TRL

Herbie’s Great Adventure: NUM Dendroecological Fieldweek

Kristen de Graauw and Cari Leland

Cari and Kristen here, checking in from Mongolia. This year we were invited to be instructors for the Third National Dendroecological Fieldweek, May 23-29 in Udleg, Mongolia. We arrived to Ulaanbaatar on May 20th so we were fortunate enough to have a few days to recover from some pretty terrible jetlag before beginning the fieldweek marathon. Anyone who has ever attended a fieldweek anywhere in the world knows how challenging (and rewarding!) these events can be. Our first few days of the fieldweek were spent at the NUM (National University of Mongolia) research station near Udleg, a few hours north of UB. We were so happy to see the beautiful countryside for a few days. We got to ride there in this awesome Russian vehicle, which Cari nicknamed Herbie.

 

The roads were rough but Herbie was a trooper and we arrived at the research station safely.

The roads were rough but Herbie was a trooper and we arrived at the research station safely.

We took a break at Teacher’s Pass for a nice panoramic view of the mountains before continuing on to the research station.

We took a break at Teacher’s Pass for a nice panoramic view of the mountains before continuing on to the research station.

The research station was a complex of buildings for housing, a kitchen, and lecture rooms. We shared a cozy room for two and enjoyed beautiful views of the valley and mountains surrounding us.

The NUM Forestry research station

The NUM Forestry research station

Our room from the outside...

Our room from the outside…

..and the inside.

…and the inside (Hi Cari!).

After everyone settled in, we met for the opening ceremony. Baatar gave a nice introduction of the project and the history of the CEME collaboration. There were 8 students in total, and 7 of them were female (girl power!). There was a good mix of participants; from first year undergraduates to PhD students.

Baatar giving the opening ceremony speech.

Baatar giving the opening ceremony speech.

After the opening ceremony we went out to the field. Baatar gave us a guided tour of all the current research projects at the station (there were many!) and the potential sites for the fieldweek. Then we gave a quick lecture on the basics of dendrochronology and headed back towards the research station to discuss potential fieldweek projects.

The flux tower on the research station property. It was pretty impressive.

The flux tower on the research station property. It was pretty impressive.

We noticed Gypsy moth larvae emerging from their cocoons on the ground near the forest.

We noticed Gypsy moth larvae emerging from their cocoons on the ground near the forest.

More gypsy moth larvae after emerging from their cocoons.

More gypsy moth larvae after emerging from their cocoons.

We headed back after a nice hike through the forest.

We headed back after a nice hike through the forest.

Day 2 at the research station was field sampling day. Unfortunately we woke up to a cold and rainy day but that didn’t stop our groups from heading out into the forest. After a long discussion we decided Cari would teach the Climate group and Kristen would teach the Ecology group. Cari’s group headed up the mountain in search of old larch and pine trees to core while Kristen’s group went to a portion of the forest that had been logged. The goal for the climate group was to find moisture-stressed trees and look at the relationship between tree rings and climate. The ecology group’s goal was to determine logging dates and the effects on surviving trees.

Cari’s group preparing to core a large pine near the mountain ridge.

Cari’s group preparing to core a large pine near the mountain ridge.

Kristen’s group coring a living larch near the stump graveyard.

Sundermaa coring a living larch near the stump graveyard for Kristen’s ecology group.

After one of the coldest and rainiest field days we’ve ever experienced we headed back to the field station to thaw and dry ourselves and the cores.

Cari’s group heading back from the ridge.

Cari’s group heading back from the ridge.

While we waited for the cores to dry, the students practiced skeleton plotting.

The students mounting wet cores with tape to help them dry straight.

Margad, Togii, and Badra mounting wet cores with tape to help them dry straight.

Byamba teaching Oyunna a skeleton plotting exercise.

Byambaa teaching Oyunna a skeleton plotting exercise.

The students are working hard on their skeleton plot exercises, while Kristen and Cari check their work.

The students are working hard on their skeleton plot exercises!

Everyone was very anxious to see if their skeleton plots matched!

Everyone was very anxious to see if their skeleton plots matched!

After a rainy day, we were treated with a beautiful sunset.

After a rainy day, we were treated with a beautiful sunset.

The next day we mounted the cores with glue and taught the students how to sand. They quickly learned that a well sanded core took time, patience, and persistence. At the end of the day we headed back to UB to begin laboratory methods.

Sainaa sanding her first core.

Sainaa sanding her first core.

Kristen telling the students they need to sand more! “Sand more!!”

Kristen telling the students they need to sand more…“Sand more!!”

The view from our sanding “room”. Not bad!

The view from our sanding “room”. Not bad!

Back at the university we had to hit the ground running with lab methods. The students skeleton plotted the samples from the research station one day, learned how to do the list method and measure the next day, and finally on the last day they learned how to run COFECHA and read the output files. It was challenging but everyone worked their hardest. The final day was very busy. The students were working on their presentations until the very last minute. The groups did an outstanding job presenting their projects, which made us feel so grateful for being able to teach such a bright and dedicated group of students. During the closing ceremony Baatar gave us both a really nice Mongolian tree and shrub guide book and then presented each student with a certificate of achievement. The students then gave us the most thoughtful gifts of Mongolian art and script.

Oyunna discussing the correlations between climate and pine during the climate group presentation.

Oyunna discussing the correlations between climate and pine tree growth during the climate group presentation.

Baatar presenting Margad with her certificate of achievement.

Baatar presenting Margad with her certificate of achievement.

 Cari, Margad, Togii, Sundermaa, Oyunna, Sainaa, Gerelee, Baatar, Sanaa, Kristen, M?, Byambaa, and Badra.
The whole group after an amazing fieldweek! From the left: Cari Leland*, Margad Ovgonkhuu, Togtokhbayar Erdene-Ochir, Sundermaa Sergelen, Oyunmunkh Byambaa, Sainbayar Gombo, Oyungerel Sereenen, Baatarbileg Nachin*, Oyunsanaa Byambasuren*, Kristen de Graauw*, Myagmarsuren Batdorj, Byambagerel Suran*, and Badar-Uugan Khasbaatar. ( *Instructors)

 

 


Categories: TRL

Armin Van Buuren, Ancient Wood, and Ghengis Khan: This is not your father’s field research in Mongolia

We never expected this. Enkhbat had us hovering at warp speed along the Millennium Road in the northern shadows of the Khangai Mountains. Armin Van Buuren’s A State of Trance filling our rig. We were starting a new project to study the interaction between climate, fire, and forest history in the land of Chinggis Khaan and a silky voice was lifting us higher, “and if you only knew, just how much the Sun needs you, to help him light the sky, you’d be surprised. Do…do…do.do”. We were exhilarated. The Sun was shining. This was not exactly Chinggis’ steppe. But little did we know, we would eventually be chasing his ghost.

 

Image

Byarbaatar & Amy in front of Khorgo, unknowingly about to meet Chinggis’s ghost. Photo credit: Enkhbat.

After about a day’s travel we started passing the Khorgo lava field. Amy asked, “What’s that?” Neil had forgotten about this landmark despite having walked upon it 10 years prior. It is a ~30 km2 lava field with old trees on it. Gordon Jacoby, Nicole Davi, Baatarbileg Nachin, and others had sampled in the early aughts and put together a ca 700 yr long drought record from Siberian larch. Neil relayed this information to Amy and she said that we should sample on it knowing that a 2,000 yr long record in the American Southwest had been produced on a similar landscape feature. We had a tight schedule, but as we drove out to the western edge of the Khangai’s, sampled sites, witnessed a sheep in the dying throes of a brain worm infection, got snowed on, and then sweated in much warmer temperatures, we decided it was worth the time to see what was out there. Little did we know.

By the time we arrived to start sampling, Neil was getting sick (we learned days later that Neil was coming down with tonsillitis) and we were on fumes from some bone-challenging swings in the weather. Amy pushed on during the first day with Byarbaatar and Balginnyam. The found a pile of dead horse bones and couldn’t get the chainsaw running stopping them from acquiring samples from downed, dead trees. It felt almost hopeless.

We summoned our strength the next day and explored a new section of the lava field. Soon after getting out there we starting seeing Siberian pine, a tree Neil hadn’t seen on his first visit and hadn’t been sampled previously at this site. We decided that after our fire history collection we would sample some pine trees just to see what They might have to say.

 

Image

The Logo Tree: The Siberian pine that clued us into the possibility that there might be something extraordinary on the Khorgo lava field. Photo credit: Amy Hessl

As this collection wasn’t priority, these samples sat until late January of the following year. Here is the first email of the discovery (partially redacted for some sensitive language).

 

The sample “locked in and said the inner ring i measured was 1235…whoa! that was cool b/c i started a good bit from the pith…. i race back to me scope and measuring stage…..make mistakes. going too fast. fix the mistakes…..the PITH is 1142!!!!

 

yes, i can see the yr Chinggis was born. i can see the yr he died. i can see the yrs Mongolia rose to rule Asia!

 

this has been our Holy Chinggis during the entire Mongolian project.

 

this is totally hot censored.

 

neil

 

ps – i guess we are going back to Khorgo, huh?”

 

Image

KLP0010a – the first sample of Siberian pine from the 2010 Khorgo lava collection to break the 1200s. The pith is 1142 CE (Common Era). Photo credit: Neil Pederson

We secured funding and we went back to Khorgo in 2012 with a bigger crew and one goal in mind – collect more wood.

We cannot believe what we have found.

For centuries, common wisdom held that the Mongols were driven to conquest because of harsh conditions – drought. Our new record, dating back with confidence to 900 CE (Common Era), indicates the opposite. After the unification of the Mongols, Chinggis Khan, you know him as Ghengis Khan, led his army from Northern China in 1211 to the Caspian Sea in 1224 CE. Our new record in PNAS indicates that it was consistently wet from 1211-1225, a period we are calling the Mongol Pluvial (look for an open access version of this paper here or contact Amy or me). No years during this period were below the long-term average, which is a singular rare run of moisture conditions in our 1,100 year long record. Independent tree-ring records over extra tropical Asia also indicate that this period was warm.

On the cool semi-arid steppe of Central Asia, water is life and in those days, water was energy. The Mongol diet is heavily based on the meat of grazers. Their mode of transportation was the short, but Pheidippidic horse. So, for food and for travel, grass is life. Grass is energy. An abundance of moisture would seem to provide the horsepower for the rapidly growing Mongol Empire. The Mongol soldier had five steed at their disposal. With a large army, that quickly translates into a huge herd and a huge need for grass.

Our tree-ring record suggests that the grasslands of central Mongolia were likely productive. They strongly agree with satellite estimates of grassland productivity. Going back in time, then, the trees would suggest the Mongol Empire during its rapid expansion was sitting in a sea of grass, a sea of energy, a potential abundance of life.

That is our hypothesis, anyhow, and something we will test in the coming years with historical documents, environmental records from lake sediments, more tree rings, and ecological modeling experiments.

While this record speaks to a rapid transformation of Eurasian culture during the 13th century, it also speaks about an abrupt transformation in Mongol culture today. Towards the end of our tree-ring record we see a prolonged drought from the end of the 20th century into the beginning of the 21st century. This drought followed the wettest century of the last 11 and occurred during the warmest period of the last 1,100 years in Asia. The abrupt transition in the environmental conditions, a transition that saw hundreds of lakes and wetlands disappear from the landscape, occurs during the transition from a more agriculturally-based economy to a more urban-based economy. These severe conditions, in combination with some harsh winters, killed millions of livestock and are thought to be one trigger of a mass migration of Mongols from the countryside into the capital of Ulaanbaatar.

 

Image

Ulaanbaatar in 2006. The homes on the far hills likely reflect climatic and economic refugees moving from the countryside into the city. Photo credit: N. Pederson

Though we cannot connect this heat drought to climate change (though maybe we kind of can), warming temperatures have stacked the deck towards higher evaporative demand, so even if the amount of precipitation remains the same, high temperatures will generate a more intense drought.  That’s what we observed in the early 21st century and based on past moisture variation in Mongolia and future predictions of warming, we would expect to see similar events in the future.

From Armin Van Buuren to Chinggis Khaan to Armin Van Buuren again. We had no clue of how Summer 2010 would light the sky.*

 

_____________

 

* this post was requested by a media outlet so they could have the ‘author’s voice’ on this discovery. That version was ultimately sanitized for your protection. Here it is unadultered.

 

 


Categories: TRL

A Dream Becomes Reality

It has been a while since we last updated this blog. The reasons are many. The primary reason for the delay is that we have had singular focus in launching our next project, a project that for many is a dream come true.

Before we launch into that and officially start the 2013 field season, let’s do a quick recap of our team’s efforts since last August.

Our academic year started with a bang: our new research project, which was an unexpected off shoot of our efforts to study climate, fire, and forest ecology, was funded by the National Science Foundation in September 2012.

Since then, our team has spent much time presenting prior results, new preliminary results and processing samples. Many, many samples.

 N. Pederson

Acres and acres of treats: xylemite that might as well be gold. Photo: N. Pederson

First, kudos to Nicole Davi work improving a tree-ring based reconstruction of the Kherlen Gol in Mongolia (gol = river). Many of the chronologies used were collected between 2009 & 2011 as a part of the Climate, Fire, and Forest Ecology project. The new work, “Is eastern Mongolia drying? A long-term perspective of a multi-decadal trend” can be found here.

Reconstruction of the Kherlen Gol. Figure by N. Davi

Reconstruction of the Kherlen Gol. Figure by N. Davi

Second, we need to congratulate Cari Leland on persisting and publishing the first paper from her thesis: “A hydroclimatic regionalization of central Mongolia as inferred from tree rings “ – link

Hydroclimatic regionalization of central Mongolia. Map work by C. Leland

Hydroclimatic regionalization of central Mongolia. Map work by C. Leland

Cari’s effort set the stage for our second paper on the climate history of the Mongol Breadbasket: “Three centuries of shifting hydroclimatic regimes across the Mongolian Breadbasket“ – link

The swinging of drought through time and space across the Mongolian Breadbasket. Image by N. Pederson

The swinging of drought through time and space across the Mongolian Breadbasket. Image by N. Pederson

Finally, Tom Saladyga got a nice piece of his dissertation published with the article, “Privatization, Drought, and Fire Exclusion in the Tuul River Watershed, Mongolia“ – link

The spatial and temporal fluctuation of fire in the Tuul watershed. Map work by T. Saladyga

The spatial and temporal fluctuation of fire in the Tuul watershed. Map work by T. Saladyga

We have a few manuscripts in development from our Climate, Fire, and Forest history project, which ends in 2013. And, we are very happy that Byambaa is on the doorstep of completing her dissertation. This project is coming to a very nice completion and we are thrilled.

We are equally thrilled with the start of our new project, “Pluvials, Droughts, Energetics, and the Mongol Empire”. We’ve gotten a silly amount of press here, here, here, here, and here – it has been great. Both institutions have made nice videos and overviews of the project: here is an example of WVU‘s and here is LDEO‘s. Awareness of this project has been widespread. We meet new scholars from various parts of the world and it seems they are already familiar with the new study. Neil presented preliminary results at the PAGES meeting in Goa, India – that was hard work

Amy Hessl garnered two invites based upon our work. The first was a workshop primarily populated with historians on migration and empires across Eurasia. The setting and out-discipline experience was fantastic. The second was an archeology-based workshop on Chinggis Khaan in Jerusalem – sounds like that was equally hard work!

We are now gathering in Ulaanbaatar to launch the first season of ‘complete’ field work. By complete fieldwork, I mean that we will not only be collecting tree cores and cross-sections from dead trees, but Avery Shinneman Cook will be leading the effort in collecting lake sediments in central Mongolia to better understand long-term environmental history and the impact of the Mongol Empire on the landscape in and around the ancient capitol, Karakorum.

Prior to that, we will hold a 4-day workshop introducing ourselves to our wonderful and diverse team (a dream team? Besides Amy Hessl and Neil Pederson, team members include: Baatarbileg Nachin, Hanchin Tian, Nicola Di Cosmo, Avery Shinneman Cook, Kevin Anchukaitis, Oyunsanaa Byambasuren, and PhD students, Caroline Leland and John Quinn Burkhart) and their specific research. We will visit historical sites and lakes to begin the discussion on how to address some questions originally posed in our grant: did the rise of the Mongol Empire, driven literally by horsepower, benefit from an abundant climate and a surplus of ecosystem energy? Did the construction of the Mongol population, army, and herds of grazers significantly impact the landscape? Answers to the ful climatic context of the Mongol Empire has been a primary goal of the Mongolian-American Tree-RIng Project, (MATRIP) since the mid-1990s. We finally have the chance to address these questions. We do not know the answers yet, but stay tuned.

 N. Pederson

Essense. Photo: N. Pederson

_________________

Brief Observations on an alternative approach to Mongolia:

This is my 9th trip to Mongolia. It is hard to believe that I have visited this far-away land so many times. But, when I smell the steppe as we enter the airport, I relax and hit a new mode that is akin to putting on old slippers. I go through customs with nary a concern knowing that Baatar will be waiting for me with a warm greeting and hug. The drive to UB is filled with the same conversation – “How are you? How is Mongolia? How are things going? How is your family? How are your students? My, Mongolia has changed“. It is wonderful.

What changed for me this year was how I got to Mongolia. I typically venture west and enter through eastern Asia. This time, I traveled east, stopping in Turkey, re-fueling in Bishkek, and then flying over western China and western Mongolia.

The sky was clear upon entering western China and the scenery was stunning. Really. I stopped my movie and just drooled out the window [akin to a dog?]. It adds a few hours of travel time at most, but I’d do it again.

Scenes of Going East to go East

Sun Rising over western Asia

Sun Rising over western Asia. Photo: N. Pederson

 N. Pederson

Mountains west of Urumqi, China. Photo: N. Pederson

 N. Pederson

Mountains eastern of Urumqi, China. Photo: N. Pederson

 N. Pederson

Western Gobi Desert, Mongolia. Photo: N. Pederson

 N. Pederson

Western Gobi Desert, Mongolia. Photo: N. Pederson

Will 2013 provide another gem-quality set of data?

Will 2013 provide another gem-quality set of data?


Categories: TRL

The Meaning of Water

In Mongolia, water is energy. Photo: A. Hessl

What is the meaning of water? In my everyday life, water is a given.  Even this year, when at least one quarter of the US has been stricken by drought, water continues to flow from the tap and my family is unaffected by its scarcity.  I remember the California droughts of the 1970s, when my brother and I shared bathwater, I learned not to flush so much, and water was rationed.  Even still, our very sustenance, our wealth was not threatened by the lack of water.  In Mongolia, as in many other developing countries, people depend on water not just to slake their thirst but to sustain their livelihoods.  Mongolian herders must bring their animals to a water body daily.  In times of drought, most lakes dry up, leaving only a few “permanent” lakes available to dozens of herders and thousands (hundreds of thousands?) of animals.  Steppe lakes also serve as virtual “gas stations” for migratory birds and waterfowl – they are hotspots of diversity. Without water, animals perish, food disappears, and people and ecosystems suffer.  In a semi-arid region like the steppe, water allows people and ecosystems to transform solar energy into a mobile and flexible product via photosynthesis and primary consumption by livestock. In Mongolia, water is energy.

John sampling a large lake in Mongolia. Photo: A. Hessl

As part of our new project, we will be collaborating with Avery Cook-Shinneman (University of Washington) to use lake sediments to reconstruct the ecology of lakes and livestock during the Mongol Empire.  Lake sediments can provide a broad array of proxies for past ecosystems.  We plan to use some of these proxies to estimate past water quality and a relatively new proxy, Sporormiella, to assess the numbers of livestock present during the Mongol Empire.  This summer, my student John Burkhart and I visited a number of lakes near the Orkhon Valley, seat of the Mongol Empire, to recon possible sample sites.  In the process, we learned to appreciate the role of permanent lakes in Mongol herders’ livelihoods.

Before leaving for Mongolia, we had worked with Avery to identify more than a dozen lakes to recon.  We were going to collect water and surface sediment samples from each lake to assess their potential.  But upon our arrival in the Orkhon region, we quickly learned that those lakes no longer existed.  The decade-long drought that might be only ending in 2012 had left only a few permanent lakes; we noticed much standing water along the highway compared to 2010.  Though the large lakes we identified on Google Earth were starting to fill up again, the fact that they had dried up during a recent drought suggested they had dried up in the past, leaving only an intermittent record of past ecology.  We began visiting local herders homes (“gers”) to inquire about permanent lakes.

A Mongolian ger (the so-called yurt). PHoto: A. Hessl

We had used this approach before to look for old trees but Mongolians are no better than Americans at identifying old trees.  They always point you to the biggest, most beautiful tree and claim it’s the oldest – when in fact the scraggliest, ugliest tree is usually much older (Editor’s note: Beauty is in the eye of the beholder).  But in the case of lakes, these Mongolian herders were true scholars.  Ask any old herder about where to find permanent lakes, and they will tell you in detail the characteristics of all lakes in their region – when they thaw, when they freeze, what kind of plants grow around it and in it, and how likely it is to dry up.  I should not have been surprised – their life and livelihood depends on their knowledge and careful management of these lakes.

A moist landscape of life in Mongolia. Photo: A. Hessl

This kind of ecological knowledge is not new.  Mongolians have cultivated knowledge of lakes for millennia.  The first permanent lake we visited was less than 5km away from an Uyghur fortress dating to the 8th century.

Ruins of an 8th century Uyghur Empire fortress. Photo: A. Hessl


Categories: TRL

Oceans of Ancient Wood and Coming Full Circle

We have just made it back to Ulaanbaatar after 11 days of in-country travel and field work. While being a bit field worn from working on a lava field for 6 days, we are simultaneously thrilled and in good spirits. It is a bit too early to say, but it seems that Summer 2012 in Mongolia was a success*. It certainly felt like a success to me on the day we came full circle from 2010.

Amy, John, and Sanaa were a day ahead of us and, with John being down with a case of Chinggis’ revenge, Amy and Sanaa spent a full day on the lava field revisiting and re-visioning how we would sample over the following week. The hopeful goal was to collect enough wood to push the chronology near 2000 years in length while having enough samples over the last 1000 years to be able to say something with statistical significance. Sanaa and Amy intensely studied where to find wood and what pieces might be from an earlier era. They accomplished this while collecting 24 cross-sections of deadwood. It was an impressive and hugely helpful first day.

It was necessary to study the characteristics of the deadwood and its geographic distribution across the lava field because, honestly, our first discovery is pretty much the definition of, “a blind hog will find an acorn every once in a while“. During Amy’s and Sanaa’s first day of discovery in 2012, Sanaa came up with the term ‘ocean’ for the large, open areas of lava that are virtually devoid of trees. Because the ocean as a whole can be considered a kind of desert, we found that term ‘ocean’ was correct: this part of the lava field truly resembled a desert. Thus, over the course of our fieldwork, the first verse and drifting characteristics of A Horse with No Name came to mind. The heat was hot. There were plants and birds and rocks and things. Oh yeah, there were a few rocks.

A 360 pan of a large ‘ocean’ of lava. Can you spot Amy and Kevin? Photo: N. Pederson

Together we learned that it was on the margins of these oceans that we could find what appeared to be ancient wood. It wasn’t until the penultimate day, however, that we had any sense of what we had accomplished.

Being 5 days in and having collected ~150 pieces of deadwood, we were all a bit burnt, literally and figuratively. Though we had sunscreen and hats, it wasn’t quite enough. We all looked a bit beety. We were also running on fumes. Constantly hiking on jumbled and sharp pieces of lava jars the body and mind. So, on Day 5 we set out for a low-pressure ‘cleanup’ of the lava field. Almost anything we collected that day would be bonus material.

We decided to head towards some of the sample locations from 2010 to see if we could find some of the oldest pieces. Many of the oldest pine cross-sections from 2010 were not GPS’ed due to time, energy, and the afterthought nature of that collection. So, on Day 5 in 2012 we wandering an area we mostly missed in 2012 while at the same time trying to recollect the hazy afternoon in 2010.

About 45 minutes to an hour in, we had our first success. We re-discovered ‘The Logo Tree’. While the day on the lava field in 2010 is still very hazy in my mind (due to my state of being in day 3 of undiagnosed and untreated tonsillitis), the sharpest memory of that day is The Logo Tree.

The Logo Tree, a dead and likely ancient Siberian pine. Photo: N. Pederson

In 2010 The Logo Tree symbolized the potential for this site. We had spotted some Siberian pine trees, a species I did not see during my first brief visit to this site in 1999 with Gordon Jacoby, Baatarbileg Nachin, and Oyunsanaa (Sanaa) Byambasuren. This tree, though dead, captures many of the characteristics of old trees (charismatic megaflora) while also having the weathered, ‘stressed’ form of trees living on the edge of survival. These trees are often the ones tree-ring scientists use to reconstruct past climate. The Logo Tree screamed, “I, and many other pines like me, are ancient. You might better pay attention. This area could be filled with xylemite.”

So, it was with great joy that on Day 5 of 2012 The Logo Tree was re-discovered. Many picture were taken. Champagne corks were unleashed (in the form of taking the top off our water bottles and taking a swig of water). It certainly lifted me to a higher energy state.

We then spent much of the next few hours scouting for more samples from 2010 and passing through what can be considered a pine graveyard, an area filled with much deadwood and ancient, stunted pine trees.

Three generations of trees in the ‘pine graveyard’: deadwood, ancient, but stunted living trees, and tall, spritely young trees. Photo: N. Pederson

A specific goal on Day 5 was to locate the oldest piece from 2010, a sample dating to the middle portion of the first millennium of the Common Era. Having not yet found it as the day was drawing to a close, we decided to narrowly focus on finding that piece. We wandered. We scratched our heads. We saw a horse with no name. And then…and then, we hit an area with signs of our past chainsaw work.

Could it be? Might that be The One?

Yes, it had to be. See, that sample, The Eldest of 2010, sits near my desk. It is within arm’s reach in case of impromptu lab tours. I know that sample. The Elder is a bit oval with a characteristic hole that makes it easier to carry or hold up with two fingers. This seemed to be it.

The joy and shock of this confirmation, of coming full circle, was that this log didn’t look as old or as weathered as many of the pieces we had collected over the prior 4.75 days. It didn’t look exceptional. It nearby cousin, cut 2/3rds of the up a dead stem, was equally unimpressive. Yet, The Elder’s cousin dates to the late-1200s.

Sanaa, Amy, and Neil with The Elder, Day 5, 2012. Photo: B. Nachin

This particular re-discovery floated us for the remainder of the day and trip back to Ulaanbaatar. We cannot yet say with any certainty, but it seems we really hit our research goal. In fact, we are now concerned that we might have some pieces so old that they will not date – they might actually predate any long chronology we might build from this site. But, if this is a problem, we wish this kind of problem to all of our colleagues.

Now, to some scenes from the field:

Hi ho, hi ho, it’s off to work we go. Photo: N. Pederson

Neil and Amy, ocean walking. Photo: K. Anchukaitis

Amy sawing a piece of dead wood on the edge of a sea of lava. Photo: N. Pederson

Sample KHO415. Photo: K. Anchukaitis

John taking a plunge cut from a snag. In addition to taking samples from logs, we took some samples from standing dead trees. Photo: N. Pederson

Some snags took on a colorful beauty. Photo: N. Pederson

Some of the ancient-looking pines were quite short compared to their compatriots. For example, Amy is ~1.6 m tall. The 400? 500+? yr old pine to the left of Amy might be a little over twice her height. Photo: N. Pederson

Despite being low in productivity, the lava field holds much life. Can you spot the wolf scat? Photo: N. Pederson

Kevin says, “You’re still here? It’s over. Go home. Go.”** Photo: N. Pederson

*No living trees were harmed in the creation of this post

** respect


Categories: TRL

What Would Chinggis Do?

Saturday dawned a beautiful morning the air was crisp and cool, all of Mongolia had just gotten up at 4 in the morning to watch the opening ceremonies of the London Olympics, and traffic was light.  It seemed an auspicious beginning for our 2012 field work.  The opening ceremonies for our fieldwork had never run so smoothly: Baatar had arranged for our favorite driver, Chukha, to meet us at our hotel at 9am to get an early start.  It would be a solid 6-8 hour drive to the first lake we wished to sample Oygi Nuur, 9am did not seem too early. Drs. Baatar and Sanaa plus an undergraduate student, Balja, packed Chukha’s Russian military van at an astounding 7am (does Chukha really get up that early?) allowing us to leave Ulaanbaatar less than 36 hours after we arrived.  It was truly unprecedented.

Chinggis seated at the front of the Mongolian Parliament. Photo: N. Pederson

We made several stops on our way out of town, additional groceries, toothpaste, fuel, bar oil for chainsaws and a fruitless search for distilled water (why would we think we could get that here?) but we were still headed out of the smog bubble that is UB before noon.  It was a bit later than I had hoped, but still remarkable given our previous trips when it had taken several days to resist the gravitational force of the city.  As we left UB and the smog behind, we began to see small signs of the countryside: a few gers (circular felt tents), small herds of sheep for sale, and a couple of trucks loaded with wool.  John, my new PhD student, even saw his first Mongolian horses.  We could literally taste the Mongolian countryside.

Tsagaan takhi in northern Mongolia. Photo: N. Pederson

But as we drove up the last rise out of the Tuul River valley, the van sputtered, then stalled.  Things seemed routine Chukha was under the van in no time complaining of a loose battery connection.  In 15 minutes we were back on the road. At the next rise, the van stalled again, and this time Chukha looked truly distraught.  The rest of us piled out of the van, had a picnic lunch, and watched Mongolia clouds.  Chukha emerged from under the van looking like his best dog had just died.  He couldn’t eat, didn’t want to talk.  His van had literally blown a gasket.

On our way back to UB, after a beer and a couple shots with Chukha, we did our best to keep our chins up.  After all, what would Chinggis do?  We would try again tomorrow.  Until then, here’s looking forward to dinner.


Categories: TRL

Chasing Ghengis Khan

People have been looking for 800 years. Looking for Chinggis Khaan, né Ghengis Khan. From the people searching for his birthplace to the people searching for his last resting place. After more than 800 years since his rise from the mountains of Mongolia, Chinggis lives on as a charismatic and almost mythical person. He seemingly rose from obscurity, quelled feuds between tribes, and created the largest land empire in world history. If you read beyond what you likely learned in high school or college, you will see his leadership skills were progressive and exceptional. You will learn that Chinggis has an influence on our world nearly 800 years after his death. From paper money to the pony express, from war strategy to the structure of the human genome, his life has touched generations of humans over the centuries.

The new Chinggis Khaan statue, Photo: U. Aria

When you begin working in Mongolia it is absolutely essential that you learn the importance of the man. Soviet communism attempted to quell his spirit and his importance in Mongolian culture. Mongolians were not allowed last names so everyone could be equal, so no one could trace their family history to the royal family. This, of course, did not work. In a culture that has songs and stories dating back centuries, if you, a native Mongolian, meet a stranger in the woods on the other side of the country and drink tea, break bread, and just lounge, you will soon break into a song that you and the stranger know from the depth of your soul. You will sing, smile, and enjoy a wonderful afternoon with this once distant, now close cousin. That kind of cultural bind does not break under any kind of political pressure. Perhaps it only made it stronger? See, in the late-1990s, soon after the fall of communism, Chinggis essentially rose from the ashes. He was everywhere in Mongolia – TV commercials for cell phones or a brand of vodka. And once you, as an outsider, spend considerable time in Mongolia, especially during Naadam and especially in the open Gobi steppe with people who still live as their ancestors did centuries ago, you understand the importance of the man and you will also begin to chase Chinggis. And, it is with this new project that our group of geographers, paleoclimatologists, ecologists, historians, and ecosystem modelers begin our pursuit of Chinggis Khaan.

Unlike other chasers who came before us, our search for Chinggis is not directly a pursuit of him as an individual. We understand he was an incredible leader who was the life force for the great Mongol Empire. Our pursuit is more contextual. We seek to understand the environmental conditions before, during, and after the rise of the Mongol Empire. In many ways, the success of the Mongol Empire is a historical enigma.  At its peak during the 13th century, the empire controlled areas from the Hungarian grasslands to southern Asia and Persia. Powered by domesticated livestock, the Mongol Empire grew at the expense of farmers in Eastern Europe, Persia, and China.  Two commonly asked questions of this empire are “What environmental factors contributed to the rise of the Mongols?, and “What factors influenced the disintegration of the empire by 1300 CE?  . For a long time (centuries?),  it was thought that drought partly drove the Mongols on their conquest in Eurasia. Luckily enough for us, a serendipitous collection of a few pieces of deadwood and old Siberian pine trees suggests essentially the opposite. Our collection of an annual record of drought, currently dating to the mid-600s CE, suggests that the early-1200s were unusually wet. Of course, these findings are very, very, very preliminary – we only have two trees through this time period.

Old trees and older lava. Photo: N. Pederson

So, with funding from the Lamont Climate Center, National Geographic Society, West Virginia University, and the Dynamics of Coupled Natural and Human Systems program of the National Science Foundation, we are headed back to Mongolia for a fourth straight year to scour the study site that yielded a 1,300 year record for more old, dead wood. With a combined crew from the National University of Mongolia, West Virginia University, and the Tree Ring Laboratory of Lamont-Doherty Observatory, Columbia University and the Earth Institute, we will spend 10 days in the field seeking, documenting, and collecting wooden gold, xylemite if you will.

Terkhiin Tsagaan Nuur, the Great White Lake of Mongolia. Photo: N. Pederson

Part of our crew will also spend about three days at upper tree line on a mountain in the western Khangai Uul (uul is Mongolian for mountain) updating and expanding the collection that suggested that it was warmer during the rise of the Mongol Empire. We are so excited. We have a great crew, will be spending our time mostly in one place, and will have some of the finest scenery in Mongolia in our eyes everyday.

Solongotyin Davaa, Mongolia. Photo: N. Pederson

Frankly, we are also excited about our larger project. We honestly do not know what the end results will be. The idea that wet conditions aided the expansion of the Mongol Empire is simply a hypothesis built upon ecosystem ecology, human ecology, and our preliminary results. See, energy is critical for human and natural systems to function, yet few studies have examined the role of energy in the success and failure of past societies. Increased rainfall on the Great Gobi Steppe should allow the grassland to capture more solar energy. Greater grass production logically would have allowed the Mongol Empire to capture, transform, and allocate this energy through their sheep, horses, yak, etc. In turn, this should have allowed greater energy from which Chinggis could develop a larger and more complex social, economic, and political system.

A lone takhi in the northwestern edge of the Gobi, Uuvs Aimag, Mongolia. Photo: N. Pederson

Feeding tree ring based climate history into an ecological model, we plan to investigate how past climate influenced grassland productivity, herbivores, and, thus, energy flow through the Mongol ecosystem. These data will be compared to historical records on the empire and sediment records from lakes that can estimate herbivore density.

Much has been made about the demise of cultures as a result of a downturn in climate or degradation of their environment. Our estimates of energy availability and environmental quality allows us to investigate whether the contraction of the empire was related to drought, cold, declining grassland productivity, or poor water quality associated with rapid urbanization and climate change.Thus, as part of our larger project, we will test the hypothesis that the arc of the Mongol Empire was influenced by the energy available to nomadic pastoralists for building a mobile military and governmental force sufficient to conquer and govern a significant portion of Asia and Eastern Europe.

The diverse Mongolian landscape. Photo: N. Pederson

We leave in less than two weeks.  As happens each year around this time, memories of past trips are revived and we begin seeping back into the Monglish culture that develop on these trips. We look forward to re-uniting with colleagues like Baatarbileg Nachin and his students like Bayaraa. A highlight this year will be working alongside a Mongolian postdoc, Sanaa, who Neil met as an undergrad in 1998. It will be an honor and pleasure to work with Sanaa again. Mongol phrases and words are bubbling up from the depths of our grey matter. Mongolian music is spinning nearly full-time in one household; a soundtrack for this year’s fieldwork is coming into shape.

We hope to catch a set of Altan Urag, a rising rock band in Mongolia. To us, they represent some of the cultural struggle in Mongolia today: “How to we maintain the qualities we are so proud of during the height of our empire, as new or external culture moves into our land?” and “As commercialization in the post-communism era (including a ‘gold-rush’ in the mining industry that created one of the fastest growing economies in the world) pushes and pulls us, how do we maintain who we are?” Altan Urag and young Mongolian artists are reaching back in their history for symbols and sounds that make them distinctly Mongolian. At the same time, these artists keep their eyes and ears open to the new possibilities of their larger world. Similar to how Chinggis melded European and Chinese technology to forge his great empire, many of today’s young Mongolians blend their history with external elements to create a new Mongolia. We cheer these efforts on. We are big fans.


Categories: TRL

How Volcanoes Can Change the World - CNN

TRL Featured News - Fri, 04/16/2010 - 09:24
Lamont scientist Rosanne D'Arrigo discusses the global impact on climate from Iceland's Laki volcano eruption in 1783-84.
Categories: TRL

What happened at Angkor Wat? - The Washington Post

TRL Featured News - Sat, 04/03/2010 - 11:00
Discusses study led by Lamont scientist Brendan Buckley.
Categories: TRL

Drought and flooding led to collapse of Angkor - Los Angeles Times

TRL Featured News - Wed, 03/31/2010 - 11:00
Discusses new study led by LDEO scientist Brendan Buckley.
Categories: TRL

Hydrothermal Vents Sometimes Colonized From Afar - Science News

TRL Featured News - Fri, 02/26/2010 - 16:46
At that rate, a larva could be wafted about 300 kilometers in a month, said Andreas Thurnherr, a physical oceanographer at the Lamont-Doherty Earth Observatory in Palisades, N.Y. He and a colleague reported analyses of currents along the East Pacific Rise at the meeting on the same day as Mullineaux’s presentation.
Categories: TRL
Syndicate content