Mexico.
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Fig. 12b. Map showing main faults and M} > 6 earthquakes
since 1942. The solid thick line encloses California and marks
the coastline down through Mexico. The thin lines are faults.
The symbols mark the epicenters of the big events as follows:
crosses, there is little activity before the event, and decreasing
activity, which we associate with aftershocks, extends over many
years; diamonds, activity decreases after the big event compared
to before, and aftershock activity ends in less than a couple of
years.
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Fig. 13. The cumulative number of events as a function of time
in a radius of 20 km surrounding the 1971 M; 6.4 San Fernando
earthquake in th e “big bend” area. There is very little activity
preceding the big event, and a tail of aftershock activity extend-
ing many years. The vertical line marks the time of the 1952
earthquake.

marked in Figure 12b. The patterns of activity again show
reproducibility for a given area for different earthquakes and
variation between areas. Two main types of patterns are
seen, neither of them the same as the one seen on the CFZ.
The 1971 magnitude 6.4 San Fernando earthquake shown in
Figure 13 is an example of the pattern of activity seen in
the neighborhood surrounding epicenters of big earthquakes
in the “big bend” area of the fault system north of Los An-
geles. We see very little or no activity preceding the big
eariuyuake, followed by long aftershock tails with activity
decreasing over many years. The earthquakes showing this
type of behavior are marked by crosses in Figure 125; ob-
serve that they are all distributed to the north. The second
type of pattern shows a decrease of activity following the big
earthquake, with the time scale of the decay of the aftershock
activity being at most a couple of years. An example of this
pattern is the 1954 magnitude 6.2 Arroyo Salada earthquake
shown in Figure 14. Earthquakes showing this pattern are
marked by diamonds in Figure 125 and are seen to fall along
the San Jacinto fault.

Can we understand these various activity patterns in the
context of the model? The “big bend” pattern seems to re-
quire heterogeneities and the concept of locked faults, both
outside the scope of the model so far. Of the patterns seen,
the San Jacinto fault pattern seems closest to the pattern
seen in the model. The geometry of the faults in these areas
is consistent with this correspondence, as the model is meant
to represent a single strike-slip fault. Of the fault zones we
have considered so far, the San Jacinto fault is certainly clos-
est to that geometry. While we do not fully understand any
of these patterns, they do seem to be consistent with the
main conclusions that we have drawn from the model. In-
creases in activity will not go away on their own; they are
indicative of building stress near the threshold of a large
event. Our belief is that not all large events will be preceded
by long-term increases in activity, but, conversely, long-term
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Fig. 14. The cumulative number of events as a function of time
in a radius of 20 km surrounding the 1954 M}, 6.2 Arroyo Salada
earthquake on the San Jacinto fault. There is also a M 6.4 event
in 1968 inside the radius. In both cases, a decrease in activity
follows the main event, as well as a rapid decay, compared to the
“big bend” region, of aftershock activity. The vertical line marks
the time of the 1954 earthquake.

increases in activity will be followed by large events. A sys-
tematic study of the catalogues to find significant long-term
increases in activity that are not followed by large events
would be an important disproof of this idea.

5. CONCLUSION

In the model, variations in the Gutenberg-Richter scaling
exponent b are slight and not of use for predicting individual
large events, while variations in the activity A are significant
and potentially of predictive value. We find that A increases
in time leading up to the large event arnd is largest in the
neighborhood of the future epicenter. These features of the
model, if also true for real earthquakes, would have a number
of implications for interpreting patterns of seismicity.

The constancy of b suggests that looking only at relatively
big events, or preshocks, may not be useful for predictive
purposes. Changes in rates of these rarer big events are
dominated by changes in A, so it is better simply to study
variations in A, which are best determined by looking at
smaller events.

The increase in A leading up to a large event is in direct
conflict with the quiescence hypothesis, which suggests a de-
crease in activity prior to a large event. From cycle to cycle,
A varies significantly in our simulations; but, within each
cycle, we do not observe a drop in A prior to a large event.
Similarly, our conclusion that the zone of maximum activ-
ity coincides with the zone where the large earthquakes are
nucleated is in conflict with patterns like the “Mogi donut”,
which suggests a decrease in activity in the area surround-
ing the epicenter relative to the surrounding outlying activity
[Mogi, 1969]. In order to see patterns like this, we believe
that we would have to introduce extrinsic inhomogeneities
into the model [Kanamori, 1981]}.

We have applied the idea of looking at variations in the
activity to real earthquake data and found patterns of ac-
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tivity that are the same for different earthquakes in a given
area, but with different patterns in different areas. Not all
large events are preceded by long-term increases in activity,
but, we believe, long-term increases in activity are followed
by large events. On the basis of an increase in activity be-
ginning in the 19808, we suggest the central section of the
Calaveras fault may have been near the threshold for a large
event. The 1989 Loma Prieta earthquake possibly has re-
lieved the stress on the central Calaveras fault; in this case
the seismicity pattern on this central section should change,
with the activity decreasing to, or below, its level in the
1950s. If the activity remains high after a few years, the
possibility remains that this section of the Calaveras fault
will rupture. Activity in the next few years should help an-
swer this question.

Could we have predicted the Loma Prieta event? Looking
at the data up to the beginning of 1989, we have observed the
signal for a coming large event on the c entral Calaveras fault.
In contrast, the San Andreas fault exhibited a steady rate of
activity for the preceding 20 years (see Figure 9). In 1989 a
slight rise in activity on the San Andreas fault is detectable.
This rise is not unprecedented on this fault: similar small
but not persistent rises occurred in 1959 and 1963 without
being followed by large events. However, at that time there
was no signal on the Calaveras fault. Perhaps, then, a com-
bination of the two signals could have been used this way:
the long-term forecast of a large earthquake on the central
Calaveras fault, along with close monitoring of nearby faults
that could also be loaded by similar regional stresses. Un-
usual increases in activity on any of these faults could then
signal a higher probability of rupture. (Similar techniques
have been successfully used to predict earthquakes in a few
cases. See, for example, McNally [1981].)
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