News aggregator

What is the U.S. Commitment in Paris?

The 2015 Paris Climate Summit - Fri, 12/11/2015 - 08:55

US emissions chartThe United States has joined 185 countries in promising to curb carbon dioxide and other greenhouse gas emissions, develop other ways to mitigate the impacts and to make communities more resilient to climate change. These proposals, called the “Intended Nationally Determined Contributions,” have been submitted to the United Nations prior to 12 days of negotiations going on now in Paris.

At the opening of the talks Monday, President Obama told the gathering, “I’ve come here personally as the leader of the world’s largest economy and the second largest emitter [of greenhouse gases] to say that the United States not only recognizes its role in creating this problem, we embrace our responsibility to do something about it.”

So what exactly is the United States proposing to do?

The United States has committed to reduce its greenhouse gas emissions by 26-28 percent below the 2005 level in 2025, and to make “best efforts” to reduce emissions by 28 percent. That would include curbs on carbon dioxide, methane, nitrous oxide, perfluorocarbons, sulfur hexafluoride and nitrogen trifluoride, all of which contribute to global warming.

How will we do that? The United States already is taking measures that will help reduce emissions. The nation can continue that effort by becoming more efficient in how we use energy in everything from buildings and cars to washing machines and cell phones; using a greater portion of alternative energies like solar and wind over fossil fuels; and developing better technologies for energy storage, and for the capture, storage and recycling of carbon.

All of that could take place through a combination of laws, regulations and incentives—Congress and the courts willing. That includes regulations under the Clean Air Act that would force electric power plants to reduce their carbon emissions; and grants and tax incentives to propel the development of more alternative energy sources like wind and solar power.

The power sector now accounts for 31 percent of U.S. emissions. Efforts to upgrade the electricity grid to better accommodate intermittent sources like solar and wind would help, as would development of better energy storage technologies.

The efforts to date have put the U.S. on a path to reduce emissions 17 percent below the 2005 level by 2020. To reach the new 2025 goal, the nation will have to double the pace.

 EPA

U.S. greenhouse gas emissions by economic sector. Source: EPA

Here’s a look at key ways we’re cutting emissions:

Fuel economy standards: Transportation accounts for about 27 percent of U.S. emissions. The government has been setting “corporate average fuel economy” standards since 1975—requiring automakers to meet an average miles-per-gallon standard for their products (with exceptions), or pay a penalty. The U.S. has adopted new standards for light-duty vehicles produced between 2012 and 2025, and for heavy duty vehicles for 2014-2018. The U.S. Department of Transportation and the Environmental Protection Agency are preparing to set new standards for heavy-duty vehicles post 2018.

Buildings and appliances: The Department of Energy is preparing measures to curb emissions by setting energy conservation standards for appliances and other types of equipment, and building code standards for commercial and residential buildings. Many of these standards already exist; they are likely to become stronger.

 EPA

U.S. greenhouse gas emissions by type. Source: EPA

Power plants: 31 percent of greenhouse gas emissions come from the production of electricity, most of which relies on fossil fuels, mostly natural gas and coal. The Clean Power Plan established by the EPA under the Clean Air Act sets goals for each state to cut carbon pollution, and allows states to come up with their own plans to meet those goals. The plan is likely to greatly reduce reliance on coal, which is the most polluting fuel. The plan has been challenged in Congress and the courts.

Other greenhouse gases: The EPA has pushed for other ways to reduce emissions of other greenhouse gases, such as methane, nitrous oxide, perfluorocarbons, sulfur hexafluoride, and nitrogen trifluoride. The EPA is developing standards to address methane emissions from landfills and the oil and gas sector.

Financial and aid commitments: The U.S. already has pledged $3 billion to the Green Climate Fund, an international pool of funding intended to help countries adopt less-polluting energy sources and cut emissions. This week, Secretary of State John Kerry told the climate gathering that the United States also will double its commitment to $861 million in grant-based investments to help developing nations find ways to adapt to climate change. To what extent the U.S. Congress will go along with that remains to be seen.

To see the U.S. commitment, visit this site; and for an analysis, take a look at this blog post at the World Resources Institute site.

For a good overview of what different nations are saying they will do, try this site. http://cait.wri.org/indc/.

And what about other countries? Here are examples from key players:

The European Union: Similar to the United States, the EU has pledged to reduce emissions. They have committed to a target of at least 40 percent domestic emissions reductions below 1990 by 2030. The EU emphasizes the importance of transparency of accounting and reporting of emissions in quantitative assessments. The EU proposal does not specifically mention how the member countries plan to accomplish the goal.

There are challenges unique to each country in the EU. France is heavily dependent on nuclear energy, which should give them a boost. Germany on the other hand has been moving away from nuclear energy, and is committed to broadening its renewable energy portfolio, but has been hampered by higher energy prices.

China: China is the leading emitter of greenhouse gases. And, the country’s proposal includes measure aimed at climate change mitigation, adaptation, finance, technology development and transfer, capacity building and transparency of action and support. The country says it will reduce CO2 emissions per unit of GDP—known as carbon intensity—by 60 to 65 percent below 2005 levels by 2030. That means its energy consumption will continue to grow, but they plan to use it more efficiently, before they hope to peak energy use in 2030. China also plans to increase forest carbon stock volume by around 4.5 billion cubic meters from 2005 levels by 2030. In other words, they will plant a lot of trees that can soak up carbon from the atmosphere, mitigating some of the added energy they will be using.

According to an analysis by the World Resources Institute, “increasing forest carbon stocks by 4.5 billion cubic meters implies an increase in forest cover of 50-100 million hectares (124-247 million acres) of forest, or about two to four times the size of the United Kingdom. This amount of forest would create a roughly 1-gigaton carbon sink, equivalent to stopping tropical deforestation for almost a full year, or taking 770 million cars off the road.”

India: India is particularly interesting to look at because of its growing population. As a developing nation, India is concerned with how it can develop while lowering the emissions intensity—the amount of emissions per capital or per unit of production. They hope to accomplish decreased emissions with financial help from developed nations, who have been responsible for the bulk of greenhouse gas emissions over the past 150 years.

India hopes to reduce emissions intensity of its GDP by 33-35 percent by 2030, and achieve 40 percent cumulative electric power installed capacity from non-fossil fuel based energy resources by 2030 with the help of transfer technology and low-cost international financing from the Green Climate Fund. That fund was set up by the UN to help developing countries mitigate and adapt to climate change.

Jennifer Sweeney, an intern at The Earth Institute, contributed research and writing for this post.

COP21_ad2

Optimism, But Also a Hard Bottom Line for Island States

The 2015 Paris Climate Summit - Thu, 12/10/2015 - 13:23
 Kadra Rayale, Rija Rasul, Tong, Vidya Nair and Laura Maxwell.

Students from the University of Waterloo in Canada had a breakfast meeting with the Kiribati delegation and met the island nation’s president, Anote Tong, on Dec. 6. From left: Kadra Rayale, Rija Rasul, Tong, Vidya Nair and Laura Maxwell.

Four students in the Masters in Public Administration in Development Practice program at the University of Waterloo in Canada are in Paris for the UN climate summit to represent the Republic of Kiribati. The small island nation is one of several threatened by sea level rise.

This week they have been sitting in on various thematic discussions. Rija Rasul reports she has attended climate finance discussions. Her colleagues Laura Maxwell and Kadra Rayale have been in sessions on adaptation to, and loss and damage from climate change. Vidya Nair has been in discussions about technology and capacity building.

“We are looking at [these topics] from the perspective of small island developing states, including Kiribati,” Rajul said. “Collectively, small island developing states have brought forward a strong voice at the table in regards to the above four thematic areas, because for them, it is an issue of survival.”

The talks are meant to wind up Friday, and the students are hopeful.

“Reaching an agreement would firstly mean an increase in awareness for the particular situation faced by small island developing states,” Rajul said. “States such as Kiribati are on the front line of climate change since they are already experiencing its effects, and an agreement would enhance recognition of [their] vulnerability.”

 Eskinder Debebe/UN

Kiribati faces the prospect of eventual inundation from sea level rise. Photo: Eskinder Debebe/UN

Many nations, particularly some of those most vulnerable to climate impacts, are calling for the agreement to recognize the need to keep global warming to 1.5 degrees C. Going into negotiations, the target was 2˚C over the pre-industrial-era average, which many feel is an upper limit needed to avoid the worst effects of climate change. Many feel 2˚C is not ambitious enough.

According to The Guardian news website, “Trinidad and Tobago’s delegate warned the Paris agreement would be ‘seriously flawed’ if it did not stick to an ambitious 1.5˚C target to limiting warming. Barbados offered even stronger language, warning: ‘We will not sign off any agreement that represents a certain extinction of our people.’ “

Rising sea levels have already engulfed large areas of Kiribati, and nearly a quarter of the country’s population has had to move, according to reporting by IRIN, an independent news website that focuses on humanitarian issues.

“What we need is a boost from the international community to lift us out of the water,” Tong told delegates in Paris, according to a story on the IRIN site. Tong and other leaders of similar states are pushing for the final Paris agreement to include measures that would facilitate migration as an adaptation to climate change threats and build capacity to cope with natural disasters and displacement. That will require significant financial support from the international community, IRIN reports.

According to The Guardian, Tong remained upbeat: “I’ve always said we need to come away from Paris with a deal that would ensure the survival of people. Nobody left behind—that’s the mission all along. This is quite a long way from where we started. It’s coming together.”

COP21_ad1Another contentious point is to what degree wealthier nations will contribute money to help poorer nations adapt. U.S. Secretary of State John Kerry has said the United States would double its commitment to help countries already under threat.

“There are countries … for which climate change is an existential threat today,” Kerry told the Paris gathering on Dec. 9. “For them, this isn’t a matter of annexes or peak years—it’s a matter of life and death. …

“One of the hard realities that we’re facing is that our collective delay now means that some of the impacts of climate change can’t be reversed,” Kerry said. “We have a moral responsibility to adapt and prepare for those impacts and enable the most vulnerable among us to be able to do the same.”

“We have definitely seen an increase in optimism as the days progress,” Rajul said. “And although negotiations are ongoing, we are hopeful for an ambitious agreement, which in turn would hopefully lead to increased resilience and capacity building.”

The Earth Institute’s Masters in Public Administration in Development Practice at Columbia University is part of a global association of related programs, including the one at the University of Waterloo. To find out more about the global association, go here.

Sea Level Rise: How Much, How Fast?

The 2015 Paris Climate Summit - Thu, 12/10/2015 - 11:33
 NOAA

Iceberg off Antarctica. Photo: NOAA

The Science, Revisited

In a past State of the Planet article, we looked at a paper written by James Hansen, director of the Program on Climate Science, Awareness and Solutions, and 16 other researchers warning of potentially dire affects of global warming. In the paper, Hansen argues that unless carbon emissions are drastically reduced, sea level rise caused by melting glaciers in Antarctica and Greenland could have catastrophic effects on coastal regions. Although the claim Hansen is making is one that scientists have long been arguing for, the evidence that he and his team put together in a paper published this summer suggests that things may be worse that we think.

By studying modeled climate evidence from the Eemian period (the last interglacial period, when temperatures were warmer than today) the team concluded that the warming going on today risks setting off “feedbacks” in the climate system. These feedbacks include changes in ocean circulation and the speed at which ice sheets may collapse. Just how much will this affect us, and how fast? The paper argues that sea levels could rise 10 feet within the next 50 to 100 years.

Visit the full scientific paper here to learn more about the research. Hansen is the former head of the NASA-Goddard Institute for Space Studies.

COP21_ad1This post is part of an ongoing series devoted to re-addressing important science stories in order to better inform our readership of the science and its consequences as the UN climate negotiations in Paris continue.

What Is Ocean Acidification & Why Does It Matter?

The 2015 Paris Climate Summit - Wed, 12/09/2015 - 19:14

As excess carbon dioxide is absorbed into the oceans, it is starting to have profound effects on marine life, from oysters to tiny snails at the base of the food chain.

Oysters raised on the mud flats of the U.S. Pacific Northwest are prized by restaurants around the country, but starting around 2007, the Pacific oyster population went into crisis. The oysters were hatching, but they weren’t secreting shells quickly enough to protect themselves. Without shells, the young oysters were vulnerable, and large numbers didn’t survive.

Biologists traced the problem to changing chemistry in the ocean – the water was becoming more acidic and currents were bringing in water that contained less of a calcium carbonate mineral called aragonite that oysters need to build their shells.

“Ocean acidification has been called the evil twin of global warming. It is the other carbon dioxide problem. As we increase the acidity of sea water, it has an effect on organisms,” said Bärbel Hönisch, a biologist and oceanographer at Columbia University’s Lamont-Doherty Earth Observatory. She explains ocean acidification and its effects in more detail in the video above, and discusses how scientists use ancient shells from the sea floor to understand how ocean chemistry has changed over time and could change in the future in the second video, below.

Ocean acidification itself is a fairly simple chemical process. As carbon dioxide (CO2) dissolves in water (H2O), it creates carbonic acid (H2CO3), which is a weak acid. Carbonic acid dissociates into hydrogen ions (H+) and bicarbonate ions (HCO3-1), and the hydrogen ions bond with carbonate ions (CO3-2) in the water. In the oceans, many sea creatures with calcium carbonate skeletons and shells also rely on those carbonate ions for aragonite and calcite to build their skeletons and shells.

Studies show that as carbon dioxide levels have increased in the atmosphere over the past two centuries, seawater has become less saturated with aragonite and calcite. The average pH of seawater has fallen from about 8.2 to 8.1, about a 30 percent increase in acidity on pH’s logarithmic scale.

In the Pacific Northwest, once biologists discovered the source of the oysters’ troubles, they were able to work with oyster growers to develop workarounds to help the oysters grow. Some timed spawning to afternoons, when photosynthetic activity would be higher and more carbon dioxide would be taken up in the water around the hatcheries. By carefully monitoring the acidity of the water brought into the oyster pools, they could also add carbonate to the water as needed and then move the growing oysters to the mud flats after their shells started to form.

For other marine life, however, there is no escape from ocean acidification.

“Ocean acidification has effects, in the end, for our food chain. We see it in pteropods – tiny marine snails are an important source of food for juvenile Pacific salmon. They are growing thinner shells, and the shells malform under acidified conditions. We see it in sea urchins; in crabs. We see it in a number of organisms that secrete calcium carbon shells; they are having a hard time making their shells,” Hönisch said.

Those changes play out in different ways in different parts of the oceans.

The climatological mean distribution of pH in the global ocean surface water in February 2005. The “+” symbol indicates areas affected by El Niño events. (Takahashi et al., 2014)

The climatological mean distribution of pH in the global ocean surface water in February 2005. On the pH scale, 7 is neutral. (Takahashi et al., 2014)

A global study in 2014 led by Lamont’s Taro Takahashi mapped acidification changes around the world and found the lowest pH levels in the cold waters off Siberia and Alaska, the Pacific Northwest and Antarctica. The scientists found that over extensive ocean areas, excluding the polar regions, pH had been declining by a mean rate of about 0.02 pH units per decade. The concentration of CO2 had been increasing at a rate of about 19 μatm per decade, consistent with the mean increase of 19 ppm per decade in atmospheric CO2 concentration over the past 20 years.

“This suggests that the global oceans are being acidified primarily in response to the atmospheric CO2 increase,” Takahashi and his co-authors write.

The National Oceanic and Atmospheric Administration found similar results in 2015, looking specifically at aragonite concentrations. Cold water holds more carbon dioxide, and the scientists found that the Arctic Ocean, northern Pacific and Antarctic waters were acidifying faster than other areas. All of the world’s oceans, from the surface down to 50 meters, are still considered supersaturated with aragonite, but the levels have declined globally, the NOAA study found. At depths down to 100 meters, NOAA found that aragonite saturation had fallen by an average rate of about 0.4 percent per year since 1989.

Scientists know from studying deep ocean sediment cores that acidification has wreaked havoc on marine life before. Watch the video below to learn more.

About 56 million years ago, during the Paleocene-Eocene Thermal Maximum, temperatures rose and there is evidence that coral reefs collapsed and many deep-sea benthic foraminifers, which produce shells of calcium carbonate, disappeared. “There is indication that sea water acidified at the time,” Hönisch said. “What we’ve realized is that the acidification at that time was about as large as what we’re predicting for the end of this century.”

Jeffrey Sachs Talks About the Talks in Paris

The 2015 Paris Climate Summit - Wed, 12/09/2015 - 15:55

At Le Bourget outside Paris, the site of the UN climate talks, Earth Institute Director Jeffrey Sachs talks to FRANCE 24 English TV about what’s likely to happen at the climate negotiations in Paris.

What kind of agreement will we get? Will it be too vague to be effective? What are the sticky issues, and will the developed world be willing to pony up billions of dollars to help out the developing nations? Sacks says the U.S. Congress “doesn’t want to give a penny” and accuses the Republicans of being stuck in denial and in the pockets of the fossil fuel industry.

Watch the video…

COP21_ad2

World Wildlife Fund, Earth Institute Form New Partnership

The 2015 Paris Climate Summit - Wed, 12/09/2015 - 13:14
 © naturepl.com / Lynn M. Stone / WWF-Canon

One of the world’s largest tiger populations is found in the Sundarbans—a large mangrove forest area shared by India and Bangladesh on the northern coast of the Indian Ocean. Rising sea levels caused by climate change threaten to wipe out these forests and the last remaining habitat of this tiger population. Photo: © naturepl.com / Lynn M. Stone / WWF-Canon

Conservation efforts have long been focused on preserving species and natural environments around the world, exemplified by campaigns to save iconic creatures such as whales, elephants and tigers, and preserve majestic areas such as Yellowstone, Yosemite and the Great Barrier Reef. But for many species, the changing climate is altering the equation for how best to do this. Plants and animals evolve, move away or die in the face of an altered habitat.

Now the World Wildlife Fund will collaborate with the Earth Institute’s Center for Climate Systems Research to incorporate climate change information into conservation efforts.

 WWF

Carter Roberts of the World Wildlife Fund, left, and Jeffrey Sachs of The Earth Institute signed an agreement this week to set up a partnership between the two organizations to incorporate climate research into conservation efforts. Photo: WWF

World Wildlife Fund President and CEO Carter Roberts, and Jeffrey Sachs, director of The Earth Institute at Columbia University, signed a memorandum of understanding today for a new partnership to advance resilience to climate change named “ADVANCE”—Adaptation for Development and Conservation. The signing took place in Paris, where hundreds of world leaders have come together at the global climate change negotiations.

The goal of this new collaboration is to advance adaptation to the impacts of climate change around the globe. The partners will create new ways of generating climate risk information and embedding it into the World Wildlife Fund’s conservation and development planning, policies and practice.

ADVANCE envisions a future where the world is using co-generated climate risk information based on the best available science to guide conservation, development and disaster risk reduction in order to benefit both people and nature.

The Center for Climate Systems Research scientists and World Wildlife Fund experts are working together with local stakeholders to create and test a new approach to “co-generate” climate information for initiatives in Africa, Asia and Latin America. ADVANCE has already begun work in Myanmar, and upcoming pilot projects have been identified in Colombia, Bhutan and Tanzania. Learning from these early projects will catalyze future work and help inform policy guidance for partner institutions.

 WWF

Cynthia Rosenzweig of the Center for Climate Systems Research joined World Wildlife Fund President and CEO Carter Roberts at the announcement in Paris this week of a new collaboration on climate science and conservation. Photo: WWF

No region on Earth has been untouched by climate change and its cascading impacts. Even with a successful climate agreement in Paris, the climate will continue to change for centuries. The impacts will continue to affect people and their livelihoods, sensitive ecosystems and endangered species across the globe. This is why climate scientists and conservationists need to urgently work together to provide solutions to enhance resilience.

“The world needs big ideas that can move at the speed and scale necessary to make a difference. I love this partnership; it brings together extraordinary institutions to help the world adopt, adapt, implement and learn,” said Roberts. “ADVANCE aims to incubate, and identify, models that matter.”

“The ADVANCE partnership with the World Wildlife Fund is a wonderful program to help communities around the world to adapt to climate change with best practices based on rigorous science and active collaboration of scientists and affected communities,” said Sachs. “The climate scientists at the Center for Climate Systems Research have a vast experience in working with stakeholders to provide them with the very best climate risk information. From Asia’s high mountains to Myanmar and upcoming pilot projects in Colombia, Bhutan and Tanzania, the World Wildlife Fund and Columbia’s Earth Institute are already working to advance conservation and development.”

To learn more about the partnership, contact Shaun Martin at shaun.martin@wwfus.org or Cynthia Rosenzweig at crr2@columbia.edu.

For more information about the World Wildlife fund, visit www.worldwildlife.org and follow the organization’s news conversations on Twitter @WWFnews.

For more information on the Center for Climate Systems Research, visit www.ccsr.columbia.edu.

COP21_ad2

The Changing Climate of Security

The 2015 Paris Climate Summit - Wed, 12/09/2015 - 08:44
iraqndvia_spt_200804

Drought in the Fertile Crescent region of Iraq and Syria. Photo: NASA Earth Observatory.

By Dylan Adler

In the Democratic presidential primary debate on Nov. 14, CBS’s John Dickerson asked U.S. Sen. Bernie Sanders, “In the previous debate you said the greatest threat to national security was climate change. Do you still believe that?” Senator Sanders quickly replied “Absolutely. In fact, climate change is directly related to the growth of terrorism…you’re going to see countries all over the world…struggling over limited amounts of water, limited amounts of land to grow their crops…you’re going to see all kinds of international conflict.”

21145251444_34a5a66543_o

Democratic Presidential Candidate Bernie Sanders speaks at a campaign event in Iowa. Photo: Phil Roeder, Flickr.

The senator’s answer was met with a wide range of responses. Environmentalists praised his response and the attention he gave to climate change. Some Republicans called his statement absurd, and claimed Sanders was combining two unrelated issues. While Sanders’ response has brought this into the national spotlight, the idea of climate change posing a national security threat is nothing new.

Officials at different levels of the United States Government have already been incorporating climate change into their analysis of national security threats. In 2014, Secretary of State John Kerry, in a speech in Indonesia, stated that climate change was a global threat of the same magnitude as terrorism, epidemics and weapons of mass destruction.

“The reality is that climate change ranks right up there with every single one of them,” Kerry said.

A 2014 Department of Defense report used the term “threat multiplier” to describe climate change. The report explained climate change has “the potential to exacerbate many of the challenges we are dealing with today—from infectious disease to terrorism. We are already beginning to see some of these impacts.”

In February of this year, the White House acknowledged the link between climate change and national security. “Climate change is an urgent and growing threat to our national security, contributing to increased natural disasters, refugee flows, and conflicts over basic resources like food and water,” says a statement released from the White House.

This followed President Obama’s release of his 2015 national security strategy. In the strategy, the president ranked climate change among the top threats to the United States’ security. In a speech at the U.S. Coast Guard Academy in May, Obama stated, “Climate change will impact every country on the planet. No nation is immune. So I’m here today to say that climate change constitutes a serious threat to global security, an immediate risk to our national security.”

Screen Shot 2015-12-04 at 1.16.03 PM

President Barack Obama gives a commencement speech to the Coast Guard Academy. Image: Youtube.

In May, the White House released a report titled “The National Security Implications of a Changing Climate.” The report summarized positions from a variety of reports from the Department of Defense and the Department of Homeland Security. The White House report explains that climate change increases the frequency and/or intensity of extreme weather events. These weather events can aggravate existing stressors in a region by uprooting people’s lives, increasing poverty and causing environmental degradation. These can lead to economic and political instability, which have dangerous national security implications.

These government organizations base their ideas on research that has been done on the relationship between climate change and regional instability. Criminology studies have shown that weather patterns can influence the amount of criminal activity, and this relationship has been explored in computer models. It is well established that climate change will lead to higher temperatures, extreme weather events and changing levels of rainfall. These have been modeled to show an increase in personal strain, societal unrest and opportunities for conflict, all of which increase crime levels.

In fact, research has been conducted into how drought contributed to the Syrian civil war. The severe drought lasted for five years, devastated Syrian farming, and drove an estimated one million people off their land and into urban slums. It is projected to have pushed 800,000 Syrians into extreme poverty. This income gap is one of the main drivers of the Syrian revolt. A 2015 paper examined the relationship between drought and instability in Syria. It explained that the drought, combined with unsustainable farming practices and the inability of the government to address the displaced population, was a significant factor leading to the conflict.

9577263960_7386c8631e_o

Syrian refugees in Kawrgosk refugee camp, Irbil, Iraq, set up by the IHH Humanitarian Relief Foundation. Image: IHH Humanitarian Relief Foundation, Flickr.

While climate change cannot be proven to have caused the Syrian drought, it is well established that climate change leads to an increase in frequency and severity of extreme weather events. The same 2015 paper concluded that, although multiyear droughts occur periodically in Syria, recent trends of low precipitation in the region are likely due to warming global temperatures. The nonprofit policy research organization the Center for Climate and Security came to the same conclusion. Co-founder Francesco Femia explains, “We can’t say climate change caused the civil war. But we can say that there were some very harsh climatic conditions that led to instability.”

Finally, reconsider Sander’s answer that climate change is the greatest threat to national security. Climate change is clearly linked to the severity of the Syrian drought, which contributed to the civil war, which created a national security threat. However, declaring climate change the largest national security threat is misleading because it, by itself, does not instigate violence. Climate change is a “threat multiplier,” and worsens the greatest national security threats.

COP21_ad1After the Paris attacks, Gina McCarthy, administrator of the U.S. Environmental Protection Agency, said, “There are a variety of impacts that we’re feeling from a changing climate, and we need to stop those impacts from escalating … one of those is instability. … So it is a national security issue for us.”

Climate change’s indirect effects make it a security issue. Sanders’ answer highlights the broad range of impacts climate change has on the world. While the most severe effects of climate change will certainly be caused by rising sea levels and extreme weather, the exaggeration of pre-existing threats cannot be overlooked.

Dylan Adler is a student in the Masters of Public Administration-Environmental Science and Policy program and an intern at the Columbia Climate Center.

National Geographic moment

Chasing Microbes in Antarctica - Tue, 12/08/2015 - 16:39

This is a very short post to share the spectacular National Geographic moment we had this morning when a pod of killer whales swam into Arthur Harbor and spent about an hour terrorizing the local seals.  Spoiler alert for the soft hearted – they didn’t kill any.  It was fascinating behavior to observe; the clearly could have taken the seal in the video at the end of this post (shot by and posted with the permission of Chuck Kimball, the Palmer Station comms tech), but didn’t.  Just practicing?  Teaching the kids how to hunt seals?  Just having fun?  Who knows.  Everyone ran out onto the dock to watch the action and this definitely caught their attention.

An orca comes in for a closer look at the crowd on the Palmer Station dock.

An orca comes in for a closer look at the crowd on the Palmer Station dock.

This

A large male cruises the ice edge.

Watch: Using Climate Information to Boost Resiliency

The 2015 Paris Climate Summit - Tue, 12/08/2015 - 15:37

The International Research Institute for Climate and Society and its partners work in some of the most impoverished areas of the world to increase food security, decrease vulnerability to disasters and predict outbreaks of diseases such as malaria. IRI helps bring historical climate data online, monitor present conditions, and look to the future with forecasts and models. It also gives experts and decision makers the access and training they need to be able to use this climate information effectively and with measurable impact.

A new animation explains IRI’s approach to building and maintaining climate resiliency. Head over to the institution’s web site to learn more.

COP21_ad2

Partnering Best Minds in Science & Business to Take on Climate Change

The 2015 Paris Climate Summit - Mon, 12/07/2015 - 19:27

While national governments can set goals for combating climate change, the decisions that lead to action will come from business leaders and personal choices. With a strong foundation of science, the business world can lead the way to a cleaner future.

CCL-logo-half-round-1000x442

Ignoring climate change is bad for business. Droughts can close the tap on water supplies that factories and farms rely on. Heat waves take a toll on agriculture and public health, and rising sea levels put properties and entire communities at greater risk of flooding.

These aren’t distant threats. They’re risks to businesses worldwide today—and opportunities for innovation.

To plan for a thriving future, business leaders need to understand how rising global temperatures can change their investment landscape in the near future. Those at the forefront already see the potential in climate solutions, such as cleaner energy and transportation, and products that improve water and energy efficiency. They now have a new resource to expand their knowledge base: Columbia University has launched the Center for Climate and Life to bring business, finance and science together to advance global understanding of the impact a changing climate will have on life’s essentials—food, water and shelter—and to find ways to make energy more sustainable.

“Scientific knowledge is a market force,” said Center for Climate and Life Director Peter deMenocal, who discussed the challenges ahead with business leaders during the UN Climate Summit in Paris. “With its focus on life systems and their responses to climate change, the center can address issues and find solutions to the most important challenges facing global societies today.”

The more than 70 scientists affiliated with the Center for Climate and Life have interdisciplinary studies underway across these areas and more, many of them at Columbia’s acclaimed Lamont-Doherty Earth Observatory. The center uses philanthropic impact funding and university support to fund research that will accelerate knowledge generation in these key areas.

Maureen Raymo, for example, leads studies to help forecast future sea level rise. Joerg Schafer’s work includes assessing the risks that nuclear power and hydropower plants face as glaciers they rely on for meltwater recede in warming temperatures. Richard Seager and his team examine the causes and impacts of regional-scale, multi-year drought events in the American West and Middle East regions. Sonya Dyhrman uses novel genomic methods to explore impacts of ocean acidification and warming on microbes that form the base of the ocean’s food chain. Other scientists and economists work on climate impacts on crop yields, pricing and food supplies.

Together, their research can provide the knowledge base necessary for business and finance to reduce their risk exposure and maximize emerging opportunities.

That knowledge and research skill drew the interest of the World Surf League, which is working with the Center for Climate and Life to develop a research program on the changing oceans. Aerospace giant Airbus is discussing another program, called AirBridge for Science, that would outfit an A320 fuselage as a flying scientific lab to conduct pole-to-pole missions studying changes in the Earth’s ice sheets, oceans, atmosphere and ecosystem health.

COP21_ad1

The Center for Climate and Life will host seminars and Climate-Business Roundtable events to bring scientists and business and finance leaders together to discuss cutting-edge climate research and business solutions. It also aims to change the dynamics of science funding by increasing private support for fundamental research, and it is developing a curriculum through Columbia’s School for Professional Studies for executives to expand their understanding of climate changes and inspire new ideas.

The Paris summit was the only a beginning. The Center for Climate and Life is working beyond Paris toward a better future.

“Climate science is making great strides in defining how, when and why major components of the global climate and life systems are in flux,” deMenocal said. “For stakeholders, this knowledge is actionable power.”

Learn more about the Columbia Center for Climate and Life at Lamont-Doherty Earth Observatory.

Greenland's Glaciers Receding at Fastest Rate in 9,500 Years - UPI

Featured News - Mon, 12/07/2015 - 15:20
Greenland's glaciers are on retreat, shrinking at strikingly fast rates -- at least twice as fast as any time over the last 9,500 years, according to new research for Lamont-Doherty's William D'Andrea.

The Human Contribution to the California Drought

The 2015 Paris Climate Summit - Mon, 12/07/2015 - 09:57
 calfire.ca.gov

Park Williams’ recent study looked at what percentage of the drought in California has been caused by human-induced climate change. Photo: calfire.ca.gov

The Science, Revisited

Park Williams, a bioclimatologist from the Lamont-Doherty Earth Observatory and a California native, weighs in on the California drought and its connection to global warming in this past interview.

Park explains that this drought (like any drought) is primarily caused by climate variability. In this case, global warming has made the situation worse, because when things heat up, it increases the atmosphere’s ability to take water out of the environment. Park also goes into further detail about the nature of his work as a researcher and the importance of resilience when planning for future climate related changes.

“We know that there are many aspects of climate that will be unfamiliar to us, meaning that records will be broken in all kinds of things: rainfall, temperature, lake levels, stream flow, snow packs,” Park said. “None of these changes are going to occur all that gradually.

“Future extremes are going to occur more and more frequently. In planning, we don’t need to plan for the 2 degree warming that we are aiming for as a globe, we need to plan for the 10 degree increase in a day, or the year when there’s no water. We need to plan for worst-case scenarios. These scenarios may only occur once in the next century, but in many cases that’s all it takes.”

As the UN climate summit continues in Paris, we will continue posting past stories to help our readers understand climate science and its consequences.  Stay tuned for more climate related stories as the scientists at Lamont continue to keep a pulse on our planet.

COP21_ad2

The news from Palmer Station

Chasing Microbes in Antarctica - Sun, 12/06/2015 - 09:39

It’s been another quiet week at Palmer Station, out here on the edge of Antarctica…

This week was punctuated by a set of intense storms.  The one that came in on Wednesday was the most intense storm that we’ve had this season (see Jamie’s blog on the unusual winds this year here).  Just before the storm hit we made a quick run out to one of our regular sampling stations.  It was eerily quiet and the ice was drifting in.  Within an hour of our return to station the wind was up over thirty knots and the ice was coming in fast.  By the time the storm ended Arthur Harbor was chock-full of icebergs and large pieces of sea ice.  This shut boating operations down for the rest of the week.  The ice finally drifted out this morning with another (warm, wet) storm blowing from the east.  Chances don’t look good for getting out before the next storm arrives on the tail end of this one.

Whale

We got cruised – “whale watched” in Conor’s words – by this humpback whale on our last sampling trip, just before Wednesday’s storm hit.

Cut off from boating for a few days we took the opportunity to complete some side projects.  One that I’ve been particularly interested in doing is to take a look at the dense blooms of algae that form on top of the sea ice.  I’ve written quite a bit in the past on the ice algae that grow below sea ice (see here).  Wherever sea ice floods however, you also get a dense bloom at the ice surface.  Although this does happen in the Arctic this is primarily an Antarctic phenomenon.  The reason for this is that there is generally much more snow on Antarctic sea ice; the snow both insulates the ice and pushes it downward, making it warmer and more porous, and allowing seawater to infiltrate to the surface.  The reason for that is largely geographic.  One of the key distinctions between the Arctic and the Antarctic is that the latter is a continent surrounded by water.  The ring of ice around the Antarctic continent in winter eventually gives way to open water, and open water means precipitation.

We couldn’t use a boat to get a fresh chunk of ice (on account of there being too much ice), fortunately it was easy enough to get in a drysuit and wrangle one close to shore.

Jamie

Jamie keeps a lookout while I go wading after some algae-rich ice.

Scrape

Scrape the snow off of any of these floes and this is what you find; a thick ice-top algal bloom.

Conducting experiments on ice algae is non-trivial and I’m fortunate to have spent a good portion of my time in graduate school dealing with the peculiarities of sea ice biota.  One of the issues that we have to deal with is the semi-solid (emphasis on the semi for this slushy ice) nature of the sea ice matrix.  The bacteria and algae that we want to separate out for further study are located in brine channels within the ice, we need to melt the ice to get them out.  Simple enough, but consider that even for this very warm sea ice the salinity of the brine channels is roughly 37 ppt, while the bulk salinity of the ice (that is, the final salinity if you just let everything melt) is about 11 ppt (check out this open-access paper for a further explanation).  Taking the sea ice microbes from 37 ppt to 11 ppt would have induced quite a shock.  To avoid that we need to melt slowly into a sterile, pH controlled, high salinity brine so that the final melt is about equal in salinity to the brine channels.  That done we incubated the melt outside in clear bottles for a few hours to get everything acting like it was back on the ice floe.

Ice

Happy algae obtained from a carefully controlled melt.  Surprisingly the algal community was fairly diverse, although that may be the result of recent seawater intrusion.  The dominant diatom morphotype, the pennate diatoms with the long spines, is one that I haven’t observed in any other samples this season.  Another interesting detail is the low abundance of bacteria.  There are plenty there, they are the small dots scattered across the background, but are rare relative to the number of phytoplankton.  There is some debate about a possible decoupling of primary production and bacterial production in really productive sea ice that I touch on in this open access paper.  In this case bacteria might be inhibited by the high light conditions or by the ice algae themselves.

Once we felt that everything was acclimated we threw our complete analysis suite* at it; in addition to the core LTER measurements this includes measurement of photosynthetic efficiency, the reactive oxygen species superoxide and hydrogen peroxide, samples for RNA and DNA analysis, and lipid analysis.  The main thing that I’m interested in learning from these samples is how the ice top algal community differs from that below or within the ice.  The light regimes are completely different.  Algae growing underneath the ice are generally thought to be low-light specialists.  After all only a small fraction of the light that hits the ice surface makes it through into the water below.  The light conditions at the ice surface by contrast are intense – too intense for most phytoplankton species to perform well.  Given too much light the photosynthetic machinery of phytoplankton runs amok and starts to destroy the cell.

Experiments have demonstrated that low-light adapted ice algae are quickly destroyed by ice-top conditions.  Given enough time however, the range of conditions that algae can adapt to is quite phenomenal.  So are the ice algae at the surface the same as those underneath, but physiologically adapted to high light conditions?  Or are they a different species (or assemblage of species) specially adapted to this ecological niche?  So far all we know from yesterday’s effort is that they’re making quite a lot of the reactive oxygen species hydrogen peroxide and superoxide!  We’ll learn more over the next few days as we complete more of our analyses.  The real data however, RNA and DNA sequence abundances and the lipid profiles that Jamie is working on will take months to develop…

Not all side projects undertaken while we wait out the weather and the sea ice conditions have been research related, however.  Ashley and Chelsea, Rutgers undergraduates with the Schofield Palmer LTER group, found some time to get us all in the holiday spirit.

The chemis-tree; another US Antarctic Program infrastructure milestone.

The chemis-tree; another US Antarctic Program infrastructure milestone.

Well, that’s the news from Palmer Station, where all the seals are fat, all the penguins are curious, and all the science is above average.

*Many thanks to both the Schofield and Ducklow Palmer LTER teams for going along with crazy idea #2 for the season (#1 being the sea ice station.  #3 is still in development).

Antarctica’s Ice: the Big Picture

The 2015 Paris Climate Summit - Sun, 12/06/2015 - 09:00
Map of Antarctica, from NASA.

Map of Antarctica, from NASA.

The Science, Revisited:

The impacts of climate change are being felt around the world, but the changes in the polar regions have been more pronounced. The world began to take notice to these changes when an ice shelf roughly the size of Rhode Island collapsed into the ocean in 2002. At 10,000 years old, the Larson B Ice Shelf only took 35 days to fall completely into the sea. The event was a wake-up call to the world.

This article by Christine Evans, a graduate student in the Sustainability Management program, and Margie Turrin of the Lamont Doherty Earth Observatory, gives a comprehensive view of the state of Antarctic ice.

The article also helps contextualize the current research being conducted over the Ross Ice Shelf by the IcePod team. Be sure to check out the ongoing posts from the field here. And you can watch a video of scientist Robin Bell explaining the impact of the Larsen B collapse, and what’s going on with ice at the poles, here.

This is one in an ongoing series looking back at some key State of the Planet stories about climate science. We hope to help readers better understand the science and just what is at stake at the UN climate conferences in Paris. Stay tuned for more.

COP21_ad2

In Drought-Battered Somaliland, Climate Change Is Deadly Serious - Vice News

Featured News - Sat, 12/05/2015 - 12:00
People in Somaliland are losing everything as their land dries because of climate change. Cites research by Peter deMenocal showing dry conditions in the Horn of Africa are likely to get worse.

Why Prince Charles is Right to Link the Syrian War to Climate Change - Fortune

Featured News - Sat, 12/05/2015 - 12:00
The effect of warming temperatures on farmland and water supplies wasn't the sole cause of conflict, but it definitely made the situation in Syria worse, write Lamont's Richard Seager, Mark Cane, and Yochanan Kushnir.

Using LiDAR to Shine a Light on Ross Ice Shelf

The pod preparing to be mounted onto the LC130 aircraft for another day of work. (photo S. Pascaud)

The pod preparing to be mounted onto the LC130 aircraft for another day of work. (photo S. Pascaud)

As we closed out November the project team had completed 18 survey lines and 4 tie lines from a total of 9 flights, producing over 16,000 line km of data. The IcePod and team have been a working hard! The closing email for the month of November included these beautiful LiDAR images.

What is LiDAR?

LiDar (Light Detection and Ranging) is a remote sensing technique that uses light to develop an image of the surface of the Earth, and is an important part of our geophysical suite of measurements in ROSETTA. In the IcePod the instrument is located on the pod bottom behind a protected window. In flight, when the pod is lowered to collect data, the window cover slides open and a series of light pulses are sent to illuminate the area below. The time is then measured for the reflected light to return. Because we know the speed of light. and that speed is a constant (0.3 meters per nanosecond…or a very fast 186,000 miles per second!), we can use light to calculate distance with a high degree of accuracy. The equation is simple:

Distance = (speed of light X time of flight)/2 in order to account for the distance down and back from the aircraft. The result is the ability to create these 3 dimensional images of the land surface.

Enjoy these wonderful LiDAR images collected by the project team!

McMurdo Base, Antarctica imaged with LiDAR.  (processed by S. Starke)

McMurdo Base, Antarctica imaged with LiDAR. (processed by S. Starke)

The first image is from a standard pass over McMurdo Base in order to calibrate and confirm that the LiDAR system is working accurately. You can clearly see every building, fuel tank, road/pathway and the very systematic way that the base is laid out. The scale bar showing meters of elevation (or height) listed with elevation noted by ‘Ellipsoidal Height’ in meters, not a unit we see every day.

What is ellipsoid height?

We describe the Earth’s shape as an ellipsoid, rather than round or spherical, as the radius at the polar regions is slightly shorter than the radius at the equator. In reality the Earth’s surface is not smooth like an ellipsoid, instead we have mountains, deep valleys, ocean trenches and other surface features with elevation. However, GPS receivers used to locate placement follow a map of sea level using a reference ellipsoid to calculate elevation. To view these images the best approach might be to look at them as relative measures, for example the image of McMurdo shows a 185 m elevation difference between the the surface at 166°42’E and the surface at 166°39’E.

White Island in the Ross Ice Shelf of McMurdo (processed by S. Starke)

White Island in the Ross Ice Shelf of McMurdo (processed by S. Starke)

Located close to McMurdo on the Ross Ice Shelf is a small island ~28 km or 15 miles long called White Island. Protruding up through the ice shelf it is named for its covering of snow, and is a sister to Black Island, named, not surprisingly for its lack of snow cover. Both were discovered on the same expedition in the early 1900s. Using the scale for this image you will see the elevation contours for the island peaking out at 40 m Ellipsoid Elevation, approximately 80 m higher than the ice at the ice shelf.

Crary Ice Rise, Ross Ice Shelf, Antarctica (processed by S. Starke)

Crary Ice Rise, Ross Ice Shelf, Antarctica (processed by S. Starke)

The third image is of crevassing near Crary Ice Rise.

What is an ice rise?

An ice rise is a region of increase in elevation in the relatively flat expanse of the ice shelf caused by floating ice in the shelf physically ‘grounding’ or touching the seafloor below. It differs from an island as the land in an island sits above sea levels. Here the ice is touching land that is still below sea level; it is a section of sea floor raised so that it causes the flowing ice in the deep ice shelf to hit it and drag. This tension of the ice dragging over the contact area, combined with the faster flowing ice around the edges, causes the ice to crevasse as seen in the image.

Yes those are seals! Weddell seals lying on the  ice and imaged by the LiDAR. (Processed by S. Starke)

Yes those are seals! Weddell seals lying on the ice and imaged by the LiDAR. (Processed by S. Starke)

Our fourth image is of seals laying out on the ice. The Weddell seal is well represented in the area of McMurdo, although they are also found distributed around the circumpolar Antarctica. Weddells are well studied by the science community, as they are very accessible, abundant in numbers, and are easily approached by humans. Perhaps they have been imaged in LiDAR previously, but we are happy to have captured them resting on the ice! To provide some context we have included a video of a Weddell seal collected by our project GPS specialist, Sarah Starke.

Be sure to check our GIS flight tracker for the most up to date flights!

For more about this NSF and Moore Foundation funded project, check our project website: ROSSETTA.

Margie Turrin is blogging for the IcePod team while they are in the field.

Vikings' Mysterious Abandonment of Greenland: Not Due to Changing Climate? - Washington Post

Featured News - Fri, 12/04/2015 - 12:00
New geological data analyzed by Lamont's Nicolas Young and Joerg Schaefer on the extent of glaciers in the region at the time show that during the era when the Norse occupied the area, glaciers were almost as far advanced as they were during the subsequent Little Ice Age.

Did Climate Change Make the Norse Disappear From Greenland? - Smithsonian

Featured News - Fri, 12/04/2015 - 12:00
Evidence from glacial deposits analyzed by Lamont's Nicolas Young and Joerg Schaefer adds a new twist to the tale of the mysterious lost settlements of Greenland.

Greenland's Vikings Mystery: Climate Change Didn't Drive Norse Away - International Business Times

Featured News - Fri, 12/04/2015 - 12:00
Erik the Red's colonization of Greenland did not come to an end because of falling temperatures, according to a new study by Lamont's Nicolas Young and Joerg Schaefer. They find that Greenland was already pretty cold when the Vikings arrived, suggesting that the Medieval Warm Period wasn't uniform around the globe.

Pages

 

Subscribe to Lamont-Doherty Earth Observatory aggregator