News aggregator

Black Holes

Geopoetry - 7 hours 17 min ago
 SCIENCE VIDEOLAB

Image Credit: Science Videolab

In most observed galaxy hearts,
Massive black holes reside,
Formed from dark-baryon parts,
As huge stars collapse or collide.
Telescopes secrets divulge,
Hinting at coevolution,
The key: a galaxy’s bulge?
We do not yet know the solution.
Whence the crucial gas-fuel
With which to feed a black hole?
Do galaxies, holes often duel?
Or play a more symbiont role?
Next, we tackle all spectra;
Our tools, from low to high climb,
Sensing waves from far plectra,
Over the whole Hubble time.

__________________________________________

Further reading:

The Formation and Evolution of Massive Black Holes, M. Volonteri, Science, 2012

This is one in a series of poems based on science news, written by Katherine Allen, a researcher in geochemistry and paleoclimate at the Lamont-Doherty Earth Observatory. “Black Holes” first appeared on Allen’s website on Aug. 6, 2012.

Future Droughts Worse than Expected - Astrobiology

Featured News - Thu, 04/17/2014 - 07:27
A new study is helping astrobiologists understand how climate change may shape the future of life on Earth. Coverage of a study in Climate Dynamics by Lamont's Benjamin Cook, Jason Smerdon and Richard Seager.

Floods: Holding Back the Tide - Nature News

Featured News - Wed, 04/16/2014 - 18:13
With the Ganges–Brahmaputra delta sinking, the race is on to protect millions of people from future flooding. Work of Lamont's Michael Steckler cited.

Lords of the Past

Geopoetry - Fri, 04/11/2014 - 09:21
 Vassil/Alias Collections.

Paraceraurus trilobite, Ordovician, from the Volchow River, Russia. Photo: Vassil/Alias Collections.

With life, legged and finned, Earth had been teeming,
Slitherers, predators, graceful trees tall …
Now, of these species, we are only dreaming:
Glossopteris, trilobites, eurypterids, all.

Creatures of intrigue, lords of the past!
How did they grow; their color, what hue?
Why did some perish, and why did some last?
In Earth’s litholibrary, sometimes a clue.

Catastrophe beautifully carved into stone,
Graveyards ‘neath graveyards, so deep do we ply,
Silent yet eloquent, shadows of bone,
The greatest extinction, the big one – but why?

Deserts and oceans spanned latitudes wide,
Lava erupted as oceans of fire,
What means of death? It’s hard to decide:
Heat, acid, darkness, a host of things dire.

Yet from these strange ashes (if ashes they be)
Life rose up gorgeously, brilliantly new!
From lucky survivors, a vast, branching tree;
Some tendrils persisted, and weird, wild things grew!

Time is the key to death and new life,
And time can lie hidden, awaiting fresh eyes.
A haze of uncertainty, cut with a knife –
From zircon in China, chronologies rise!

To stand at the Permo-Triassic, it seems,
One faces a shockingly sharp, razor brink;
Of rapid events, the Meishan bed screams …
The “Great Dying” flew by in a mere cosmic blink.

_______________________________________________

 Further reading:

An extinction in the blink of an eye, MIT News, 2/10/14

High-precision timeline for Earth’s most severe extinction, PNAS, 2014

Earth’s Greatest Killer Finally Caught, LiveScience, 12/12/13

This is one in a series of poems based on science news, written by Katherine Allen, a researcher in geochemistry and paleoclimate at the Lamont-Doherty Earth Observatory. You can read more on Allen’s website.

Goa and Climate Change - Times of India

Featured News - Thu, 04/10/2014 - 11:00
Cites research by Lamont-Doherty microbiologists Joaquim Goes and Helga do Rosario Gomes.

Wollaston Award Winner Maureen Raymo's Climate Symphony - Yale Forum

Featured News - Tue, 04/08/2014 - 11:00
Lamont climate scientist Maureen Raymo featured in a video interview.

A ’64 Quake Still Reverberates - New York Times

Featured News - Mon, 04/07/2014 - 11:00
“Plate tectonics was originally proposed as a kinematic theory — it was about displacements, movements and velocities,” said Lamont deputy director Arthur Lerner-Lam. “The great accomplishment was to link earthquakes to those movements.”

Droughts to Become More Severe, Frequent Over Nearly a Third of Earth: Study - Weather Channel

Featured News - Mon, 04/07/2014 - 11:00
"For agriculture, the moisture balance in the soil is what really matters," said study co-author Jason Smerdon, a climate scientist with Columbia University's Lamont-Doherty Earth Observatory. "If rain increases slightly but temperatures also increase, drought is a potential consequence," he told The Hindu.

Greenland Ice

Geopoetry - Mon, 04/07/2014 - 10:13
 Christian Morel (Nature)

A Greenland ice core. Photo: Christian Morel (Nature)

If you went to Greenland, almost 80 North,
And drilled your way down … a mile, then more,
You’d find some strange layers, a story’d come forth
A record of ice ages locked in a core.
You’d find glacial ice that is clearer, more soft
Than Eemian ice (long crystals, more rigid)
And clues that the ice height was higher aloft
Than thought for that time (with air temps less frigid).
A puzzle indeed, this view down a hole –
If NEEM endured warmth, whence the sea rise?
Some question the records, some look to South Pole …
In the decades that come, are we in for surprise?

____________________________________________________

Further reading:

Greenland defied ancient warming / But Antarctic glaciers may be more vulnerable than thought, Nature (2013)

NEEM Community Members, Nature (2013)

This is one in a series of poems based on science news, written by Katherine Allen, a researcher in geochemistry and paleoclimate at the Lamont-Doherty Earth Observatory. “Greenland Ice” first appeared on Allen’s website on Jan. 25, 2013.

Never a Dull Moment - The Antarctic Sun

Featured News - Fri, 04/04/2014 - 11:00
"Nowadays, we have to go out of our way to encounter sea ice, but this year was amazing. We ran into ice throughout the study area. It forced us to be creative when we couldn’t go where we wanted to," said Hugh Ducklow External Non-U.S. government site, lead principal investigator (PI) for the Palmer LTER and a professor of Earth and Environmental Sciences at Columbia University’s Lamont-Doherty Earth Observatory External Non-U.S. government site.

El Niño Tests Forecasters - Nature News

Featured News - Thu, 04/03/2014 - 11:00
The model that best predicted earlier El Nino events, developed by scientists at Lamont-Doherty, did not see the destructive 1997-1998 event coming.

Less rainfall not the only risk factor in widespread drought, study shows - CBS News

Featured News - Wed, 04/02/2014 - 11:00
"We know from basic physics that warmer temperatures will help to dry things out," lead author Benjamin Cook said in a statement. "Even if precipitation changes in the future are uncertain, there are good reasons to be concerned about water resources."

Alternate Reality Game Eavesdrops on Climate Changed Future - National Geographic News

Featured News - Mon, 03/31/2014 - 11:00
The year is 20XX: Dallas is covered in 30 inches of snow, San Francisco is experiencing mild tornadoes, and Greenland has become a tropical paradise. At least, this is what inhabitants of possible futures are saying in the new alternate reality game, Future Coast.

Armin Van Buuren, Ancient Wood, and Ghengis Khan: This is not your father’s field research in Mongolia

We never expected this. Enkhbat had us hovering at warp speed along the Millennium Road in the northern shadows of the Khangai Mountains. Armin Van Buuren’s A State of Trance filling our rig. We were starting a new project to study the interaction between climate, fire, and forest history in the land of Chinggis Khaan and a silky voice was lifting us higher, “and if you only knew, just how much the Sun needs you, to help him light the sky, you’d be surprised. Do…do…do.do”. We were exhilarated. The Sun was shining. This was not exactly Chinggis’ steppe. But little did we know, we would eventually be chasing his ghost.

 

Image

Byarbaatar & Amy in front of Khorgo, unknowingly about to meet Chinggis’s ghost. Photo credit: Enkhbat.

After about a day’s travel we started passing the Khorgo lava field. Amy asked, “What’s that?” Neil had forgotten about this landmark despite having walked upon it 10 years prior. It is a ~30 km2 lava field with old trees on it. Gordon Jacoby, Nicole Davi, Baatarbileg Nachin, and others had sampled in the early aughts and put together a ca 700 yr long drought record from Siberian larch. Neil relayed this information to Amy and she said that we should sample on it knowing that a 2,000 yr long record in the American Southwest had been produced on a similar landscape feature. We had a tight schedule, but as we drove out to the western edge of the Khangai’s, sampled sites, witnessed a sheep in the dying throes of a brain worm infection, got snowed on, and then sweated in much warmer temperatures, we decided it was worth the time to see what was out there. Little did we know.

By the time we arrived to start sampling, Neil was getting sick (we learned days later that Neil was coming down with tonsillitis) and we were on fumes from some bone-challenging swings in the weather. Amy pushed on during the first day with Byarbaatar and Balginnyam. The found a pile of dead horse bones and couldn’t get the chainsaw running stopping them from acquiring samples from downed, dead trees. It felt almost hopeless.

We summoned our strength the next day and explored a new section of the lava field. Soon after getting out there we starting seeing Siberian pine, a tree Neil hadn’t seen on his first visit and hadn’t been sampled previously at this site. We decided that after our fire history collection we would sample some pine trees just to see what They might have to say.

 

Image

The Logo Tree: The Siberian pine that clued us into the possibility that there might be something extraordinary on the Khorgo lava field. Photo credit: Amy Hessl

As this collection wasn’t priority, these samples sat until late January of the following year. Here is the first email of the discovery (partially redacted for some sensitive language).

 

The sample “locked in and said the inner ring i measured was 1235…whoa! that was cool b/c i started a good bit from the pith…. i race back to me scope and measuring stage…..make mistakes. going too fast. fix the mistakes…..the PITH is 1142!!!!

 

yes, i can see the yr Chinggis was born. i can see the yr he died. i can see the yrs Mongolia rose to rule Asia!

 

this has been our Holy Chinggis during the entire Mongolian project.

 

this is totally hot censored.

 

neil

 

ps – i guess we are going back to Khorgo, huh?”

 

Image

KLP0010a – the first sample of Siberian pine from the 2010 Khorgo lava collection to break the 1200s. The pith is 1142 CE (Common Era). Photo credit: Neil Pederson

We secured funding and we went back to Khorgo in 2012 with a bigger crew and one goal in mind – collect more wood.

We cannot believe what we have found.

For centuries, common wisdom held that the Mongols were driven to conquest because of harsh conditions – drought. Our new record, dating back with confidence to 900 CE (Common Era), indicates the opposite. After the unification of the Mongols, Chinggis Khan, you know him as Ghengis Khan, led his army from Northern China in 1211 to the Caspian Sea in 1224 CE. Our new record in PNAS indicates that it was consistently wet from 1211-1225, a period we are calling the Mongol Pluvial (look for an open access version of this paper here or contact Amy or me). No years during this period were below the long-term average, which is a singular rare run of moisture conditions in our 1,100 year long record. Independent tree-ring records over extra tropical Asia also indicate that this period was warm.

On the cool semi-arid steppe of Central Asia, water is life and in those days, water was energy. The Mongol diet is heavily based on the meat of grazers. Their mode of transportation was the short, but Pheidippidic horse. So, for food and for travel, grass is life. Grass is energy. An abundance of moisture would seem to provide the horsepower for the rapidly growing Mongol Empire. The Mongol soldier had five steed at their disposal. With a large army, that quickly translates into a huge herd and a huge need for grass.

Our tree-ring record suggests that the grasslands of central Mongolia were likely productive. They strongly agree with satellite estimates of grassland productivity. Going back in time, then, the trees would suggest the Mongol Empire during its rapid expansion was sitting in a sea of grass, a sea of energy, a potential abundance of life.

That is our hypothesis, anyhow, and something we will test in the coming years with historical documents, environmental records from lake sediments, more tree rings, and ecological modeling experiments.

While this record speaks to a rapid transformation of Eurasian culture during the 13th century, it also speaks about an abrupt transformation in Mongol culture today. Towards the end of our tree-ring record we see a prolonged drought from the end of the 20th century into the beginning of the 21st century. This drought followed the wettest century of the last 11 and occurred during the warmest period of the last 1,100 years in Asia. The abrupt transition in the environmental conditions, a transition that saw hundreds of lakes and wetlands disappear from the landscape, occurs during the transition from a more agriculturally-based economy to a more urban-based economy. These severe conditions, in combination with some harsh winters, killed millions of livestock and are thought to be one trigger of a mass migration of Mongols from the countryside into the capital of Ulaanbaatar.

 

Image

Ulaanbaatar in 2006. The homes on the far hills likely reflect climatic and economic refugees moving from the countryside into the city. Photo credit: N. Pederson

Though we cannot connect this heat drought to climate change (though maybe we kind of can), warming temperatures have stacked the deck towards higher evaporative demand, so even if the amount of precipitation remains the same, high temperatures will generate a more intense drought.  That’s what we observed in the early 21st century and based on past moisture variation in Mongolia and future predictions of warming, we would expect to see similar events in the future.

From Armin Van Buuren to Chinggis Khaan to Armin Van Buuren again. We had no clue of how Summer 2010 would light the sky.*

 

_____________

 

* this post was requested by a media outlet so they could have the ‘author’s voice’ on this discovery. That version was ultimately sanitized for your protection. Here it is unadultered.

 

 


Categories: TRL

Keys to Success

Geopoetry - Fri, 03/28/2014 - 08:00

 

Jed Fuhrman, Nature 2013

Image: Jed Fuhrman, Nature 2013

 

Humans hate to catch the flu,

But here’s a fact that’s less well-known:

Bacteria get infections too

As many cultures have now shown.

In the ocean, P. ubique

(growing, growing everywhere)

Is plagued by viruses that seek

To hijack ubique’s gene hardware.

The key to beating strong predation:

Nutrients and conjugation!

__________________________________________________

Further reading:

Abundant SAR11 viruses in the ocean, Zhao et al., Nature (2013)

This is one in a series of poems based on science news, written by Katherine Allen, a researcher in geochemistry and paleoclimate at the Lamont-Doherty Earth Observatory. First posted 2/15/13 on Allen’s website.

Digging Deep for Safer Water - Chemistry World

Featured News - Thu, 03/27/2014 - 11:00
Alexander van Geen, a geochemist at Columbia University in New York, US, has been focusing his efforts on testing wells that are already in use. In 2000, his team measured the levels of arsenic in 5000 wells in Bangladesh and, armed with the GPS location of each well, looked at the spatial variability. 'What was striking is that the distribution was very heterogeneous,' he says. 'We calculated that, over our area, 50% of the people had wells with water that they should not be drinking from. However, 90% of these same households lived within 100m of a safe well.'

Long lines and lots of instruments

Sugar - Tue, 03/25/2014 - 10:38
If you want to image the Earth’s crust and upper mantle with seismic data, you need to record the arrival of seismic waves that have propagated down to, in our case, depths of up to ~30 km.  These deep-diving phases travel quickly through the denser, higher velocity rocks of the lower crust and upper mantle, and they arrive back at the surface ahead of shallower phases at long source-receiver offsets (see video below).  




To record these lower-crustal and upper-mantle phases as “first arrivals”, where they are not obscured by the arrival of energy from shallow paths, we use long lines.  Long lines mean lots of receivers and lots of driving to deploy and recover these instruments.  We could have used lots of sources instead, but the blasts we used to get seismic energy into the lower crust and upper mantle in this experiment take a lot of time and money to setup.  Receivers are much cheaper, so we used a lot of them.  (For similar wide-angle/long-offset work at sea, airgun sources are cheaper than putting seismometers on the seafloor, so we use many shots and a smaller number of receivers out there.)

This time-lapse video shows Team 13 of 14 recovering 89 of the 1200 total short-period seismograph stations from where our line crossed Fort Benning, near the northwestern end of the line.



Nathan Miller, LDEO

Deploy in the rain, recover in the sunshine…

Sugar - Mon, 03/24/2014 - 23:32


Weather map during deployment. When the time came to install our 1200 small seismographs across Georgia at the flagged positions, the rains came….   A lot of rain.  During our first deployment day, we received 1-2 inches of rain, and another wave of rain clouds came through on Day 2 (check out map). Roads that used to be easily passable became mudholes or were flooded with water. All-wheel-drive vehicles and drill rigs alike got stuck, and a few station locations could only be reached on foot. Our hard-working field crew labored in the rain digging holes and deploying seismometers.  Vehicles, equipment and people were covered in the famous Georgia red clay (and other muds and sands of Georgia and northernmost Florida). Adding insult to injury, problems with the programming of some of the instruments meant that we actually had to pick up and redeploy many of them. It was a mudbath.  Nonetheless, our field crew managed to deploy 1200 seismometers across Georgia by Tuesday at sundown. It was an impressive show of endurance, and an inspiring display of positivity given the number of people that were still smiling and upbeat at the end of it all.  A couple of days later, after our seismic shots, it was already time to pick up the instruments, and the weather changed completely.  The sun shined on SW Georgia, and we picked up almost every last seismometer in just one day under blue skies….  Donna Shillington, LDEO

New Zealand Dust May Have Cooled Earth During Ice Age - LiveScience

Featured News - Mon, 03/24/2014 - 11:00
Researchers just returned from a month in backcountry New Zealand trying to determine whether dust from New Zealand may have contributed to the last ice age.

Video of shots L1-05, 06, 07 and 08

Sugar - Sat, 03/22/2014 - 21:52
Shooting a land refraction experiment is more difficult in almost every way than collecting a comparable dataset at sea.  Far more difficult.  But I can't think of anything at sea that compares to the experience of setting off a series of shots at night.  On the first night of shooting, Steve, Nathan, Meghan and I detonated shots L1-05, 06, 07 and 08, while Galen, Donna and Natalie shot 14, 13, 11, and 10, and Tina, Adrian, James and Semir shot L1-04.  I recorded the video clips linked below at our shots (05-08).

To someone who hasn't seen a seismic source shot before, there really isn't a good way to describe what a good shot feels like, except as something you haven't felt before.  We had a number of students watching L1-05 being shot, since this location is quite close to Americus.  The video of L1-05 is completely lacking in drama, which is a good thing; but that shot gave us all a great ride.  The 100 pounders 06 and 07 were also surprisingly good.

We made gathers for most of the shots today. The dataset is fantastic, and 05, 06 and 07 produced super record sections.  L1-08 committed most if its energy to the air, but it shook the ground nicely and I've got a feeling those data are going to be great too.


The video is here:  http://youtu.be/DNINWj2kf1s



Dan

Syndicate content