
Supplementary Materials:

Deterministic Model of Earthquake Clustering Shows1

Reduced Stress Drops for Nearby Aftershocks2

Bruce E. Shaw1* , Keith Richards-Dinger2 and James H. Dieterich2
3

1Lamont Doherty Earth Observatory, Columbia University

2Department of Earth Sciences, UC Riverside

*To whom correspondence should be addressed

Supplementary Materials4

The Model5

Our new physical model is based on a generalization of an extremely efficient quasistatic boundary6

element model developed by Dieterich and Richards-Dinger [2010]. The original model uses three key7

approximations. First, elements interact with quasistatic elastic interactions, so dynamic stresses are8

neglected. Second, rate-and-state frictional behavior is simplified into a three regime system where9

elements are either stuck, nucleating, or sliding dynamically. Third, during dynamic sliding slip-rate10

is fixed at a constant sliding rate. These approximations allow for analytic treatments of rate and11

state behaviors in different sliding regimes, and a tremendous speed-up computationally over inertial12

[Bouchon and Streiff , 1997; Andrews, 1999; Harris and Day , 1999; Aagaard et al., 2004; Day et al.,13

2005; Dalguer and Day , 2007; Harris et al., 2009; Lapusta and Liu, 2009] and traditional quasistatic14

methods [Ben-Zion and Rice, 1997; Ward , 2000]. A discussion of parameters and their sensitivities in15

the model is presented at the end of the supplement.16

While the simulations were developed and run on modest clusters, to get enough spatial resolution17
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to compare spatial distributions of events with observations at smaller magnitudes, we need to turn18

to supercomputers. Figures 3-5 in the main text shows results of an analysis of a simulation on a19

supercomputer with grid resolution of .28km sided triangles for a six stranded 150 km long fault zone20

(run on NSF’s TACC Stampede supercomputer. This run was done on 2048 processors in a 5 hour21

run).22

Geometrical incompatibilities and long term slip23

Backslip is a standard way of dealing with geometrical incompatibilities leading to accumulating24

stresses. There, slips are proscribed as having long-term rates, and heterogeneous stressing rates that25

produce those long term rates are calculated and then imposed as loading conditions. This works,26

but at the cost of needing to know what slip rates to impose, and some inherent smoothing of the27

underlying geometry. Plastic deformation off of the fault is another widely used technique for dealing28

with accumulating stresses [Rudnicki and Rice, 1975; Andrews, 2005; Ben-Zion and Shi , 2005; Duan29

and Day , 2008; Ma and Beroza, 2008; Templeton and Rice, 2008; Viesca et al., 2008; Dunham et al.,30

2011b]. This is an appealing, self consistent approach, though is itself a likely approximation of more31

localized secondary structures, as faults are more generally seen in the field as consisting of multiple32

surfaces. We have a few ways of dealing with geometrical incompatibility issues in our model. One33

using multiple strands significantly extends the regime of system level geometrical compatibility, so34

much larger strains can be accommodated elastically. Secondly, while our boundary elements are35

not suited to bulk plastic deformation, we can also employ an approximate stress limiting process36

on the faults, putting floors and ceilings on stress components on the boundary fault elements. This37

optional feature adds a way of approximately mimicking unmodeled off fault stress limiting processes.38

A parameter fσ putting a floor on normal stress which is a fraction multiplying the initial normal39

stress is one way of doing this which has been applied and appears useful.40
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Additional figures showing further model details and results.41

The rough fault geometry we examine is based on a band limited self similar geometry [Dunham42

et al., 2011a; Fang and Dunham, 2013; Sahimi , 1998]. Constructed from an inverse fourier transform43

of a controlled spectral density of fourier transformed noise, it allows for controlled short and long44

wavelength cutoffs. We take advantage of the capability of the RSQSim infrastructure to efficiently45

simulate triangular elements [Gimbutas et al., 2012], which allows a continuous covering of the rough46

surface.47

By downsampling more resolved rough representations, we can also explore different grid resolu-48

tions of the same underlying specific roughness case. Figure S-1 illustrates this looking at the slip49

on a single rough fault, with changed downsample coarseness. Note the effect of the back slip stress50

reducing slip on the more resolved faults [Dieterich and Smith, 2009; Dunham et al., 2011a; Fang and51

Dunham, 2013].52

Connecting individual strands into a fault system, we see interesting collective effects. To link53

into a multistranded fault, we connect all the faults at the two surface end points by subtracting off54

a linear trend for each strand. Figure S-2 illustrates the result of looking at the same grid resolution,55

but changing the small-scale roughness cutoff in the spectral density. Here, we drop modes above56

changing cutoffs, zeroing the amplitudes of a cutoff wave number scale. Interestingly, collectively57

the system behaves similarly in terms of the overall deformation. But locally, there are significant58

rearrangements in how the system partitions deformation across the various strands, as limiting back59

stresses at changing smallest scales leads to alternative pathways for system level deformation. Thus,60

we see interesting behaviors related to deformation on individual faults and across a system of faults,61

in a well controlled setting.62
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Distribution of sizes of events63

Figure S-3 shows the distribution of sizes of events. We see a power law distribution of small events64

along with a characteristic distribution of large events which occur above the extrapolated small event65

rate. There is some sensitivity in the distribution of sizes of events to the rupture parameter a, with66

larger a giving a steeper slope in the power law of small events. The minimum magnitude is also set67

by the grid resolution parameters δx and δz, which also have some weak impact on the slope of the68

small events. The rolloff in the distribution of sizes below M3 illustrates the minimum magnitude of69

events at this resolution in the model.70

Criteria for Mainshock and Aftershock Selection71

As discussed in the main text, we use a fixed time and space window, and count as mainshocks only72

events with a preceding and following window in space and time with no larger events. Other types of73

algorithms have been developed for separating mainshocks, foreshocks, and aftershocks based on most74

probably-causal space-time connections [Baiesi and Paczuski , 2004; Bottiglieri et al., 2009; Zaliapin75

et al., 2008]. The causal algorithms offer a more complete way of disentangling the population.76

But since incompleteness in the classification is not an issue for us, nor is precise parentage, but77

unambiguousness is, we operate in a conservative region of that broader causal space, finding the78

simplicity of conservative space-time windows useful.79

Default numerical values for the windowing parameters we use are as follows. Tbefore = 500 days80

Tafter = 30 days Rmax = 40 km, with no event larger than the mainshock occurring in the time period81

preceding and following the mainshock over the lengthscale Rmax82

Productivity83

In addition to the spatial and temporal features of the aftershocks, the overall rates of aftershocks, the84

productivity as a function of mainshock magnitude, is another quantity we would like to get right in85
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the models. That is, we could get the spatial distributions right, but be way off in the rates of events.86

Figure S-4 suggests we may be doing pretty well, however. Figure S-4 shows a comparison with Bath’s87

law, which states that on average the largest aftershock is around 1.2 magnitude units smaller than88

the mainshock (with aftershocks restricted to have magnitudes smaller than the mainshock). In the89

figure, the dotted line shows Bath’s law, compared with the model results. As noted in the main text,90

the aftershock and foreshock productivity does have some sensitivity to the logarithmic strengthening91

friction a parameter, but for appropriately chosen parameter ranges we do find consistency with Bath’s92

law.93

Stress drop estimates from macroscopic information94

Even when we don’t have privileged information, we can see from magnitude area scaling the lower95

stress drops. Figure S-5 illustrates this by using macroscopic information, magnitude and source area,96

to estimate stress drops. As with directly measured information we see, on average, lower stress drops97

for nearby aftershocks.98

Rebreaking of mainshock rupture area99

We can use privileged information about what broke in the mainshock to explore further the question100

of rebreaking incompletely healed fault surface leading to low stress drops. Figure S-6 shows this101

from two points of view. Figure S-6a shows, for nearby aftershocks, the fraction of the mainshock102

rupture area which is being rebroken for different magnitude aftershocks, with points color coded by103

the friction drop in the event. We see a clear trend that events which have a substantial fraction104

of their rupture area having rebroken areas which broke in the mainshock have lower friction drops,105

evidenced by the colder colors occurring at larger fractions. We also see some magnitude dependence106

in the model to the friction drops, with larger magnitudes having systematically lower friction drops.107

This is not an appealing feature of the model, given observations which suggest earthquake stress108
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drops appear to be independent of magnitude [Hanks , 1977; Shaw , 2013], but it does not obviate109

the relative stress drop effects we see at a given magnitude for nearby aftershocks relative to similar110

magnitude mainshocks. Figure S-6b shows the friction drop for nearby aftershocks of given magnitude111

as a function of hypocentral distance from the nearest part of the mainshock rupture. This is shown112

on a log distance scale, with points again color coded by friction drop. There is substantial scatter in113

the effect, but we do see lower friction drops tending to occur on the events initiating closer to the114

mainshock rupture area. This is evidenced by warmer colors tending to lie above the cooler colors at115

a given magnitude.116
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Parameters in Model117

For completeness, we reproduce in the Table all the parameters in the model. The rupture parameters118

are discussed in more detail in [Dieterich and Richards-Dinger , 2010; Richards-Dinger and Dieterich,119

2012]. There is very little sensitivity to the results to the vast majority of the parameters. Where120

changing the parameters by a factor of 2 either up or down makes little difference, we have labeled121

the sensitivity as being not sensitive. Only one parameter, the logarithmic strengthening friction122

parameter a was found to have sensitivity in the results.123
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Table 1: Model Parameters(a) Rupture Parameters

Param Value Physical Significance Sensitivity and Impacts

a .00025 ln velocity strengthening Sensitive; Increasing gives more aftershocks

b .005 state velocity weakening not sensitive as long as b > a

b − a .00475 stress drop not sensitive; sets stress drop scale

µ0 .6 constant friction coeff not sensitive

Dc 1e-6 m friction weakening distance not sensitive

σ 100 Mpa initial normal stress not sensitive; sets stress drop scale

fτ .1 dynamic stress overshoot not sensitive; mimics inertial overshoot

fσ .5 limits reduction in σ not sensitive; plastic term allowing long simulations

Vs 1 m/s dynamic slip rate not sensitive; sets dynamic sliding velocity

(b) Fault Geometry Parameters

Param Value Physical Significance Sensitivity and Impacts

α .03 roughness increasing gives more aftershocks

L 150 km fault length not sensitive as long as L � W

W 12 km fault downdip width not sensitive; affects maximum slip

L0 1 km small lenghtscale roughness not sensitive

Lc 50 km large lenghtscale roughness not sensitive; limits fault zone width

N 6 number of strands not sensitive; increasing gives more productivity

δx .2 km grid res. along-strike not sensitive; affects distribution of sizes

δz .2 km grid res. down-dip not sensitive; affects distribution of sizes

ν̇ 1e-10 loading strain rate not sensitive; sets event rate

λ 30 GPa Lame’ lambda elastic coeff not sensitive

µ 30 GPa Lame’ mu elastic coeff not sensitive
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(a) (b) (c)

Figure S-1: Rough single strand at changing downsampled spatial resolution. Top figures show slip on faults,

bottom summed slip. (a) Most resolved [60m triangular elements]. (b) Factor of 2 less. (c) Factor of 4 less.

Note slip increasing and becoming more crack-like on the smoother faults.

Figure S-2: Rough single strand at changing small wavelength cutoff L0. Grid resolution here is .16km

triangular elements. (a) L0 = .25km (b) L0 = .62km (c) L0 = .82km Note slip increasing and becoming more

concentrated on the smoother faults. Not also that slip partitioning between faults depends on small scale

features.
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Figure S-3: Distribution of sizes of events. Note power law distribution of small event magnitudes and

characteristic distribution excess of large events above the extrapolated small event rate. Dashed line shows

b = 1 slope for comparison.

Figure S-4: Bath’s law compared with model data. Magnitude of the largest aftershock on the vertical axis

versus mainshock magnitude on the horizontal axis. Dashed line shows Bath’s law, that the magnitude difference

is on average 1.2 magnitude units.
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Figure S-5: Lower median stress drops for aftershocks relative to mainshocks in model. Inferred stress drop

from magnitude and source area. Vertical axis shows magnitude minus log10 Area, which scales as static stress

drop for circular ruptures. Horizontal axis is Magnitude. Red circles are individual mainshocks, blue circles

are individual nearby aftershocks. The blue circles tending to lie below the red circles at a given magnitude

illustrates the differences in the statistics of the populations. Solid lines show averages for a given magnitude of

the two populations, with yellow showing mainshocks and cyan showing nearby aftershocks. Systematic lowering

is shown by cyan curve lying below yellow curve. Error bars on curves show one standard error uncertainty in

mean.
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(a) (b)

Figure S-6: (a) Fraction of aftershock area rebreaking mainshock area. Horizontal axis is magnitude of the

aftershock; vertical axis is fraction of aftershock area having broken in mainshock. Color shows mean friction

drop in aftershock. Warmer colors slying above cooler colors shows higher fraction rebreaking having lower stress

drops. Only aftershocks above a cutoff magnitude of M4 are shown. (b) Friction drop of nearby aftershocks as

a function of distance of aftershock hypocenter from closest part of mainshock rupture area. Horizontal axis

is magnitude of the aftershock; vertical axis is log10 of distance in meters (aftershock hypocenters which broke

previously in mainshock are given minimal cutoff distance of 1m; they are rare, but do exist). Color shows

mean friction drop in aftershock.
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