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ABSTRACT

We are developing a new algorithm for seismic event location to address particular problems of
importance in monitoring the Comprehensive Nuclear-Test-Ban Treaty, including the assessment
of location accuracy and increasing the number of seismic phases used for location. Our approach
is formulated within a maximum-likelihood estimation framework and implemented numerically
with grid-search and Monte Carlo techniques. It obtains globally optimal hypocentral estimates
and non-ellipsoidal confidence regions that do not depend on the usual assumption of local linearity
of the forward problem. The approach accommodates such complexities as 3-D traveltime tables,
non-Gaussian data errors, and general types of parameter constraints. Specific problems we are
addressing are (1) extension of our uncertainty analysis to account more realistically for the effects
of modeling errors (errors in traveltime tables), which traditionally have not been distinguished
from random picking errors in the determination of location confidence regions; (2) incorporation
of azimuth and slowness data, in addition to arrival times, into the maximum-likelihood framework;
and (3) integration of phase association into the event location algorithm in order to perform these
tasks simultaneously with a grid-search approach. We present examples of our event location
algorithm applied to data from the International Monitoring System, illustrating the effects of
nonlinearity on hypocentral confidence regions determined from sparse data sets.
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OBJECTIVE

Over the past decade, grid search has gained popularity as an inversion algorithm for seis-
mic event location, owing to its simplicity of implementation and ability to find globally optimal
hypocentral estimates. Unlike the traditional iterative methods, grid search easily accommodates
problem complexities such as general error models (non-Gaussian), nonlinear parameter constraints,
and multiple data types (azimuth and slowness in addition to arrival times). One of the early ap-
plications of the method was the work of Sambridge and Kennett (1986), who applied a directed
grid-search technique to teleseismic location. Recently, Dreger et al. (1998) applied grid search to
problems of event location with sparse regional networks, an important situation in CTBT moni-
toring. Previous applications of grid search in event location were formulated to minimize a “data
misfit” function with respect to hypocentral parameters. Contours of this function were recognized
to approximate the boundaries of confidence regions, to which confidence levels could be assigned
within certain linear approximations and under the assumption of Gaussian errors (Wilcock and
Toomey, 1991).



We are developing a more general algorithm for event location that uses grid search to maximize
a general likelihood function. Maximum likelihood estimation theory provides a formal framework
for non-Gaussian error assumptions and for combining diverse types of data and prior information
on parameters. In addition, our algorithm replaces approximate, analytical formulas for confidence
levels with Monte Carlo simulation, which is not restricted by the Gaussian assumption and which
accounts fully for nonlinearity of the forward problem and parameter constraints. Other enhance-
ments in progress or planned for the near future include the incorporation of azimuth and slowness
data, a more complete treatment of the errors in traveltime tables sued for forward modeling, and
integration of seismic phase association tasks into our grid-search algorithm in an attempt to con-
strain event locations with more seismic phases. Our objective is improved location accuracy and
more realistic analyses of location error for small, sparsely recorded events.

RESEARCH ACCOMPLISHED

Maximum Likelihood Formulation

The hypocentral parameters of a seismic event are a three-dimensional position vector x and an
origin time ¢. Let d = (di,ds....,d,) be an n-dimensional vector of arrival times picked from
various seismic phases at a seismic network. The event location problem may be expressed as

dizt—l-Ti(X)—l-e,', 1=1,...,n (1)

where T; is a traveltime function (traveltime table) for the ith datum and e; is an error with respect
to this function. The index ¢ counts over both stations and phase types (P, S, etc.), including only
those combinations that have been actually observed (i.e., completeness of data coverage is not
assumed).

We assume the errors are statistically independent and, following Billings et al. (1994), that
each is distributed with a “generalized Gaussian” probability density function (p.d.f.) given by
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pdf(e) = o exp{ -
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where K = 2p"/PT'(1 + 1/p) and T is the gamma function. When p = 2, then e; is normally
distributed with zero mean and variance (¢;)2. When p = 1, it is exponentially distributed. We
assume that the scale parameters o; are known in a relative sense and write

0; = 0V (3)

where the v; are known but the universal scale parameter, o, is not.

The joint p.d.f. of the n data is the product of the error p.d.f.’s. Considered as a function of
the unknown parameters (x, ¢t and o) this joint p.d.f. is a likelihood function, which we denote as
L(x,t,0;d). It is convenient to deal with the negative logarithm of likelihood, which we denote as
A. This is given by

A(x,t,0;d) = —log L(x,t,0;d)
n
1
= Zlogui+n10gK+nlogo+—p\I/(x,t;d) (4)
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Here, ¥ is a ‘data misfit’ function defined as

n

U(x,t;d) =) |di —t = T;(x) " /(13)P. (5)
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The maximum likelihood estimates of the unknowns are the values that maximize L or, equivalently,
minimize A. We denote these estimates as X,,j, {1, and o). The maximization may be subjected
to prior constraints on the parameters. In our current algorithm, we assume hard upper and lower
bounds on focal depth (z) and the p.d.f. scale factor:

0<z<2me (6)

o_min <o< omax (7)

We allow latitude and longitude to be anywhere on the globe, or restricted to within a given distance
of a given geographic location. We place no constraint on origin time.

Given its structure, A is amenable to a hierarchical minimization with respect to the unknown
parameters, leading to minimization subproblems of lower dimension than the original problem. We
define a “reduced” objective function which, for each fixed hypocenter, is minimum with respect
to t and o (subject to prior constraints on o):

A(x;d) = min A(x,t,0;d). (8)

t,o

The location problem reduces to minimization of A.

Grid Search

Our current grid search algorithm obtains the maximum likelihood estimates of the hypocentral
parameters (X, and t,,;) and the p.d.f. scale parameter (o,,), as defined in the previous section.
The algorithm computes the reduced objective function, A in equation (8), at each point in a 3-D
grid of hypocenters. Following previous workers, the hypocenter grid is constructed dynamically
through a process of successive refinement. Qur procedure for grid refinement resembles that of the
‘neighborhood’ search algorithm developed by Sambridge (1999). The first grid covers the entire
globe and from 0 to 700 km in depth at coarse spacing: 100 km in depth, 9 degrees in latitude, and
9 degrees in longitude near the equator and increasing at higher latitudes. On each pass of grid
refinement, nodes are added as neighbors of a subset of grid points comprising the “best” (smallest
/~\) points tested thus far. Neighbors are placed at one-third the grid-spacing of the previous pass.
The size of the grid subset chosen for refinement is reduced on each pass. The search ends when

the grid spacing is less than 0.3 km.

Non-Ellipsoidal Confidence Regions

A confidence region on the hypocenter of an event is defined classically in terms of a statistic, T,
that is a function of the data vector, d, and the hypocenter, x. A confidence region at confidence
level 1 — « comprises those values of x satisfying the inequality

cdf(7(d,x)) <1-a. 9)

Here, cdf denotes the cumulative distribution function of a random variable.

Flinn (1965) defined hypocentral confidence regions for the case of Gaussian errors (p = 2) and
no prior bounds on o (6™ = 0, ¢™* = 00). Evernden (1969) treated the case with o completely
known (o = o™ = ¢™3 = g1}, while Jordan and Sverdrup (1981) generalized these two results
to account for partial prior knowledge of 0. The statistic used by each of these workers can be
expressed in our notation as

W (x; d) — U (1; d)

7(d,x) = = (10)
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where ¥ is the “reduced” data misfit function (¥ minimized with respect to ¢ for each fixed x).
Under the approximation that the traveltime functions, T;(x), are locally linear near x = X, the
probability distribution of 7 does not depend on any of the unknown parameters (x, ¢ or o), and
a confidence region takes the form

U(x;d) — U(xpp;d) < 02,00 (11)

where C,, is a constant. Under the linearity assumption, this equation defines a hyper-ellipsoid in
hypocenter space. Flinn (1965), Evernden (1969), and Jordan and Sverdrup (1981) derive different
values of C, based on differing assumptions about o.

To test the linear approximation, Wilcock and Toomey (1991) computed non-ellipsoidal confi-
dence regions directly from equation (11). This equation implies that each surface of constant data
misfit, ‘i’(x; d), is the boundary of a confidence region for some level of confidence, 1 — a. They
directly sampled \TJ(X; d) on a grid of hypocenters to map the non-ellipsoidal confidence region for
a fixed confidence level, thus taking the major effect of nonlinearity into account. However, the
approach of Wilcock and Toomey (1991) ignores another effect of nonlinearity: the probability
distribution of 7 may depend on the true values of the unknown parameters. This effect can be
caused by the use of nonlinear constraints on the parameters, as in egs. (6) and (7), as well as by
nonlinearity of the traveltime functions. Moreover, they did not consider the case of non-Gaussian
€errors.

We have generalized the approach of Wilcock and Toomey as follows. We define a test statistic
as the logarithm of a likelihood ratio:

L .
7(d,x) = log maxy ;o L(x,t,0;d)

max; , L(x,t,0,d)
= A(x;d) — A(xpm; d). (12)

That is, 7 differences our reduced objective function between x and the maximum likelihood solu-
tion, x;,;. This statistic is equivalent to the ones used by Flinn and Evernden under their respective
assumptions about o, but accommodates arbitrary constraints on the parameters and non-Gaussian
error distributions. Letting x = (z,y, z), the statistic for a 2-D confidence region on the event epi-
center, (z,y), is given by

7(d, 2,y) = minA(x; d) — A(xpmi; d) (13)
and for a confidence interval on focal depth is
7(d, z) = rgiyn]\(x; d) — A(xp; d). (14)

Confidence regions using these log-likelihood statistics could still be defined via the inequality
of equation (9), except this inequality presumes that the distribution (c.d.f.) of 7 does not depend
on the true values of the parameters. We assume the main dependence is on focal depth and o, and
write the c.d.f. of 7 as cdf(7;z,0). We generalize the inequality of equation (9) to use the c.d.f. of
7 that is minimum with respect to the true parameters. Thus, the hypocentral confidence region
is given by

min cdf(7(d, x);2,0) <1 — a. (15)
The epicentral one is

mincdf(7(d, z,y);z,0) <1 —q, (16)
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and the focal depth confidence interval is
n%incdf(T(d,z);z,a) <1l-oa. (17)

With these definitions, a confidence region will include the true value of the parameter at least
100(1 — &) percent of the time.

Confidence Regions Via Monte Carlo Sampling

We outline the technique for hypocentral confidence regions. The basic idea is to estimate the c.d.f.
of the test statistic 7 by simulation, i.e. computing 7 for many randomly generated samples of the
error vector. We generate each error, e/"¢, using a pseudo-random number generator in accordance
with the assumed error distribution (egs. (2)—(3)) for some given “true” o. Then, for given true
hypocentral parameters, x and ¢, synthetic data are calculated as

d" =t+ T;(x) + e". 18
i i

We apply our grid search algorithm to these data to obtain the m.l. hypocenter, x2'f. Plugging
this into the formula for 7,

7(d™,x) = Ax; d™) — A(xppf; ™). (19)

we obtain one sample from cdf(7;z,0). We compare this sample to the observed value of the
statistic, 7(d, x), obtained from the real data. We count a rejection of x if

T(d"™¢, x) < 7(d, x). (20)

The fraction of rejections after many Monte Carlo trials yields an estimate of cdf(7(d,x); z,0).
Performing this simulation for multiple values of o and then minimizing amongst them gives the
lowest confidence level such that the confidence region includes x. The process for depth confidence
intervals and epicenter confidence regions proceeds in the same manner, except that in the latter
case the simulation is performed for multiple values of true depth as well as o, and the confidence
level is minimized over both.

Examples With IMS Data

We illustrate our grid-search/Monte Carlo event location algorithm on two events from the Proto-
type International Data Center (PIDC) Reviewed Event Bulletin (REB). The first is event number
20354875, which occurred 1 March 1999 near Crete and was assigned a magnitude of my = 3.9.
The International Monitoring System (IMS) location is based on five arrival times: Pn at stations
BRAR (A = 7.2°) and KVAR (A = 15.7°), and P at BGCA (A = 30.6°), ARCES (A = 34.5°)
and DBIC (A = 40.0°). We applied our grid-search location algorithm to this event using the
TASPEI91 traveltime tables and with no elevation or path corrections applied to the data. Arrival
time errors were assumed to be Gaussian (p = 2) with standard deviation (o) bounded between
0.5 and 1.5 seconds.

Figure 1 displays confidence level as a function of event location, computed via Monte Carlo
simulation. The simulations were performed with three hypothesized “true” values of ¢ and 6
values of focal depth. The number of error realizations for each ¢ and z was 300. The top left panel
displays confidence level as a function of event depth. The two points where the curve intersects a
given confidence level are the end-points of the focal depth confidence interval at that level. The



90% confidence interval on the focal depth of this event is 34 to 92 km, while the 95% interval is 0
to 101 km. The IMS solution fixed the depth to zero.

The upper right panels show cross-sections of confidence levels on the 3-D hypocenter. In each
plot, a contour of constant confidence level outlines the boundary of the hypocentral confidence
region at that level. The REB solution for the hypocenter is plotted as a circle. We see that the
hypocentral confidence regions display significant departure from ellipsoidal behavior. Significantly,
the effect is to stretch the confidence regions towards the earth’s surface, making it more difficult
to reject a shallow focus.

The bottom panels are confidence level as a function of event epicenter, whose contours define
epicentral confidence regions at various levels. In the bottom left panel, depth is unconstrained
(z > 0) as in the usual definition of an epicentral confidence region. We see that these confidence
regions are close to ellipsoidal and indicate roughly the same epicentral uncertainty as the REB,
which reports semi-axes of 57 and 22 km for the 90% confidence ellipse. In the lower right panel,
depth is constrained to be shallow (0 < z < 10 km). The title above the plot indicates that a
shallow focus can be rejected with a confidence of 83%. However, the plot shows that this low
confidence pertains only to a small epicentral region, much smaller than the epicentral confidence
region for unconstrained depth (lower left). Thus, the epicenter pertinent to a shallow focus event
is much better determined.

A second example of Monte Carlo confidence regions is shown in Figure 2. These are for an
myp = 3.7 event in the Afghanistan-Tajikistan border region (17 March 1999, event no. 20380677
from PIDC). The data set comprised five P wave arrival times, all teleseismic except station NIL
(A =5.1°). The REB solution reports semi-axes of 92 and 33 km for the 90% confidence region on
epicenter. This is consistent with but somewhat larger than the epicentral uncertainty implied in
the lower left panel. The REB confidence interval on depth is 35 to 130 km, compared to our smaller
52 to 116 km confidence interval (upper left panel of Figure 2). Our smaller location uncertainties
may be due to a more optimistic assumption about data errors (0.5 to 1.5 s) than used in the IMS
location algorithm. Looking at the lower right panel, we see that a shallow focus is rejected with
98% confidence, and essentially with 100% confidence outside an elliptical region northeast of the
unconstrained solution.

CONCLUSIONS AND RECOMMENDATIONS

We have developed a general theoretical and computational framework for finding event location
estimates and confidence regions, relaxing some of the assumptions currently used in the routine
processing of IMS data. In particular, we do not assume local linearity of forward problem (travel-
time vs. hypocenter) in the computation of confidence regions, and we accommodate fairly general
error models and parameter constraints. Our preliminary tests show consistency with IMS results
reported in the Reviewed Event Bulletin, but also some noticeable departures from the ellipsoidal
confidence regions computed by IMS when small data sets are used.

Currently we are incorporating azimuth and slowness data into our formulation and algorithms.
Such data are routinely used in IMS processing and can provide important constraints on sparsely
recorded, small events. We are beginning to address some additional, difficult problems of im-
portance in CTBT monitoring. One is the effect of errors in station corrections and traveltime
tables (“modeling” errors) on location accuracy. In current location algorithms, modeling errors
are accounted by inflating the variances assigned to the data, thus assuming they are random and
independent between stations and phases. We will investigate more realistic treatments of these
errors that are consistent with empirical analyses of traveltime residuals and calibration studies.
The second problem to address is unassociated and mis-associated seismic phases. Our goal is to



integrate key elements of seismic phase association into the process of event location in an attempt
to constrain locations with more data and, accordingly, leave fewer unassociated phases in the ar-
rival bulletins. Our maximum likelihood formulations and grid-search approach to event location
provides a flexible framework for addressing these problems.
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CONFIDENCE LEVELS (reb-20354875)
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Figure 1: Confidence level vs. location for an mj = 3.9 event near Crete (1 March 1999, event
no. 20354875 from PIDC). Top left: Confidence level vs. focal depth. Top center and right: cross-
sections of confidence level vs. hypocenter. Bottom left: Confidence level vs. epicenter. Bottom
right: Confidence level vs. epicenter with focal depth constrained between 0 and 10 km. In the top
images, each contour of constant confidence level intersects the boundary of the 3-D hypocentral
confidence region at that level. Contours in the bottom images are the boundaries of epicentral
confidence regions. Note that confidence levels below 80% are all displayed with white. The circles
mark the event hypocenter reported in the Reviewed Event Bulletin.



CONFIDENCE LEVELS (reb-20380677)
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Figure 2: Confidence level vs. location for an mj = 3.7 event in the Afghanistan-Tajikistan border
region (17 March 1999, event no. 20380677 from PIDC). The figure is in the same format as Figure
1. Contours of constant confidence level correspond to confidence regions on the hypocenter (top

images) and epicenter (bottom images). The circles mark the event hypocenter reported in the
Reviewed Event Bulletin.



