News aggregator

Poseidon Visits (and Seismic Oceanography)

Mapping the Galicia Rift off Spain - Mon, 06/10/2013 - 12:41
One of the secondary activities on the cruise has been the deployment of XBTs off the stern. XBTs are a standard oceanographic tool designed to measure the variation of water temperature with depth, providing information on mixing processes within the water column. As temperature is one of two primary controls on velocity of sound in water (the other being salinity), it is also of interest in the processing of our bathymetric data.

Poseidon's Zodiak on the way over to exchange supplies.
A few years ago, it was realised that seismic provides a method of directly observing the mixing processes, as the different water layers have sufficiently different seismic velocity and salinity for reflections to be generated at their boundaries: we have already seen reflections in the water column of our data, probably from boundaries between North Atlantic water and warmer, more saline Mediterranean water. However there have been relatively few studies of these processes using traditional oceanographic and seismic techniques, a deficiency being rectified by the deployment of XBTs at regular intervals during our cruise.

A successful exchange on medium-high seas!!
In addition to deploying ocean bottom seismometers to record our seismic shots, the German research vessel F.S. Poseidon has been carrying out oceanographic measurements, mainly using CTD casts (conductivity-temperature-depth), which provide more information than XBTs. As a result they had several XBTs left over. These they transferred to us this morning: Poseidon came within about 1 km of the Langseth and sent the XBTs over in a small boat. A real bumpy ride!

Goodbye, until we meet in Vigo!Tim Reston
University of Birmingham

Miracle workers of the Langseth overcome the curse of the Costa da Morte

Mapping the Galicia Rift off Spain - Mon, 06/10/2013 - 00:32

After days of uneventful and productive data acquisition, a pale fell over the R/V Langseth. Early Sunday morning, one of the streamers began to report communication errors and soon failed to communicate at all.  A series of tests over the ensuing hours revealed that the problem was not on the ship but in the equipment out in the water.  Recovering and repairing seismic gear is not a quick task. To access this streamer, we had to undo many of the steps required to put it out to begin with: recover the port paravane, shift Streamer 3 starboard and out of the way, and then reel in part of Streamer 4. After hours of troubleshooting, the technical staff of the Langseth brought Streamer 4 back to life.  All of the equipment on the Langseth is… not new, and this certainly applies to the seismic streamers. The technical staff on the ship are pros at keeping this equipment alive (and many cases bringing it back from the dead). Twelve hours after the problems with Streamer 4 began, it was back in the water, and we were ready to start collecting data again. But no sooner had one problem been solved, another appeared. This time the trouble arose from the failure of a piece of equipment on the ship that is at the heart of our acquisition system – the real time navigation unit (or RTNU, for those in the know). This component gathers satellite and other navigational information from the seismic equipment and delivers it to the navigation software on the ship so that we can determine the positions of all of our equipment in the water, and where and when we need to be shooting.  Once again, the dedicated technical staff of the Langsethcame to the rescue.  Painstaking checking and double-checking of each component in the RTNU began last night and continued into the early hours of the morning. In the wee hours, it’s easy to get a little superstitious.  Did all these problems arise because Tim Reston and I each accidentally drew in lines on our chart indicating that we’d completed lines in our 3D box before we actually had? Or was it the curse of Costa de Morte (Coast of Death)? This part of the Galician coast is known for its shipwrecks and nicknamed accordingly. Of course, the real culprit was the non-newness of the gear in question. Once again, the Langseth’s miracle workers saved the day by assembling the working parts of various old RTNU’s into one working unit.  Thanks to their efforts, we are up and running again….
RTNU carnage on a table in the main labDonna Shillington10th June

Poseidon: OBS deployment update

Mapping the Galicia Rift off Spain - Sat, 06/08/2013 - 07:13
On 5th of June, Poseidon deployed her last three OBH instruments. The crew then spent the next two days doing CTD ("conductivity, temperature, depth") measurements of the water column. They typically recovered good measurements of conductivity and temperature for depths down to 1000 m. These measurements can be used to monitor mixing of different water bodies (such as warmer Mediterranean waters with the cold Atlantic) and to calculate variations in velocity within the water column to compare with seismic reflections we observe within the water column. Rough seas for the last 1.5 days have made the CTD measurements challenging.

Today the Poseidon is recovering eight OBH to download the data they recorded and redeploy them elsewhere within the 3-D box. It will be exciting to see the first OBH data! We won't see the rest of the data until the remaining OBS and OBH are recovered in August and September.

Despite being in the same area, here on the Langseth the science party hasn't seen the Poseidon since our first day passing them on the way out to sea from Vigo. However, this may be because we are all busy below deck in the main lab (with no windows) processing data!

Marianne Karplus
8th June


Underway and beginning to collect data

Mapping the Galicia Rift off Spain - Fri, 06/07/2013 - 23:43
For the last couple of days, we have been slowly (very slowly) steaming along at 4 knots (~4.6 miles an hour) towing all of the gear behind the ship and collecting seismic data. A lot of data! Each of the four seismic streamers behind the ship records returning sounds waves on 468 channels. Every time one of our air gun arrays fires, we collect 60 Mb of data.  Repeat that every 16 seconds for a few days, and it adds up.  Even though we have only been at it for a few days, we have already generated 405 Gb of raw seismic data, and that does not include all of the other types of marine geophysical data that we collect (bathymetry, magnetics, etc). Nonetheless, there are many reminders that we still have a long ways to go.  For example, a large map on a table in the main lab shows all 56 profiles that we plan to acquire during this cruise in our target area for 3D imaging (black horizontal lines in the image below). As we complete them, we draw a green line along the profile on the map. Four down, fifty-two to go! 

Donna Shillington8th June
Map in the main lab showing planned profiles. The ones we've already completed are in green
*Follow our progress on the "Survey Area" page as we update the sail lines every ~4 days.

The Source

Mapping the Galicia Rift off Spain - Thu, 06/06/2013 - 06:07
Our fourth (and final) gun array was deployed last night!! This means that all of the hard work that the crew has performed (with our help, of course) will begin to pay off as the data streams in while we traverse east along the western most extension.


Marine reflection seismology involves actively generating soundwaves (rather than waiting for earthquakes as in many other types of seismology). The ideal seismic source is as close to a “spike” as possible. Sound waves from the source travel into the Earth, where they reflect off sedimentary layers as well as hard-rock surfaces. The returning reflections are recorded by over a thousand hydrophones (underwater microphones that gauge pressure changes created by the reflected seismic waves) in the streamers that we have been deploying for the last four days.



The source consists of a series of air guns of varying sizes, which are hung at a depth of 9m (~30 feet) below large inflatable tubes. The tubes are 60m (~200 feet) long and each has 9 active air guns (10 with one to spare). In our case there are two sets of air guns being towed 150m (~500 feet) behind the ship, that alternately fire. To create a strong source that is as spike-like as possible, the guns are carefully arranged and fire almost simultaneously. The air is released from the chamber of the air gun, creating a 3300 cubic inch bubble pulse, which collapses to create the sound waves.
Orientation of the streamer and gun arrays being towed by R/V Langseth.
The red circles indicate the location of the gun arrays.We are making sound in the ocean, where many mammals use sound to communicate and hunt for food. In order to ensure we are operating responsibly and minimizing our impact on mammals, we have five Protected Species Observers (PSO’s) onboard who both watch and listen for (from the observation deck in Donna’s previous post) any marine mammal that comes close to the ship. If any are spotted or heard within a specified radius around the ship, we power down the guns until they leave the area.
James Gibson
Lamont-Doherty

Langseth: The paravanes are out!

Mapping the Galicia Rift off Spain - Mon, 06/03/2013 - 23:24
Most of the science team came out on deck this afternoon to watch the starboard-side paravane deployed in relatively calm waters under partly cloudy skies. The technical and engineering crew proceeded slowly and carefully through the deployment procedure, and after about a couple of hours the paravane and attached streamer were over 300 m off the starboard side of the Langseth.
The second paravane went in the water at 22:00 this evening, and streamer 2 is currently being uncoiled into the water behind the ship. Despite a few delays, we are making good progress!
Marianne Karplus4th June




Langseth: The birds

Mapping the Galicia Rift off Spain - Mon, 06/03/2013 - 23:18
It's 6:30am ship time (Spanish time). The 12am-4am shift finished deploying streamer 4 at about 12:30am, and since then we've been waiting for the sun to rise and the seas to calm before putting out the paravanes and continuing to deploy streamers 2 and 3.

Most of the science group has been working in 4 hour shifts thus far - 4 hours of work and then 8 hours of time for other things each 12 hour period. The last day or two, I was using my 8 hour rest periods to eat a couple of saltines, lie down, and attempt to ignore the rocking of the ship, but I must be getting used to the seas (and they are calmer!) because I can now do other things like read papers and look at a computer screen.
We have been collecting data almost since we left port. We are mapping the bathymetry, collecting gravity data, recording ocean current directions, etc. Since we entered our 3-D box area yesterday, it's been exciting to identify fault scarps in the bathymetry.
Donna mentioned in her previous post that once a streamer is in the water, its location is monitored and it can be moved around using winged devices called "birds" that are attached to it. Imagine a number of actual birds holding a cable in their talons at an even spacing while flying. Our mechanical birds are not so different, except they are flying the streamer through the water. We can see where the birds are on a computer screen in the lab, and we can control the depths of the birds by remotely moving their wings. When a streamer goes into the water, it can take some time to get the weighting right and then for the birds to dive the streamer down to the desired depth (generally 8-12 meters below the sea surface).


Marianne Karplus
3rd June (posted late due to internet outage)

Assembing a bird to be attached to the streamer.Birds for streamers 2 and 3 waiting to be deployed.

Deploying seismic equipment on the high seas

Mapping the Galicia Rift off Spain - Sun, 06/02/2013 - 10:16

After steaming for twelve hours out of port, we started the long process of putting out all of the seismic gear needed for this program. The weather worsened as we headed towards the field area, and we have been deploying equipment in 3-4 meter swells for the last 18 hours. This ship can roll by up to 10-15 degrees in these conditions (and more than a couple of people are feeling sea sick as a result).  On the deck, ropes and cables connected to equipment towed off the back of the ship lurch and clank rhythmically, and water commonly washes over the lower deck. Down in the main lab, stray items that aren’t properly stowed or strapped down start to roll back and forth, the ship creaks and groans, and office chairs swivel with each swell.
For this program, we will be towing an enormous amount of gear behind the ship to enable us to image faults involved in rifting, the exposure of mantle rocks and continental breakup in 3D.  Four 6-km-long seismic ‘streamers’ filled with pressure sensors (which can detect returning sound waves) will be towed 200 m apart, for a full spread of 600 meters.  As we deploy the streamers, we add weights to ballast the streamer, acoustic units to determine the locations of the streamers, and ‘birds’ that enable us to control the depth of the streamer remotely.  We also swap out broken pieces. The streamers are held apart by two gigantic paravanes, which are like large metal kites that fly out from either side of the ship. Each one weighs an astonishing 7.2 tons and is ~7.5x6 meters in size.   There are also myriad floats, cables and ropes to maintain the correct geometry of the entire array.  The streamers will record returning sound waves generated by two arrays of air guns, which will be towed 100 m apart and fired separately.  We expect that it will take us 3 days to deploy this complicated array of equipment behind the ship. The weather is expected to start improving tomorrow afternoon, which will help us greatly!

Donna Shillington
2nd June Looking forward on the Langseth as she takes a roll in the swell.A streamer with a 'bird' being deployed off the Langseth's stern into the waves.

The R/V Langseth departs Vigo and heads to sea

Mapping the Galicia Rift off Spain - Sat, 06/01/2013 - 09:40

The R/V Marcus G. Langseth pushed away from the docks of Vigo at 8 am local time.  The sun was shining, and the views of the rugged cliffs, forests and Galician towns along the coastline were spectacular.  We will only be able to see land at the very beginning and very end of this 45-day cruise.  We steamed out of the protected waters around Vigo and out into the open Atlantic Ocean a few hours later, and happily were met by relatively calm seas (1-2 meter swells), although its quite brisk compared to summer weather back home.  We actually saw the F.S. Poseidon in the distance as she headed back to Vigo at the end of the first OBS cruise of this program. We only have a relatively short transit of ~10 hours before we begin to deploy the extensive suite of scientific equipment behind the ship needed to image the structures beneath the seafloor in 3D.  Putting out the seismic streamers and associated gear will take 3 days!

Donna Shillington
1st June The science party on deck as the ship departs Vigo.
Islas Cies

A Tale of Sea Ice, Algae and the Arctic

Arctic Sea Ice Ecology - Wed, 05/29/2013 - 15:12
Andy Juhl measures and creates a temperature profile for each core drilled from the ice.

Andy Juhl measures and creates a temperature profile for each core drilled from the ice.

I returned to New York on Monday, but Lamont-Doherty Earth Observatory scientists Andy Juhl and Craig Aumack remain working in Barrow, Alaska for another week. They’ll continue to collect data and samples in a race against deteriorating Arctic sea ice conditions as the onset of summer causes the ice to thin and break up. Even in the two weeks I stayed in Barrow the ice changed dramatically, shifting from a snow-covered ice pack to a nearly snow-free ice pack, covered in cracks and increasingly large melt ponds. An animation from the May 23 Barrow sea ice radar reveals just how quickly shorefast sea ice can change. Soon the ice will be deemed unsafe for travel by snow machine and spring fieldwork conducted on the ice will end.

Our team’s research in Barrow is just one part in the long process of studying and answering questions about algae growing in and under Arctic sea ice and its role in the marine ecosystem. And, it’s a process that does not necessarily have a defined end — investigating the natural world always leads to more questions. From fieldwork, where observations are made and data gathered, new questions arise, new hypotheses are put forward and new ways of collecting data are developed. This work leads to further experiments where new data and samples are collected, observations are made, analyses performed and results interpreted. Some of the findings will challenge existing hypotheses, leading to their modification, which starts the research process over again.

The algae-filled bottom section of an ice core, ready to return to the lab.

The algae-filled bottom section of an ice core, ready to return to the lab.

Fieldwork gives scientists the opportunity to observe systems in a holistic way, leading to new insight and further research questions; each piece of data causes a rethinking of ideas and expectations for future results. “Fieldwork is inspiring and it’s critical to the creative process for environmental science because you often see things that you don’t necessarily see in your data,” said Andy. “There are subtleties and patterns that you can pick on if you pay attention to observe the natural world. You can’t do that in the lab or by looking at numbers.”

Some people may be disappointed to learn that we don’t have many immediate answers about sea ice algae and the Arctic ecosystem based on our month of Barrow fieldwork. But, scientists don’t set out to study things that are already understood or to answer questions that already have answers, and it takes time to unravel Earth’s mysteries. On this trip, project scientists discovered and collected lots of algae, observed novel behavior by marine organisms in the water column and on the seafloor, and gathered lots of data. The next steps in this project are to analyze the samples and data collected in Barrow, interpret these, write up findings and report these in journals and at scientific meetings. And, in 2014, Andy and Craig will return to Barrow to continue their study of sea ice algae, armed with new understanding of the algae, as well as new research questions to explore.

Our team at work in the Arctic.

Our team at work in the Arctic.

The goal of our project is to understand how ice algae functions and its role in the marine ecosystem, but we’ve received many questions about how ice algae, the residents of Barrow and the rest of life in the Arctic will be affected by a climate that is undoubtedly and irrevocably changing. The answer is that we don’t know, but our research may contribute to future understanding of these issues. Though the Arctic is changing faster than anywhere else on the planet, with temperature increasing and ice volume decreasing, it is still one of the least explored places on Earth. In order to know how climate change will impact this region, the basic oceanographic and ecological processes must first be understood.

As our project progresses, we’ll continue to provide updates and look forward to sharing a video of our time in Barrow that’s being produced by our friends at Climate Science TV. For more information on this research project, visit http://lifeintheice.wordpress.com. Our colleagues at Lamont-Doherty Earth Observatory also travel the world exploring our planet; to keep up with more interesting Earth science research and reports from the field, follow Lamont-Doherty on Twitter and Facebook.

And thanks to everyone who followed our expedition, we enjoyed sharing it with you!

Poseidon: Leg 1 completed

Mapping the Galicia Rift off Spain - Tue, 05/28/2013 - 08:29
The Poseidon successfully deployed 38 ocean bottom seismometers (OBS) on Leg 1!

Today they are reloading the ship with 18 more OBS to deploy on Leg 2. The personnel on board will also exchange two Ocean Bottom Instrument Consortium personnel for two GEOMAR personnel.

What is an OBS?

An OBS is an autonomous instrument that sits on the ocean floor and records waves (sound waves as well as other types) traveling through the earth and/or ocean water. All of our Galicia instruments have ocean bottom hydrophones (OBH) to record waves traveling through the ocean (including some types of whale calls!), and a subset of fifty also have geophones to record waves traveling through the sediments and rocks beneath the sea floor. 

The OBS record waves by measuring tiny motions of the earth and sea water, converting it into electrical signals, which are stored digitally. The geophones, data logger, and batteries are stored in a water tight, floating sphere, and the hydrophone is attached to the outside of the sphere. A heavy anchor attached to the sphere enables it to sink to the bottom when it is deployed (sent off into the ocean).

 To pick up the OBS, the ship goes to the location where it was deployed, and a sound signal with a particular frequency is sent out. The OBS replies acoustically, cuts its anchor, and resurfaces. Scientists can then download the data and begin to piece together a picture of the local Earth structure!

Marianne Karplus
28th May

Science, Creativity and Isopods

Arctic Sea Ice Ecology - Mon, 05/27/2013 - 02:12

It’s near midnight and Lamont-Doherty Earth Observatory researchers Andy Juhl and Craig Aumack, and Arizona State’s Kyle Kinzler are gathered around a table in their lab at the Barrow Arctic Research Consortium discussing the best way to catch an isopod. When scientists do fieldwork, they enter into it with specific questions and science goals in mind, but one of the joys of exploring the world through scientific research is solving challenges and devising new ways to collect data.

Andy Juhl readies ROV Brinson for a trip into the Arctic Ocean.

Andy Juhl readies ROV Brinson for a trip into the Arctic Ocean.

Meet Brinson. He’s a remotely operated vehicle (ROV) along on our Arctic expedition and named in honor of a foundation that provided Andy funding to build him. Brinson, originally designed and built by engineer Bob Martin, and modified by Andy, is the result of an idea that evolved over several years of Arctic fieldwork.

“We were deploying just this ice fishing camera, but were frustrated by the fact that there was always something just beyond our range that we wanted to see,” said Andy. “So we wanted mobility and once we got that we were frustrated by the fact that we didn’t know how big things were, and that’s when we decided we needed the laser pointers to provide scale. So Brinson has been a multi-step evolution into a simple, but well-equipped ROV.”

Brinson now consists of a GoPro camera and a standard ice fishing camera attached to a frame made of PVC pipe that can be lowered into a hole in the ice. On the ice surface, the ice fishing camera’s live video feed shows what Brinson sees as he travels through the water. Brinson is equipped with small bilge pumps that act as motors, which enable him to be maneuvered forward, up, down and side to side via his tethered remote control. When Brinson is below the ice, Craig monitors the video feed and describes to Andy what he sees on the screen. When something of interest appears, Craig tells Andy which way to maneuver Brinson, so they can continue to get footage of the organism.

Brinson recently saw small crustaceans called isopods roaming around the ocean floor. Andy and Craig were excited about this find and very curious to learn more about what isopods might eat and their role may be in Arctic the marine food web. Once Brinson, and Andy and Craig, saw the isopods, it was decided that our team should catch some, but we had no trap or means of doing so.

Scientists need to bring absolutely everything they need, and think they might need, with them on research expeditions, especially those to remote areas like Alaska’s North Slope. So, when, for example, you decide you must build an isopod trap late at night in Barrow, you’re pretty much limited to what you have on hand: a plastic buckets, plastic window screening, electrical tape, rocks, string.

Craig displays his catch.

Craig displays his catch.

With these materials, a little ingenuity and their limited knowledge of isopod behavior, Craig and Kyle constructed isopod traps. The guys hypothesized that isopods might like chicken, so baited their traps with chicken bones saved from our dinner. The traps were attached to eight meters of string and dropped to the sea floor. Kyle’s trap sat overnight and caught two isopods; Craig’s trap sat on the ocean bottom for several days and contained at least 20 isopods when it was pulled up.

The beauty of the isopod traps is that they worked and project scientists will get valuable data about the Arctic marine food web as a result. “From the underwater videos shot by Brinson, it looks like the activity of the isopods increases after the ice algae exports,” Andy explained. “We think there’s a plausible connection there: the ice algae could be a food source for isopods. We never would have posed that as a hypothesis unless we had the opportunity to observe them and make these connections.”

Fieldwork is, in part, a pattern of observing and questioning, and responding to these with new theories, methods and experiments. It’s also part of a larger creative process that involves improvisation and unconventional thinking. Said Andy, “In the field, we make a lot of stuff out of duct tape and epoxy.”

For more information on this research project, visit http://lifeintheice.wordpress.com or follow Lamont-Doherty Earth Observatory and the hashtag #LDEOarctic on Twitter.

Poseidon: Very good progress today!

Mapping the Galicia Rift off Spain - Fri, 05/24/2013 - 18:32

We dropped 17 ocean bottom seismometers today, making 26 in all.  The weather is cloudy but bright.  There is 2-3 m of swell and this is not a very big ship, so when we were steaming eastwards into the weather there was plenty of water arriving on deck.  Later on we turned to the west, which was more comfortable and drier.  Scientist cabins are partially below the water-line and my port-hole gets a regular wash.

Tim Minshull
24th May 2013

Poseidon sails from Vigo!

Mapping the Galicia Rift off Spain - Fri, 05/24/2013 - 08:21
On 21st May, F.S. Poseidon sailed from Vigo, Spain on the first of three expedition legs to deploy 78 ocean bottom seismometers (OBS) provided by OBIC and GEOMAR.


Seventy-two OBS will be deployed in a grid of 18 x 4 instruments across the 3-D seismic survey box. Six OBS will be deployed on a profile extending farther west, to try to locate the boundary between continental and oceanic crust.

An OBS is deployed. Photo by Dean Wilson.Gaye Bayrakci, a postdoctoral researcher at the University of Southampton, sent this email update today:

"Yesterday (23/05/2013) the weather was ok. We tested 24 acoustic units first. Then, we deployed 9 OBSs along the regional profile. Before the finish of the day, we tested 24 more acoustic units. Food is good. Thursday is the seaman's day, so we had some cake at 5pm at the coffee break.

"Today (24/05/2013) the weather is darker but its normal for this period of the year in this area. We started at 06am (utm). We just finished the deployment of 8 OBSs on the southernmost profile and reach the eastern end of regional profile. We deployed a 9th OBS here and now we are heading westward along the regional profile."

The international team of scientists aboard the Poseidon includes two GEOMAR geophysicists, two University of Southampton geophysicists, and five OBIC personnel from University of Southampton and Durham University.

The internet connection on board the Poseidon is not good enough at the moment to post to this blog or send photos, so the above photo is from a separate OBS deployment in the Indian Ocean.

Stay tuned for more updates soon!

Marianne Karplus
24th May 2013

Ctene Sensations of the Arctic Ocean

Arctic Sea Ice Ecology - Thu, 05/23/2013 - 00:40

One of the goals of Andy Juhl’s and Craig Aumack’s Arctic research is to determine the role of ice algae as a source of nutrition for food webs existing in the water column and at the bottom of the Arctic ocean. During their fieldwork these Lamont-Doherty Earth Observatory scientists are deploying a plankton net, a common tool used by ocean scientists to catch tiny marine plants and animals in the water column, to collect live plankton for identification and examination in the lab. They’re hoping to determine the different kinds of organisms active in this part of the Arctic Ocean and their food web feeding connections, or who’s eating whom by testing the organisms to see if they contain algae in their guts and muscle tissues.

This information is important because it will provide a baseline understanding of the connection between the algal community in the sea ice and the underlying ecosystem, and how it functions. Once this is understood, scientists may be able to better understand and predict changes that could occur in the marine food web as Arctic snow and ice cover changes.

A few days ago we caught the comb jellies in this video near shore at a depth of about four meters. Though comb jellies have the same type of gelatinous body as a jellyfish, they belong to a completely different phylum called ctenophores. Known for being vicious carnivorous predators, ctenophores use rows of comb-like cilia to propel themselves through the top of the water column and prey on smaller organisms, such as zooplankton. Ctenophores are found throughout the world’s oceans, including Arctic waters — quite a few of appeared in the holes we’ve bored into the ice this week.

These two comb jellies were filmed under a microscope in our lab. Each one is just a few millimeters long, though they can grow to be about 10 cm, sometimes larger. You can also see small copepods, a type of zooplankton and favorite food of ctenophores, zipping around the screen. Seeing a lot of ctenophores in the upper water column is a good indicator that they are feeding extensively on copepod larvae, who in turn are feeding on ice algae. This is an example of a few of the connections that make up the foundation of the food web in this fragile, yet biologically productive ecosystem.

Click here to view the embedded video.

On Wednesday Andy and Craig answered responded to questions about their research during a Reddit “Ask Me Anything” session. While the event is over, the session remains on Reddit and we encourage you to check it out to learn about our research and life in Barrow, Alaska.

For even more information on our project, visit http://lifeintheice.wordpress.com or follow Lamont-Doherty Earth Observatory and the hashtag #LDEOarctic on Twitter.

Collecting Core Data About Arctic Ecosystems

Arctic Sea Ice Ecology - Mon, 05/20/2013 - 12:53
Andy Juhl collects temperature data from a core, while Craig Aumack drills another.

Andy Juhl collects temperature data from a core, while Craig Aumack drills another.

Our team spent most of Friday on the Arctic sea ice, drilling and sampling ice cores at our main field site. For each core collected, Lamont-Doherty Earth Observatory scientists Andy Juhl and Craig Aumack take a number of different physical, chemical and biological measurements that characterize the ice and the organisms living inside it. Some of these measurements are recorded right away in the field, others will be taken later using pieces of the cores that we bring back to the lab.

Two of the physical measurements Andy and Craig record are the temperature and salinity of the ice. “Temperature is a critical parameter that controls the rate of almost all biological processes in the ice — almost everything happens slower when it’s colder, and parts of the ice can be colder than others. And if you know the temperature and the bulk salinity of the ice you can calculate how much brine volume there is within a given layer in the ice,” Andy explained.

Brine volume is an important measurement because algae live in brine channels in the ice. As ice gets colder, there’s less brine volume within it, meaning there’s less room for algae to grow. Andy and Craig also measure the concentrations of plant nutrients in the ice cores, including nitrate, ammonia, phosphate and silicate – some of the same elements that plants growing on land need. And, as with terrestrial plants, nutrient availability in sea ice is a factor that controls the growth of algae inside the ice.

 the objects of our affection. The brown areas are the bottom of the cores and indicate the presence of algae in the ice.

Ice cores: the objects of our affection. The brown areas are the bottom of the cores and indicate the presence of algae in the ice.

Other measurements, such as particulate organic carbon (POC) and dissolved organic carbon (DOC), Andy and Craig take in the lab will reveal the amount of carbon, or organic material in the ice. In addition to algae, carbon found in the ice comes in the form of non-living materials, such as bits of organic detritus from the tundra that become trapped in the ice. Finally, samples are collected for microscope work so that project scientists can identify the different types of organisms found throughout the ice.

All of this information varies in any single ice core from the top to the bottom, and based on where it is drilled. By taking consistent measurements from each ice core in different locations, project scientists can develop an in-depth understanding of the dynamics of the Arctic algal ice ecosystem – and how it may be changing.

Our group spent Saturday and Sunday in the lab processing samples from last week and preparing equipment, including mounting a camera system on our small remotely operated vehicle (ROV). We’re heading back onto the ice early Monday morning with the ROV and are looking forward to working in temperatures that may reach 35F.

For more information on our project, visit http://lifeintheice.wordpress.com or follow Lamont-Doherty Earth Observatory and the hashtag #LDEOarctic on Twitter.

What Lies Beneath Arctic Ice?

Arctic Sea Ice Ecology - Sun, 05/19/2013 - 02:38

On Thursday we lowered a camera into an ice borehole to get a look at the underside of the ice. In the following video, you can clearly see the algae living in the bottom of the ice due to their pigments, which they use to harvest light.

These organisms are not frozen into the ice; they’re living creatures that grow and thrive in tiny pockets of brine inside the ice. You might notice in the video that the underside of the ice is not flat, this is probably a reflection of variability in physical conditions in and above the ice, such as snow cover thickness.

Click here to view the embedded video.

While watching this video, Andy Juhl and I discussed how cool it is that there are vibrant communities growing in extreme environments. “One of the lessons that research in polar regions has taught us is that we need to broaden our definition of where life exists and thrives. In the Arctic, we have life growing inside ice, at below freezing temperatures. This means that we know to look in more unusual places for science of life and that’s one of the interesting things we learn by doing this kind of work,” Andy said. “Ice is not necessarily an inhospitable habitat, and on other planets where we see ice, that’s a place where we should probably look for signs of life.”

The second film shows a bit of life on the seafloor. This video was shot near shore where the water depth is about 8 meters, so it’s fairly shallow; water temperature here is -2C. The bottom consists of soft mud and it looks like there are deposits of algae that probably came from the ice on the surface of the bottom (those are the darker areas). There’s a variety of bottom dwelling organisms that live in the mud, such as the isopod that wanders across the mud in this clip. We don’t yet know how large the isopods are or what they eat; scientists on our team are trying to figure out a way to measure an isopod in situ or capture one to examine in the lab.

Click here to view the embedded video.

As our work in Barrow progresses, we’ll continue to post more videos so that you can get a sense of the life that makes up this fascinating ecosystem.

For more information on our project, visit http://lifeintheice.wordpress.com or follow Lamont-Doherty Earth Observatory and the hashtag #LDEOarctic on Twitter.

 

Ice Capades

Arctic Sea Ice Ecology - Fri, 05/17/2013 - 05:24
Scientist Andy Juhl makes notes at our first field site about snow depth and distribution.

Scientist Andy Juhl makes notes at our first field site about snow depth and distribution.

Fieldwork is exciting and inspiring, leading scientists to new ideas, places and observations about how the world works. Spring on Alaska’s North Slope provides an especially productive environment for fieldwork. When the sun never sets, it’s easy to linger in the field and the lab long into the well-lit night.

Our team spent about six hours on the Arctic sea ice Thursday, enjoying blue skies and temperatures in the low teens, while making observations, maintaining sampling sites and taking measurements. Most of our time was spent at two different field sites Andy and Craig established near Point Barrow, a narrow spit of land that’s the northernmost point in the United States. Traveling to these sites involves loading up two sleds with all of the sampling equipment, hitching the sleds to snowmobiles and carefully traversing the sea ice on said snowmobiles, which, I discovered today, is extremely fun.

Andy, Kyle and Craig prepare to finish drilling a hole in the ice.

Andy, Kyle and Craig prepare to finish drilling a hole in the ice.

One of the research questions Andy and Craig are exploring in Barrow is how the amount of snow covering sea ice might affect the diverse species of algae living in and just below the ice. A thin snow cover allows more sunlight to reach the algae; a thicker snow cover creates a darker environment. As in any ecosystem, many different species are competing for light and nutrients. For this study, Andy and Craig want to see how changing one factor in the Arctic sea ice ecosystem – the amount of available light – might allow some organisms to grow better and become more prevalent than others.

Last week Andy and Craig set up an artificial snow gradient at our first field site, where different snow depths cover the ice in a small, isolated area. Ice cores were drilled here on their first day and Andy and Craig will repeat this same exercise later in May. Collecting data over these specific time intervals will enable them to see how snow depth and distribution affect the community of organisms living in the ice. This information will provide an idea of what might happen to the entire ecosystem if more light is introduced via less snow cover in the future.

At the second field site, scientists used an auger to drill a hole in the ice, which is currently about four feet thick. Then a camera was lowered into the hole, with a live feed to a computer so we could see what was happening in the sea directly below us. A thick layer of algae covered the underside of the sea ice and once lowered eight meters to the sea floor, the camera revealed isopods (small crustaceans), jellyfish and a few unrecognizable members of the Arctic marine ecosystem.

Lowering the camera into the -2F sea.

Lowering the camera into the -2C sea.

“We do the camera work because there’s no substitute for seeing the ecosystem intact. We need to get cores in order to collect samples, but you get a really different impression of the ecosystem with the camera,“ Andy explained.

Later in the afternoon we searched the ice for a sampling station Andy and Craig used last year, but were unable to find it. The area had become covered with huge pressure ridges, large fragments of ice that pile up when sheets of ice collide, which are hard to cross on a snowmobile. At one point fresh polar bear tracks meandered among the ridges, but we never caught sight of the bear who made them.

For more information on this project, visit http://lifeintheice.wordpress.com or follow Lamont-Doherty Earth Observatory and the hashtag #LDEOarctic on Twitter.

Settling in to Work and Life in Barrow

Arctic Sea Ice Ecology - Wed, 05/15/2013 - 23:00
The Barrow Arctic Research Center, home of our lab space.

The Barrow Arctic Research Center, which houses our laboratory.

While I arrived in Barrow, Alaska on Tuesday, Lamont-Doherty Earth Observatory scientists Andy Juhl and Craig Aumack, and graduate student Kyle Kinzler from Arizona State University, got here one week ago. They took a few days to unpack and set up their lab (everything they need to work here must be shipped to Barrow in advance), scout locations for sampling on the ice and ensure that their tools and equipment are working properly before they begin their fieldwork.

Our team alternates days in the lab and days on the ice. The lab space we’re using is a bit north of town at the Barrow Arctic Research Center (BARC), a newly constructed facility where the National Science Foundation leases space for its researchers. Scientists wishing to work in and around Barrow can use BARC as their home base. At the moment the building is fairly quiet as the only other occupants are a group of international graduate students being trained on how to conduct sea ice research.

Today was a lab day, where recently collected samples were processed, experiments performed and preliminary data analyzed. Fieldwork is just the beginning of a research process that can take several years. The majority of the samples and data collected here won’t be examined until scientists are back at their respective institutes, where it can take months or longer to analyze all of their samples and data and then write up the results. But, to ensure that their research is on the right track, a few experiments and analyses are done while in Barrow.

Craig holds a bag containing water from a melted ice core that he drilled a few days ago. The water looks murky due to the presence of algae.

Craig holds a bag containing water from a melted ice core that he drilled a few days ago. The water looks murky due to the presence of algae.

This afternoon I spent time in a zero degree walk-in freezer talking with Craig Aumack, who’s conducting experiments to learn more about the organisms living in Arctic sea ice. Each year, as soon as any light is available, algae start growing in the ice and continue to bloom through the onset of spring and the Arctic’s long summer days. Algae prefer to live in the bottom of the ice, because, like all plants, they need light and nutrients, and these are plentiful at the sea-ice interface.

Craig’s experiments are called settling experiments, and these help him learn what happens to the organic materials and organisms living in the sea ice when they’re released into the ocean. Craig wants to determine the rate at which these particles sink down through the water column; this information reveals whether particles are more likely to be consumed while falling through the water column or once they accumulate on the seafloor. Particles that sink slowly are more likely to be eaten by zooplankton, tiny marine animals, while those that fall to the bottom will be consumed by worms, crustaceans and mollusks.

Settling experiments must be done in a freezer because organisms that call ice home would quickly die if exposed to a 70-degree temperature difference. Though extreme temperatures can also cause humans to become a bit uncomfortable, we’re able to don parkas and puffy jackets to protect us; algae don’t have this luxury. So, Craig replicates the conditions in which ice algae thrive, and bundled up, works in a frigid environment.

Andy Juhl was happy to explain this experiment and their research further, fortunately outside of the freezer. “There’s a whole ecosystem living inside the ice. Ultimately, we want to know what the dynamics of this special ecosystem are and how this is connected to the rest of Arctic ecosystem,” he said.

diatom

A diatom, one form of single celled, microscopic Arctic algae, as seen under a flourescence microscope. Photo: Kyle Kinzler

“We know the Arctic is changing very rapidly in terms of ice cover, duration of ice cover and extent of ice cover. One of the things we need to understand if we’re going to try to predict what will happen to the Arctic in the future is the ice ecosystem and its importance to the functioning of the entire Arctic,” Andy said.

Tomorrow, Thursday, we head out onto the ice to sample. This afternoon I received my land use permit from the Ukpeaġvik Iñupiat Corporation, the organization that owns the land we’ll be working on, and successfully completed my snowmobile training, so I’m officially ready for fieldwork.

For more information on this project, visit http://lifeintheice.wordpress.com or follow Lamont-Doherty Earth Observatory and the hashtag #LDEOarctic on Twitter.

Investigating Life in the Ice

Arctic Sea Ice Ecology - Tue, 05/14/2013 - 14:08

Andy Juhl and Craig Aumack, microbiologists from Columbia University’s Lamont-Doherty Earth Observatory, are spending a month in Barrow, Alaska studying algae in and below sea ice, and how our warming climate may impact these important organisms. They’re investigating the factors that control the growth of algae inside of sea ice, how these algal communities are connected to other Arctic marine organisms and what happens to the organic matter that builds up inside sea ice. I’ve joined them to document and tell stories about their research, how it’s done, why and what they’re learning.

Barrow, Alaska

Barrow, Alaska

Barrow is the northernmost point in the United States and is situated where the Chukchi Sea meets the Beaufort Sea. Throughout the long winter, these waters are covered with a thick layer of ice. This ice is home to many different microscopic algae, which form the base of the polar food web.

During late winter and spring, large communities of these algae flourish, or bloom, inside and on the undersurface of the sea ice. As the ice melts, algae are released into the nutrient rich waters, feeding plankton and higher trophic levels, including fish, whales and seals.

The Arctic is warming faster than any other place on the planet, shortening winter and causing pack ice to thin and break up earlier and earlier each year. How will these changes impact the Arctic marine food web? Answering this question and understanding how the ice algae respond to our warming climate will inform resource managers and policymakers, as well as local residents, of how the larger Arctic marine ecosystem may be impacted.

Andy and Craig hope to learn how our fast-warming climate and the resulting dissipation of sea ice affect the entire marine food web. This knowledge is essential to assessing the value of the ice community in the Arctic and is paramount to predicting ecosystem-wide consequences to rapidly changing Arctic environments.

We’re based at the UMIAQ field station in Barrow, which provides logistics support for NSF-funded scientists conducting research in the area. From Barrow, we’ll travel across the sea ice by snowmobile to nearby Point Barrow, where we’ll establish sampling stations and drill and remove cores of ice. Samples will be analyzed back in the lab to investigate the flux of the algal organisms and organic matter from the sea ice to the water column during the spring melt.

Over the next few weeks we’ll share stories from the ice about our research, the role sea ice algae play in Arctic ecosystems and how that’s changing, and what’s it’s like to live at the top of the planet. And, if we’re lucky, a few pictures of whales and polar bears.

Syndicate content