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atmospheric subsidence associated with the Walker circulation, or
the atmospheric large-scale zonal circulation. May 1998 corre-
sponded to the transition period in terms of the Walker circulation:
just after the large-scale subsidence over the western Paci®c was
relaxed, and just before the subsidence over the eastern Paci®c was
established. We consider that the relatively warm homogeneous SST
distribution, without suppression of convection by large-scale
subsidence, allowed the unusual global propagation of the MJO
precipitation.

Another notable feature of this MJO was that it in¯uenced the
termination of the El NinÄo through the intensi®cation of the
easterly trade winds. A triggering effect of westerly wind bursts
(associated with the MJO) on the initiation of El NinÄo events has
been previously suggested3±8. However, there have been no previous
observations of the MJO that triggered the termination of El NinÄo
events.

How an MJO in¯uences the ocean depends on its dynamical
structure. The MJO is usually considered to have the Rossby wave
response of the `Matsuno-Gill pattern' to the west of the convection
centre. The intensi®cation of the twin vortices from the Rossby wave
response is favourable for the occurrence of westerly wind bursts. In
our case, however, the lower-tropospheric disturbance lacked the
Rossby wave response and had only the Kelvin wave response.

Wang and Xie17 studied theoretically the effects of mean wind
shear on atmospheric equatorial waves. Their results indicated that
the westerly wind shear (stronger westerly wind upward) traps the
Rossby waves in the upper troposphere, while not much affecting
the Kelvin waves. In our case, the mean zonal-wind difference
between the 200-hPa and 850-hPa levels was 6.9 m s-1, which is
comparable to the 10 m s-1 that Wang and Xie assumed17.

Thus, the mean wind ®eld not only allowed the global propaga-
tion of a convectively coupled MJO, but also affected its structure,
suppressing the Rossby wave response in the lower troposphere. The
resultant lower-tropospheric Kelvin wave disturbance superposed
on the mean easterly winds in turn caused the intensi®cation of the
easterly trade winds, and brought about an unusual easterly-wind
effect of the MJO on El NinÄo.

Slingo et al.18 suggested an important link between the MJO and
the basic climate by comparing the performances of general circula-
tion models. The May 1998 event re-emphasizes the signi®cance of
multi-scale interactions within the climate system, on which further
studies are required. M
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Determining the ¯ow of magma and solid mantle beneath mid-
ocean ridges is crucial for understanding the dynamics of plate
spreading and the formation of new oceanic crust. Theoretical
models suggest a range of possible ¯ow regimesÐfrom passive,
plate-driven ¯ows1,2 to `active', buoyantly driven solid convec-
tion3±7Ðand have spurred an ambitious ®eld programme to
attempt to distinguish these ¯ow ®elds using geophysical
techniques8. Models that explore the geochemical consequences
of melt transport9, however, suggest that these different ¯ow ®elds
can also have distinctive geochemical signatures. Here we com-
pare model predictions to the chemistry of well located and
closely sampled basalts from across the ridge-crest of the fast-
spreading East Paci®c Rise at 128 N (refs 10±12). These data show
features that are not explained by traditional geochemical models
of ocean-ridge magma generation, yet are consistent with the
geochemical consequences of the new transport models that have
passive mantle ¯ow and convergent lateral melt migration. These
results are also consistent with those of the seismic MELT
experiment8, but add new information about the relative ¯ow of
melt and solid in the mantle which is probably unmeasurable by
geophysical techniques.

The melt and solid ¯ow ®elds for two end-member ¯ow regimes
proposed for mid-ocean ridges are shown in Fig. 1 (see ref. 9 for
detailed discussion). In the regime shown in Fig. 1a, the solid mantle
¯ow is driven by the spreading plates, producing a broad region of
upwelling and melting (passive ¯ow). The melt ¯ow, however, is
focused towards the ridge axis by pressure gradients induced by
viscous stresses1,2. In Fig. 1b, the solid mantle ¯ow is driven both by
the plates and by buoyancy forces induced by lateral variations in
melt content (active ¯ow). The buoyancy forces become signi®cant
at lower mantle viscosities, and drive small-scale mantle convection
that promotes more rapid upwelling within a narrow region
beneath the ridge axis3±7. The lower viscous stresses, however,
eliminate any signi®cant convergent melt ¯ow.

The outstanding question has been how to distinguish between
these theoretical models using geological and/or geophysical obser-
vations. Both calculations in Fig. 1 form similar crustal thicknesses
within a relatively narrow crustal accretion zone. Both calculations
have the same maximum degree of melting and permeability
functions, and produce mantle porosities that would probably be
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dif®cult to distinguish using physical techniques. Nevertheless,
these ¯ow calculations have distinct geochemical signatures which
suggest that compositional variations in erupted magmas may be
sensitive indicators of mantle dynamics9.

Figure 2 illustrates the geochemical signatures of these calcula-
tions for the simplest problem of trace elements with constant bulk
partition coef®cients and a uniform source composition. The ¯ow
models predict variations in both overall melt composition and in
the spatial distribution of erupted compositions which can be
signi®cantly different from those calculated using models that
neglect melt transport (see, for example, refs 13, 14). These varia-
tions are a direct consequence of the ability of melt and solid to
travel, and mix, on different trajectories in two and three
dimensions9. Convergent melt ¯ow relative to solid ¯ow (Fig. 1a)
enriches the concentration of incompatible trace elements at the
ridge axis by adding lower-degree melts from a wide region.
Convergent solid ¯ow within the partially molten region (Fig.
1b), however, produces axial melts that are extremely depleted in
the most incompatible elements. These elements are removed by
small amounts of melting and transport that occur off-axis before
the solid undergoes most of its melting within the narrow upwelling
zone. These two models also predict completely opposite signatures
in the relative enrichment of incompatible trace elements in on-axis
and off-axis melts (Fig. 2). The passive ¯ow model produces
magmas that are most enriched on-axis but become more depleted
with distance off-axis within the crustal accretion zone (,5 km half-
width in Fig. 1a). This result is an unusual consequence of con-
vergent melt ¯ow in open systems. In contrast, the active ¯ow model
produces melts that become more enriched with distance off-axis, as
do melting models that neglect transport.

The spatial trend of incompatible trace element enrichment or
depletion is a robust consequence of the relative geometries of the
melt and solid ¯ow ®elds, and depends only on whether melt or
solid ¯ow is convergent. For this reason, we concentrate on com-

paring the composition of well located on- and off-axis lavas with
similar sources. We also consider more quantitative details such as
the amplitude of the signals and the width of the crustal accretion
zone; however, these are more dependent on speci®c model param-
eters, and will be explored in depth elsewhere.

A detailed petrological and geological study around 128 N on the
East Paci®c Rise10±12 provides important data and interpretation
that can be compared to predictions from the theoretical ¯ow
models. The study area (Fig. 3) covers 50 km of ridge axis, and
extends 8 km west and 10 km east of the axis. Basaltic glasses from
143 rock core and dredge samples have been analysed by electron
microprobe, and 52 samples (Fig. 3c) have also been analysed for
major and trace elements by direct-current plasma spectrometry
(DCP). Samples with full analyses form a `training set' for classify-
ing the remaining samples using a nearest-neighbour algorithm.
Geological information is drawn from multi-beam bathymetry15,
SeaMARC I side-scan sonar16 and camera tows. Further details are
given elsewhere12.

Within the ``axial summit trough''17, one ®nds both normal mid-
ocean-ridge basalts (N-MORBs) and small-volume eruptions of
incompatible-trace-element enriched MORBs (T-MORBs) (Fig. 3),
with remarkably few samples showing compositional evidence of
simple mixing despite evidence for an axial magma chamber in this
area18. These observations suggest that, at 128 N, individual melts
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can preserve chemical differences through the crustal accretion
process. In addition, Reynolds and Langmuir12 have also identi®ed
a petrologically distinct lava type that only erupts off-axis (red
symbols in Fig. 3a). In their original 1992 paper10, samples of this
lava type were considered part of the temporal variation at the 128 N
axis, and contributed scatter. When these samples are removed, the
temporal variation in axial larva composition is even more systema-
tic. The off-axis magma type is most readily identi®ed in depleted
compositions. Because of this, and to minimize the complicating
effect of mantle source variations, we limit discussion here to N-
MORB compositions and refer to the off-axis type as OA-N-MORB.
The contrast between this lava type and the N-MORBs erupted on-
axis form the basis for testing model predictions of melt and solid
mantle ¯ow.

Many samples of the OA-N-MORB type can clearly be identi®ed
with morphological features suggestive of off-axis eruption11,12 such
as small seamounts (Fig. 3a), or ¯ows and pillow mounds that cover
abyssal hill faults (Fig. 3b). Observations during dives of the Alvin
submersible at 98 319 N and 98 509 N have also documented small
off-axis lava ¯ows and volcanic constructions in that region17,19,20.
Of the 20 OA-N-MORB samples found at 128 N, 45% can
be positively associated with features indicating off-axis eruption
despite the incomplete side-scan coverage and limitations of map-
ping resolution. No sample of this composition type is found on the
EPR axis here. A search of 123 earlier dredges along the EPR from 58
to 148 N identi®ed seven OA-N-MORB samples off-axis elsewhere12.
No such samples were found along the axis, with a single exception
from the intersection with the Clipperton transform.

For the samples with full major- and trace-element analyses,
Fig. 4a compares the mean and standard deviation of the composi-
tion of N-MORB recovered within ,1.5 km of the ridge axis, with

the mean and standard deviation of the off-axis-type lavas. The
signature of low-pressure olivine±plagioclase±clinopyroxene frac-
tionation has been removed by correcting the compositions to a
constant 7.3% MgO, which is the mean MgO content of the full data
set12,21. Samples with MgO . 8:0% have been excluded because they
may not lie on olivine±plagioclase±clinopyroxene fractionation
trends. For clarity, all of the compositions are normalized by the
mean of the axial N-MORB samples.

In terms of major elements, the OA-N-MORBs have signatures
similar to the on-axis N-MORB, but tend to be less fractionated
(higher MgO) on eruption, suggesting less cooling in the crust. The
OA-N-MORBs are also characterized by unusually low abundances
of trace elements that are incompatible during mantle melting (Ba
to Sc) compared to N-MORB lavas from the ridge axis. This sense of
off-axis depletion is the qualitative signature of models with con-
vergent melt ¯ow towards the ridge axis. This signal is clear in all
incompatible trace elements with the possible exception of Sr which,
while moderately incompatible during melting, behaves compatibly
during low-pressure fractionation involving plagioclase. The varia-
tion in Sr content probably re¯ects more complex crustal fractiona-
tion processes than are accounted for by the corrections used
here11,12.

Although the differences in composition for the off-axis-type N-
MORB are small (,20% less than the mean), they are also
quantitatively consistent with the predictions of the models. Figures
4b and c compare the incompatible trace element data to the model
calculations for passive ¯ow, assuming a single bulk partition
coef®cient during melting and transport. These models are the
same as those presented in ref. 9, and were calculated independently
of the 128 N data. Nevertheless, the agreement between models and
data is remarkably good, in both the overall shapes of the patterns
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and the rough distances off-axis (of the order of several kilometres).
Measured distances of samples, of course, should be used with
caution in the absence of an independent estimate of the age of
eruption. Analyses of U-series nuclides can provide information on
eruption ages and crustal residence times up to ,300 kyr, and could
provide an important independent test of these models in the
future. Such measurements have already demonstrated clear off-
axis eruptions at 98 309 N17,19,22.

The quantitative comparison of data and models is expected to
change as more data and additional processes are included in the
models, but the qualitative result is robust. The important point

is that the off-axis melts at 128 N appear more depleted in incom-
patible trace elements than the axial melts across a range of
elements, consistent with convergent melt ¯ow. Although there
may be other mechanisms for convergent melt ¯ow in addition to
the model shown here (see, for example, refs 23, 24) these results
probably rule out signi®cant convergent solid ¯ow within the
partially molten region.

The results we report here are consistent with both geochemical
and geophysical reasoning. Results from the seismic MELT experi-
ment at 178 S on the southern EPR suggest that melt is distributed
over a wide area at depth8. The simultaneous existence of a narrow
neovolcanic zone at the surface implies some mechanism for lateral
melt migration in the MELT area. Although seismic or electro-
magnetic techniques can sense the presence of melt, they probably
cannot distinguish the relative geometries of melt and solid ¯ow
®elds. However, our results suggest that geochemistry can make this
distinction, because the geometry of melt and solid ¯ow controls the
mixing of melts and their interaction with different solid residues.
We interpret the geochemical signatures at 128 N as the most direct
evidence yet for lateral melt migration. M
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Figure 4 Comparison of on- and off-axis EPR magmas with model predictions. a, Major-

and trace-element compositions of 128 N EPR basalt glasses with full analyses. Circles are

the mean of 18 N-MORBs collected within ,1.5 km of the axis, and the squares are the

mean of 11 off-axis-type N-MORBs. The ®rst six points are compositions of major-

element oxides by microprobe, and the subsequent points are DCP analyses of trace

elements shown roughly in order of compatibility. Variation from the mean in major

elements for the ®rst 5 elements is multiplied by a factor of 5. All values are fractionation-

adjusted to 7.3% MgO and normalized to the mean of the on-axis N-MORB. Error bars

show 61j standard deviation which is a good proxy for the range of natural variation in

each data group. b, Comparison of 128 N off-axis incompatible trace element patterns

(squares) to model predictions for equilibrium melt transport in plate driven mantle ¯ow

with convergent melt migration (Fig. 1a). Compositions from the model are normalized to

the model's mean ``crustal'' composition (thick lines in Fig. 2). Thin dashed lines indicate

trace-element patterns calculated for various distances off-axis where the distance x is

scaled to the depth of the melting region. The curve marked x � 0:06d corresponds to

the arrow in Fig. 1a, and would be 4.8 km for d � 80 km (h � 6 km). c, As b but for

disequilibrium transport.


