Crustal Thickness on the Mid-Atlantic Ridge: Bull’s Eye Gravity Anomalies and Focused Accretion

Maya Tolstoy, Alistair J. Harding, and John A. Orcutt
Crustal Thickness on the Mid-Atlantic Ridge: Bull’s-Eye Gravity Anomalies and Focused Accretion

Maya Tolstoy, Alistair J. Harding, John A. Orcutt

Spreading segments of the Mid-Atlantic Ridge show negative bull’s-eye anomalies in the mantle Bouguer gravity field. Seismic refraction results from 33°S indicate that these anomalies can be accounted for by variations in crustal thickness along a segment. The crust is thicker in the center and thinner at the end of the spreading segment, and these changes are attributable to variations in the thickness of layer 3. The results show that accretion is focused at a slow-spreading ridge, that axial valley depth reflects the thickness of the underlying crust, and that along-axis density variations should be considered in the interpretation of gravity data.
thought to have a robust magma supply and the ends are considered regions relatively starved of magma. Oceanic crust has two igneous layers, one extrusive (layer 2, basalts) and one intrusive-cumulative (layer 3, gabbros). Layer 1 corresponds to sediments, which are generally insignificant at the ridge crest. If the crustal thickness varies, whether the layers of the crust vary proportionally or independently is key to understanding the source of the variations.

Here, we describe the results of a seismic refraction experiment along a segment with a large bull’s-eye MBA.

The MAR segment at 33°S exhibits the largest observed bull’s-eye MBA (--90 mgal) (1). This pattern is associated with a central topographic high, where the median valley essentially disappears (6) (Fig. 1). The median valley then deepens toward the ends of the segment, assuming a morphology more typical of slow-spreading systems. A 109-km seismic refraction line was shot along the axis of the 33°S segment with the use of 54- and 27-kg explosive sources, and waves were detected with three ocean-bottom seismographs (OBSs) (Phred, Judy, and Karen).

The thickness of the ocean crust is indicated in the data by the time and range at which the high-amplitude reflections from the base of the crust (PmP) and arrivals with mantle velocities (8 km/s) are observed. The locations of these features are seen to increase in range from the seismographs as the center of the segment is approached (Fig. 2), which implies that the crust is thickening toward the center of the segment. Results from one-dimensional and two-dimensional models of the velocity structure required to fit the data are in good agreement and also imply that the crust is thick in the center of the segment and thins toward the end (Fig. 3). The thinning is clearly seen at the southern end of the segment; the data are too sparse at the northern end to accurately infer thinning. Model fits indicate that the overall change in crustal thickness appears to be primarily caused by variations in the thickness of layer 3 (Fig. 3). Consistent with the conclusions of earlier studies (7–9), the crustal section that contained velocities associated with layer 3 is apparently extremely thin or absent in the area of the fracture zone. The southern end of this segment is inferred to be as a second-order discontinuity (10). However, the similarity of the crustal structure to that of the first-order transform faults implies that this hierarchy relates primarily to the size of the offset of ridge segments and their surface expression, rather than to the crustal structure, and we refer to this offset simply as a fracture zone.

These calculations for seismic thickness can be compared with those predicted from the gravity anomaly. The gravity estimate is calculated by subtracting the effect of a passively upwelling mantle (11) (where the

Fig. 1. (A) Bathymetry map of the 33°S segment of the southern MAR (2). Circles mark locations of OBSs and asterisks indicate the start and end points (bottom and top, respectively) of the shot line. (B) Mantle Bouguer anomaly for the 33°S segment, showing characteristic bull’s-eye shape (2). A crustal thickness of 6 km was assumed. Black lines represent the 3-km bathymetry contour.
mantle thermal structure reflects plate cooling (with age) from the MBA and attributing all the remaining anomaly to variations in crustal thickness. This model essentially accounts for the west and east sides of the bull’s-eye structure on the MBA, which are formed because of cooling, and therefore increase in density, of the mantle with distance from the ridge axis. The along-axis variations in crustal thickness then account for the north and south sides of the bull’s-eye. The seismically observed variations in crustal thickness are more than adequate to produce the observed gravity anomaly (Fig. 3) without requiring the presence of a mantle plume. However, a mantle plume may still exist if the gravity signature associated with it is small (for example, a few milligals (12)).

Toward the southern end of the segment, the seismically determined thickness is less than predicted from the gravity data. For an isostatic relation, the variation in density required to account for this discrepancy is 260 kg/m3. The observed disproportionate thinning of the higher density layer 3 indicates that crustal density is most likely not uniform. The thinning of layer 3 can account for over half of the density discrepancy estimated at the segment end. The remaining discrepancy may be attributed to the presence of upper crust with lowered densities in the area of the fracture zone. This conjecture is supported by data from the instrument nearest the fracture zone (Phered); here, upper crustal arrivals were delayed compared to arrivals at the central instruments (Fig. 2D). Densities may be lowered because of alteration and fracturing. Similar discrepancies between the seismically determined crustal thickness and gravity predictions in fracture zones have been observed elsewhere (13). The dual effects on the gravity signature of (i) increased central crustal density (reflecting a thick layer 3) and (ii) decreased density at the segment end (as a result of a thin layer 3 and low upper crustal densities) counteract each other. Together, they lead to an underestimation of the crustal thickness variation interpreted from the gravity data. Although gravity data provide a large-scale picture of crustal thickness variations, more detailed consideration requires seismic investigation because of lateral variations in crustal density. However, the accuracy of the gravity interpretation may be enhanced by considering the likely along-axis density variations of the crust.

A substantial layer 3 may not be recognized toward the fracture zone because it has been altered enough in that area that velocities have been lowered to those commonly associated with the extrusive layer 2. However, this would require extreme fracturing and alteration of the lower 2 km of the crust in this area. Although possible, this model seems less likely in that the area sampled is not directly in the fracture zone but only close to it. Earlier seismic work has shown that a broad zone of thinned crust extends out to 20 km on either side of the fracture zone and that the crust is extremely thin in a narrow, 10-km region spanning the axis of the fracture zone (7-9). The closest instrument (Phered) was located approximately 25 km from the center of the fracture zone and sampled the region 10 to 25 km from the fracture zone. It, therefore, primarily sampled the probable broader zone of thinned crust. For comparison, the Mesozoic crust in the western North Atlantic shows evidence of a layered cumulative sequence in the center of a segment, which disappear toward the fracture zone (14), and as mentioned earlier, most seismic work associated with fracture zones has identified little or no layer 3. There is no evidence, either from the topography (6, 15) or from earthquake studies (16-18), for ridge perpendicular faulting within segments on the MAR capable of producing along-axis crustal thickness variations of the magnitude we observed. The results at Fig. 3. Comparison of the two-dimensional seismic model and thickness predicted by gravity. Area I represents the ocean; area II is bounded by the surface topography (determined from the bathymetry data) and the 6.8 km/s velocity contour. Area II is interpreted to be crustal layer 2. Area III is bounded by the 6.8 km/s velocity contour and the base of the crust determined through two-dimensional seismic ray tracing. Area III is interpreted to be crustal layer 3. Area IV is interpreted to be the mantle. The asterisks show the depth determined for the base of the crust from the one-dimensional seismic modeling; the dashed line is the crust thickness predicted from gravity (2). One-dimensional models for the three instruments (Phred, Judy, and Karen) were produced iteratively with Wentzel-Kramers-Brillouin-Jeffreys (WKBJ) synthetic seismograms within the one-dimensional model. The two-dimensional model was adjusted to produce an initial two-dimensional model. Through two-dimensional ray tracing (30), this model was adjusted to obtain a two-dimensional model consistent with the travel times. The two-dimensional model is well constrained only within the region of the asterisks. Based on the central data, the regions bounding this area are primarily schematic.

33° indicates that the thickness variations are associated with the accretion mechanism because layers 2 and 3 do not vary proportionally. Our seismic results support the idea that accretion and upwelling are focused within individual segments of the slow-spreading MAR. The absence of a steady-state magma chamber on slow-spreading ridges (16-22) precludes significant along-axis migration of melt. Therefore, any focusing of the melt in upwelling mantle material on slow-spreading ridges would result in large variations in crustal thickness as observed in this experiment. In contrast, the more uniform crustal thickness of intermediate- to fast-spreading ridges is thought to reflect either an underlying two-dimensional mantle flow pattern (23, 24) or along-axis flow of magma redistributing a three-dimensional supply (24, 25).

These results identify a direct relation between crustal thickness and the morphology of the axial valley (Fig. 4). As the crust thickens, the axial valley shoals, and an axial high develops at maximum crustal thicknesses. There is no geochronological anomaly observed to indicate that this shoaling toward the center of the segment is...
caused by the influence of nearby hot spots (26). Recent modeling (2, 27) predicts that at the slow-spreading rate [18 mm/year half spreading rate (28)] characteristic of the 33°S area, a transition in axial topography between forming or lacking an axial rift valley would correspond to crustal thicknesses of 7 to 8 km. This prediction is consistent with the seismically observed crustal thicknesses and topography in the 33°S area. This relation may be explained by variations in axial temperature consistent with focused accretion. If axial valley topography results from the stretching of a strong lithosphere, then a deeper axial valley may indicate the presence of a cool, brittle lithosphere, which would be associated with thin crust.

The results from 33°S indicate not only that crustal thickness variations can fully account for the observed MBA, but also that lateral variations of density within the crust are significant enough that they must be considered when gravity data are interpreted. It follows from these results that other bull’s-eye MBAs inferred to exist along many ridge segments on the MAR may also be formed by along-axis crustal thickness variations. Such anomalies are also commonly associated with a shoaling of the axial valley similar to that observed in the 33°S area (4, 29). The regularity with which these characteristics are being observed suggests that they are a primary feature of the spreading mechanism operating along the slow-spreading MAR.

REFERENCES AND NOTES

32. The seismic refraction line at 33°S was part of the Plume experiment, a multidisciplinary study that included bathymetry, seismics, gravity, magnetics, and dredging. We thank the officers, crew, and scientific complement of the R.V. Thomas Washington for their help in collecting these data. We also thank G. A. Neumann for providing the bathymetry and gravity data before its publication, D. Caress for his two-dimensional ray tracing program, P. Henkart for software, and D. K. Blackman, G. M. Kent, and J. Phipps Morgan for many helpful discussions. This work was supported by NSF.

28 June 1993; accepted 31 August 1993