

Current Hotspots Limitations & Potential Improvements

or
How to Clean Up the Hot Spots in Hotspots!

Basic Limitations: Hazard Data

Individual Hazards

- Small events probably undercounted
- Rare events not characterized properly
- Insufficient data to assess underlying shape of probability distributions
- Simple models of areas exposed to hazard, e.g., circles for volcanoes, wind speed model for storm tracks, interpolated station data for rainfall anomalies
- Simplification of physical effects associated with hazards, e.g., no storm surge modeling for storm tracks
- Assumption of underlying stability in frequencies; no long-term trends

Hazard Comparability

- Different measures of hazard probability depending on hazards (probabilities, frequencies, indices)
- Varied spatial resolution
- Varied temporal coverage
- Variable quality of data, uncertainties in data
- No effort to model joint hazard distributions

Basic Limitations: Exposure Data

Population

- Single point in time for population location based on census
- Night time, not day time
- No accounting for daily, weekly, seasonal variations, commuting, tourists, institutional populations, etc.
- Census resolution varies, poor in some hazardous countries
- Population only, no urban/rural identification, age/gender structure, etc.
- Used end point population, not time series of population or population projections

Economic Activity

- Limited subnational resolution
- No link to type of land use or type of income generation
- No measure of assets, wealth in place

Mask

- Based on pixels with agricultural land use or minimum population density based on residence, not potential presence during a hazard event
- Arbitrary cutoff of 5 persons/km2

Basic Limitations: Vulnerability Data

"Net" Vulnerability

- Assumes stability of vulnerability over 20-year period
- Assumes adequate characterization of vulnerability with only 20 years of data
- No disaggregation of different physical, societal vulnerability factors in event data, e.g., deaths due to direct earthquake damage, secondary landslides, evacuations, or poor health status
- Location and extent of events in EM-DAT matched by country, not exact location and extent on the grid
- Arbitrary use of World Bank income classes to estimate different vulnerability levels
- Small disasters probably undercounted
- Rare events not characterized properly
- Losses due to multiple hazards may be embedded and not identified
- EM-DAT loss estimates not consistent, especially for economic losses
- Allocation of losses across multiple years not consistent
- Losses assumed to be equal across affected areas

Potential Areas for Methodological Improvements

- 1. Modeling of hazard probability distributions
- 2. Setting thresholds of significance by hazard
- 3. Matching exposure data to different hazard types
- 4. Creating more specific conditional vulnerabilities
 - Physical fragility
 - Socioeconomic factors
- 5. Estimating absolute risks; only mask out clearly low risk areas
- 6. Categorizing risk levels into a limited number of categories (4-5?)
- Aggregating risks across hazards and different loss types using general categories

