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1. Consider the shallow water equations on anf -plane, and a plane wave solution of the form

η = Re ηo exp i(kx + ly − ωt).

(a) Find the velocity field, (u,v), in terms ofη.

(b) Write the flow field in terms of a component parallel to the wave vector (u‖) and a

component perpendicular to the wave vector (u⊥). Show that the horizontal velocity

vector traces out an ellipse. In which direction (clockwise or counter clockwise) does

the velocity vector rotate?

2. Geostrophic adjustment. Consider the shallow water equations on anf -plane. Suppose that

at t = 0, the velocity field is zero and the surface elevation is given by

η = ηo, −a ≤ y ≤ a,

and zero elsewhere. (Make sure to attach plots of all solutions and printouts of any script-

s/programs.)

(a) Write down the appropriate Klein-Gordon equation governing the time evolution ofη.

(b) Write the solution as the sum of a time-dependent homogeneous solution (ηh) and a

steady particular solution (ηs). Find the steady, geostrophic solutionηs. Hint: You

will find that the problem to be solved is a 2d order, inhomogeneous ODE, which

requires the specification of 2 boundary conditions (or constraints). Apparently, the

only boundary conditions available are thatη not blow up asy → ±∞. What to do?

Recall that a similar situation is encountered when solving for the Green’s function.

There, and here too, weintegratethe differential equation over a small interval centered

about some pointyo, and then let the interval go to zero. (The choice ofyo depends on

the problem at hand.) This establishes the continuity (or lack thereof) ofη anddη/dy

acrossyo. The change inη or its derivative acrossyo is known as a “jump condition”

and provides us with the necessary constraints.

(c) Use the momentum equations to find the geostrophic velocity field.



(d) Compute the ratioR of the total energy in the final geostrophic state to that in the

initial state. Express, and make a plot of, this ratio as a function ofa/λd, whereλd is

the deformation radius.

(e) Transient solution.Now that you have found the steady (particular) solution, lets now

calculate the time-dependent (homogeneous) solution. While this transient solution can

be found analytically by means of Fourier or Laplace transforms, the inverse transforms

are difficult to work out. (Of course, we could just look these up in tables!) Here, I

walk you through the steps necessary to obtain the solution numerically. The basic idea

is to use the discrete Fourier transform (implemented as the FFT in most math software

including matlab) to do the inverse transform.

i. Write down the PDE for the homogeneous part,ηh, and the initial conditions it is

subject to.

ii. Take the Fourier transform of the equation (in the spatial direction) and solve the

resulting ODE (for the Fourier transform). Equivalently, you could simply write

down the solution as a sum of left- and right-going plane wave solutions using the

known (Poincare) dispersion relation for this equation.

iii. Use the DFT (FFT) to invert the transform solution back into physical space.

iv. Make plots of the full time dependent solutionη = ηh+ηs at several times showing

the approach to a steady state. If you nondimensionalize time and space appropri-

ately, your life will be greatly simplified.


