News aggregator

Biking and Breathing - Columbia Magazine

Featured News - Thu, 09/17/2015 - 12:00
Lamont's Steve Chillrud and Columbia Public Health's Darby Jack are outfitting New York City cyclists with air-monitoring equipment to determine how the intensity of their workouts affects the amount of pollution they inhale and the impact pollution has on their cardiovascular systems.

Scientists Find Tools that Predate Earliest Known Humans - Columbia Magazine

Featured News - Thu, 09/17/2015 - 12:00
“The prospect that somebody else was turning rocks into cutting instruments half a million years before our earliest known ancestors were walking around northern Africa rewrites the book on everything we thought we knew about early tool usage,” said Lamont geologist Christopher Lepre.

The Exxon Research Program That Advanced Understanding of Climate Change - InsideClimate News

Featured News - Thu, 09/17/2015 - 12:00
Lamont's Taro Takahashi used Exxon's tanker records to conclude that the oceans absorb only about 20 percent of the CO2 from the burning of fossil fuels and other human activities. The paper earned Takahashi a "Champions of the Earth" prize from the United Nations.

From the U.S. House: Recognizing Golden Goose Award Winner Chris Small - Congressional Record

Featured News - Wed, 09/16/2015 - 12:00
Congressman Mark Pocan of Wisconsin honored Lamont-Doherty's Chris Small from the floor of the U.S. House for his work that won a 2015 Golden Goose Award.

The Southern Ocean Is Breathing in Carbon Dioxide at a Healthy Rate - Ocean News & Technology

Featured News - Wed, 09/16/2015 - 12:00
Newly updated ship and satellite data analyzed by Lamont's Taro Takahashi show that CO2 uptake started growing again in 2002, and that the Southern Ocean is now absorbing proportionately as much CO2 as ever.

Sen. Ed Markey on the Golden Goose Award - Huffington Post

Featured News - Wed, 09/16/2015 - 07:00
Sen. Ed Markey of Massachusetts joined colleagues in praising the winners of the 2015 Golden Goose Award, including Lamont-Doherty geophysicist Chris Small.

And now…

Chasing Microbes in Antarctica - Wed, 09/16/2015 - 00:24

…for something completely different.  My wife and I are expecting our first child in a few months, which is wonderful and all, but means that we are faced with the daunting task of coming up with a name.  Being data analysis types (she much more than me), and subscribing to the philosophy that there is no problem that Python can’t solve, we decided to write competing scripts to select a good subset of names.  This is my first crack at a script (which I’ve titled BAMBI for BAby naMe BIas), I’ve also posted the code to Github.  That will stay up to date as I refine my method (in case you too would like Python to name your child).

My general approach was to take the list of baby names used in 2014 and published by the Social Security Agency here, bias against the very rare and very common names (personal preference), then somehow use a combination of our birth dates and a random number generator to create a list of names for further consideration.   Okay, let’s give it a go…

First, define some variables. Their use will be apparent later.  Obviously replace 999999 with the real values.

get = 100 # how many names do you want returned? wife_bday = 999999 my_bday = 999999 due_date = 999999 aatc = 999999 # address at time of conception size = (wife_bday + my_bday) / (due_date / aatc) start_letters = ['V','M'] # restrict names to those that start with these letters, can leave as empty list if no restriction desired sex = 'F' # F or M

Then import the necessary modules.

import matplotlib import numpy as np import matplotlib.pyplot as py import math import scipy.stats as sps

Define a couple of variables to hold the names and abundance data, then read the file from the SSA.

p = [] # this will hold abundance names = [] # this will hold the names with open('yob2014.txt', 'r') as names_in: for line in names_in: line = line.rstrip() line = line.split(',') if line[1] == sex: if len(start_letters) > 0: if line[0][0] in start_letters: n = float(line[2]) p.append(float(n)) names.append(line[0]) else: n = float(line[2]) p.append(float(n)) names.append(line[0])

Excellent. Now the key feature of my method is that it biases against both very rare and very common names. To take a look at the abundance distribution run:

py.hist(p, bins = 100)

figure_1Ignore the ugly X-axis.  Baby name abundance follows a logarithmic distribution; a few names are given to a large number of babies, with a long “tail” of rare baby names.  In 2014 Emma led the pack with 20,799 new Emmas welcomed into the world.  My approach – I have no idea if it’s at all valid, so use on your own baby with caution – was to fit a normal distribution to the sorted list of names.  I got the parameters for the distribution from the geometric mean and standard deviation (as the arithmetic mean and SD have no meaning for a log distribution).  The geometric mean can be calculated with the gmean function, I could not find a ready-made function for the geometric standard deviation:

geo_mean = sps.mstats.gmean(p) print 'mean name abundance is', geo_mean def calc_geo_sd(geo_mean, p): p2 = [] for i in p: p2.append(math.log(i / geo_mean) ** 2) sum_p2 = sum(p2) geo_sd = math.exp(math.sqrt(sum_p2 / len(p))) return(geo_sd) geo_sd = calc_geo_sd(geo_mean, p) print 'the standard deviation of name abundance is', geo_sd ## get a gaussian distribution of mean = geo_mean and sd = geo_sd ## of length len(p) dist_param = sps.norm(loc = geo_mean, scale = geo_sd) dist = dist_param.rvs(size = sum(p)) ## now get the probability of these values print 'wait for it, generating name probabilities...' temp_hist = py.hist(dist, bins = len(p)) probs = temp_hist[0] probs = probs / sum(probs) # potentially max(probs)

At this point we have a list of probabilities the same length as our list of names and preferencing names of middle abundance. The next and final step is to generate two pools of possible names. The first pool is derived from a biased-random selection that takes into account the probabilities, birth dates, due date, and address at time of conception. The second, truly random pool is a subset of the first with the desired size (here 100 names).

possible_names = np.random.choice(names, size = size, p = probs, replace = True) final_names = np.random.choice(possible_names, size = get, replace = False)

And finally, print your list of names! I recommend roulette or darts to narrow this list further.

with open('pick_your_kids_name.txt', 'w') as output: for name in final_names: print name print >> output, name

Scientists Say California Hasn't Been This Dry in 500 Years - Washington Post

Featured News - Mon, 09/14/2015 - 12:00
California is in the fourth year of a severe drought with temperatures so high and precipitation so low that rain and snow evaporate almost as soon as they hit the ground. Cites research by Lamont's Park Williams.

Sierra Nevada Snowpack Worst in Five Centuries - Discovery News

Featured News - Mon, 09/14/2015 - 12:00
“This really highlights the need for more tree ring data for the Sierra Nevada," says Lamont's Park Williams.

A Week of Firsts for This Arctic Nation

TRACES of Change in the Arctic - Fri, 09/11/2015 - 18:06
47 AM the ship reached the North Pole, becoming the 1st U.S. surface vessel to do so unaccompanied. (photo U.S. COAST GUARD)

Gathered at the North Pole are the crew of U.S. Coast Guard Cutter Healy and the GEOTRACES science team. On Sept. 5 at 7:47 a.m., the ship reached the North Pole, becoming the first U.S. surface vessel to do so unaccompanied. Photo: U.S. Coast Guard

We are closing in on a week of intense focus and excitement for GEOTRACES and for the United States around the Arctic. It was barely a week ago (Aug. 31) that President Obama became the first sitting president to visit Alaska, refocusing the other 49 states on the fact that we are indeed an Arctic Nation. This historic first was followed closely by another, the Sept. 5 arrival of the U.S. Coast Guard Cutter Healy with the U.S. GEOTRACES scientists on board at the North Pole, completing the first U.S. surface vessel transit to the pole unaccompanied by another icebreaker. Combined with this, U.S. GEOTRACES became the first group ever to collect trace metals at the North Pole. You might assume these three items are unrelated, but they are in fact tightly linked.

GLACIER Conference logo

GLACIER Conference logo

In convening the GLACIER Conference (Global Leadership in the Arctic: Cooperation, Innovation, Engagement & Resilience) in Alaska, President Obama focused on a region that is fast changing due to its fragility and vulnerability to climate change. The meeting timing aligned nicely with the U.S. assuming chairmanship of the Arctic Council, and was a perfect platform for the president to address climate change, an issue that he has tackled aggressively. Conference sessions on the global impacts of Arctic change, how to prepare and adapt to a changing climate, and on improved coordination on Arctic issues all align with the work of Arctic GEOTRACES, although tackled from a different angle.

It was while he was in Alaska that President Obama announced a commitment to push ahead the schedule for adding to the U.S. icebreaker fleet. The “fleet” has dwindled to just 3 U.S. vessels at present, and limits our ability to work in the Arctic. The goal of adding another icebreaker by 2020 will help to address this. “Working” in the Arctic for this Coast Guard cutter includes supporting the research that is critical to our being able to develop a baseline understanding of conditions and more accurately predict the future changes.

Ship camera as the US Cutter Healy arrives at the North Pole. (Photo US Healy)

Ship camera as the U.S. Cutter Healy arrives at the North Pole. Photo: U.S. Healy)

Evidence for change in the Arctic is found in the ability of the U.S. Coast Guard Cutter Healy to cross the Arctic ocean along its longest axis (the Bering Strait route) and penetrate deep into the sea ice to make it to the North Pole unaccompanied. The ice has been thinner than expected and experiencing a much higher degree of melt. Ice stations, where the science team gets out onto the ice to sample, have been postponed because of safety concerns from the thin ice conditions. Everyone, including the captain, has been surprised by the conditions. The thin ice has increased the speed of travel. Although some thick (up to 10 feet) and solid ice has been encountered, much of the cruise has been spent traveling at up to 6 knots, and much less fuel has been used than expected because of this.

Members of the team who are not out on deck with the equipment 'manage' the cast from the aft control room. (photo T. Kenna)

Members of the team who are not out on deck with the equipment “manage” the cast from the aft control room. Photo: T. Kenna

The last week has been action packed for all 145 people on the Healy. First. a “superstation” was run, a 57-hour sampling stop with a large number of samples collected in the ~4,000-meter-deep water. A super station includes additional hydrocasts and pump sampling for the groups like Tim Kenna’s, that require large volumes of sample water. This was also a crossover station with the German GEOTRACES cruise on the Polarstern. Crossover means some of the extra samples collected can be used to do intercalibration (check to see that the results compare) between the science teams on the two ships. The German ship will collect at the exact same location. With large sampling projects using multiple labs and sampling teams, intercalibration becomes extremely important for interpreting the results.

The 'man-basket' lowering Tim Kenna and crew member to the ice via crane to do sampling from a pressure ridge. (photo Bill Schmoker)

The “man-basket” lowering Tim Kenna and crew member to the ice via crane to do sampling from a pressure ridge. Photo: Bill Schmoker

After our long superstation, the team went almost immediately into a dirty-ice station (ice that entrains sediment as it freezes). This ice can form in several ways: during the spring thaw when ice dams in Arctic streams force sedimented water out onto the ice, where it refreezes; during cold storms that churn up sediments in the shallow shelf regions to refreeze on the surface ice; and when shallow areas freeze solid, collecting sediment at the base, and later break away. Once the ice is formed, it moves into the Arctic circulation pattern, so identifying the source of the sediment can help us better understand the temporal and spatial nature of Arctic circulation. This type of ice has high value for Tim’s research, since short-lived radioactive isotopes are frozen into the ice with the sediments, providing a timer for the formation of the ice.

The dirty ice station was followed by an ice-algae station. Both of these entail stopping the ship and craning over two people in a “man-basket” where they can get out and sample (see image). This was followed closely by two full ice stations, where many groups went out on the ice to do their sampling; some for over 12 hours (brr). The second ice station had wind chills of -14 C.

Field time, especially in the polar regions, is expensive and limited, so while in the field it is critical to complete as much science as possible. Sleep happens later when the team is back home.

Lamont Note: As part of the Healy’s instrument package, they standardly carry a CO2 instrument from Lamont’s Taro Takahashi. This was onboard when the Healy reached the North Pole (89.997 °N). The partial pressure of CO2 (pCO2) in seawater was found to be 343.3 micro-atmospheres at the water temperature of -1.438 °C. This is about 50 micro-atmospheres below the atmospheric pCO2 of 392.7 micro-atmospheres, and indicates that the Arctic Ocean water is rapidly absorbing CO2 from the air. The measurements confirm that the Arctic Ocean is helping to slow down the accumulation of the green house gas in air and hence the climate warming.

Margie Turrin is blogging for Tim Kenna, who is reporting from the field as part of the Arctic GEOTRACES, a National Science Foundation-funded project.

For more on the GEOTRACES program, visit the website here.

Does Air Pollution Deflate Urban Bikers' Health? - Science Friday

Featured News - Fri, 09/11/2015 - 12:00
Lamont-Doherty geochemist Steven Chillrud describes his study underway that is fitting cyclists across New York with sensors to map out air quality around the city.

Award Recognizes Research on Human Distribution by Altitude - Space Ref

Featured News - Thu, 09/10/2015 - 19:40
Lamont geophysicist Chris Small has won a 2015 Golden Goose Award for his work on how human populations are distributed with respect to altitude. The award was created by a coalition of business, university, and scientific organizations.

Golden Goose Award Recognizes Research on Altitude and Human Populations - AAAS

Featured News - Thu, 09/10/2015 - 12:00
Lamont Scientist Chris Small's curiosity about altitudes where people live has led to advances in cancer research, semiconductor manufacturing, food marketing, and more.

Honoring High Achievements in Hypsographic Demography - Social Science Space

Featured News - Thu, 09/10/2015 - 12:00
Two decades ago two curious scientists from very different fields wondered how many people live at various altitudes. Aided by federal funding, their inquiries have helped in area ranging from disaster preparedness to cancer research. Focuses on research by Lamont's Chris Small.

Bicycles, Breathing and Bridges: A Toxic Trio? - WNYC

Featured News - Thu, 09/10/2015 - 12:00
WNYC talks with a member of the Bicycle Brigade, a group of cyclists helping Lamont's Steven Chillrud and Columbia Public Health's Darby Jack track the effects of pollution on riders throughout New York City.

Could Changes in Arctic Precipitation Slow Ice Sheet Loss? -

Featured News - Wed, 09/09/2015 - 12:00
A new project involving Lamont's Nicolas Young will study how rising temperatures and altered Arctic precipitation patterns could affect the Greenland Ice Sheet.

Pedaling through Pollution: Science Friday Cycles the City - WNYC

Featured News - Tue, 09/08/2015 - 12:00
Urban bicycling has many benefits, but it comes with risks, including inhaling air pollutants. Lamont-Doherty's Steven Chillrud and Columbia Health's Darby Jack set out to measure what riders are exposed to, how much actually gets into their bodies, and whether it affects riders’ health.

Global Warming Could Drive the Next Refugee Crisis - Mashable

Featured News - Tue, 09/08/2015 - 12:00
A study from Lamont-Doherty's Richard Seager found that global warming doubled to tripled the risk of a crippling drought in the Fertile Crescent as severe as the one that occurred shortly before the fighting broke out.

Failure to Act on Climate Change Could Mean an Even Bigger Refugee Crisis - Guardian

Featured News - Mon, 09/07/2015 - 12:00
Global warming does not cause the conflicts that have caused mass movement of people, but it would be wrong to say it does not contribute. Cites research by Lamont-Doherty's Richard Seager.

It’s as Clear as Mud

TRACES of Change in the Arctic - Sun, 09/06/2015 - 21:30
Core sample

Attempting to get a small sediment sample from the bottom of the Arctic. Photo: Bill Schmoker

Sediment coring the bottom of the world’s oceans is something that Lamont knows a lot about. Since 1947 Lamont has been actively collecting and archiving sediment from around the world. Currently our Core Repository contains sediment cores from every major ocean and sea in the world, some 18,700 cores. This is in large part due to Lamont’s first director, Maurice Ewing, who instilled a philosophy of “a core a day” for all ocean research vessels. Ewing firmly believing that if we had the sediment, we would be able to piece together patterns and stories about our planet, so every day at noon, or thereabouts, the ship would collect a core.

core repository

Historic Image of Lamont’s Core Repository. Photo: Lamont archive

Scientists from around the world have requested slivers of mud from the cores in the repository to unlock Earth’s mysteries and secrets. The cores in Lamont’s Core Repository are no stranger to revealing stories of Earth systems, including those of climate cycles. Almost 40 years have passed since the groundbreaking work of the CLIMAP group that used the cores to connect the start of Earth’s glacial cycles to changes in eccentricity, precession and tilt. (Hayes, Imbrie and Shackleton, 1976) . Collecting sediment on this Arctic GEOTRACES cruise will help us understand more of the stories locked in the oceans.

The length of a core is dictated by the goal of the collection. Early Lamont cores were more about collecting just to gather the material because the ship was there. These early cores were generally 6 to 9 meters long, although one incredibly long 28.2m core was collected from the Central Pacific. Locally cores have been collected on the Hudson River and local marshes that are closer to 1 or 2 meters in length.

Coring in the Hudson River

A file photo of Tim Kenna collecting a sediment core from the Hudson River. Note the length of core and the heavy weights on top to help with penetrating deep into the mud on the bottom of the Hudson. The very short cores to be collected for GEOTRACES will be much different. Photo: Margie Turrin

For the sampling GEOTRACES is doing in the Arctic, there is a specific goal of collecting just the top few dozen centimeters of sediment and the water just above it, yet at a depth of ~2,200 meters. This will require a much different technique than what was used for the Central Pacific core.


Mono-corer with the small section of core retrieved. Note the small weights to help penetrate the sediment, much less weight than is used on the Hudson River core pictured above. Photo: Bill Schmoker

The sediment in this region is soft, so the plan was to drop a small, general-purpose device called a mono-corer over the side of the ship with a few small weights on top to help drive the core tube in straight. The corer would hang below the bottom of the rosette of water samplers, far enough below that the rosette would remain mud-free but still able to collect near-bottom water samples. The mud in the mono-corer would be held in place by a spring-loaded door that snapped closed once the mud was inside and the tube began its return trip to the ship. All sounded good.


Core on its way up to the Healy. Note the “cone-of-silence” rigged by Tim Kenna and Marty Fleicher to stop any interference with the rosette altimeter used to lower the device. Photo: Bill Schmoker

Although the plan was good, things don’t always go perfectly. Making sure the corer actually penetrated the sediment without tipping over or over-penetrating and compressing the top sediments proved challenging, as did ensuring the sample made it back to the ship intact. After several attempts a special “cone-of-silence” (any Get Smart fans out there?) was rigged up by the two Lamonters, Tim and Marty Fleischer, to avoid interference with the communications that were connecting with the rosette altimeter, controlling the lowering of the device. The cone was installed and the speed of the core lowering was slowed. Success! ‘Houston we have mud!’

Now to unpack its secrets.

Margie Turrin is blogging for Tim Kenna, who is reporting from the field as part of the Arctic GEOTRACES, a National Science Foundation-funded project.

For more on the GEOTRACES program, visit the website here.



Subscribe to Lamont-Doherty Earth Observatory aggregator