News aggregator

Catch Up on the Latest in Earth Science with AGU Sessions Live Online

American Geophysical Union Fall Meeting - Mon, 12/14/2015 - 01:30

Peter Kelemen in Oman

The American Geophysical Union’s Fall Meeting opens this morning in San Francisco, where for the next week, more than 20,000 scientists will be giving presentations, joining discussions and, perhaps most importantly, meeting with collaborators to develop new research ideas and form future research teams during the largest Earth and space sciences meeting in the world.

You don’t have to be in the room to catch up on the research being presented. Several sessions, including those listed by date and time below, will be live-streamed through AGU On-Demand. We also will be tweeting from @LamontEarth, using #AGU15, and posting on Facebook to share details and related links from presentations, posters and awards throughout the week.

The presentations during the meetings will include the work of more than 100 scientists from Columbia University’s Lamont-Doherty Earth Observatory. Among them, Park Williams will be discussing his latest research on the connections between rising temperatures and the California drought; the ROSETTA-Ice and IcePod team will be sharing findings from their just-completed mapping flights over Antarctica’s Ross Ice Shelf; and Robin Bell will be convening a session on the future of Antarctic and Southern Ocean research. Marine geologist Suzanne Carbotte also will be honored as a 2015 AGU Fellow.

You can watch the following sessions involving Lamont scientists live online at AGU On-Demand (all times are Pacific Standard Time):

Monday, Dec. 14

8 a.m. – 8:45 a.m. PST – Causes of the California Drought
Richard Seager, starting at 8 a.m., and Park Williams, starting at 8:30, present their latest research on the causes of the 2011-2015 California drought and the role of anthropogenic warming. Their paper earlier this year suggested that rising global temperatures had worsened the drought by as much as 27 percent.
AGU On-Demand Channel: Extreme Events and Hazards

8 a.m. – 10 a.m. PST – Ice Sheets and Sea Level Rise During Past Warm Periods
Alessio Rovere convenes a session with a series of presentations on research into historic sea level rise and ice sheet changes in the past and what those findings tell us about the future. Maureen Raymo is a co-author of a paper being discussed about how dynamic topography could have influenced the stability of the Antarctic Ice Sheet during the Mid-Pliocene Warm period.
AGU On-Demand Channel: Earth Discovery

2:55 p.m. – 3:10 p.m. PST – Strain on the Lesser Antilles Megathrust
Belle Philibosian, in a session on tectonic evolution and earthquake risks, will be presenting her work using coral microatolls to model the underlying strain accumulation on the Lesser Antilles megathrust. Her findings contrast with recent models suggesting that little or no strain has been accumulating along the subduction zone near the Caribbean island group that includes Dominica, St. Lucia and Martinique.
AGU On-Demand Channel: Extreme Events and Hazards

Tuesday, Dec. 15

1:40 p.m. – 3:40 p.m. PST – Future-Proofing 20th Century Science Records
Kerstin Lehnert convenes a two-hour session of presentations on data management as technology changes. She also is a coauthor of a paper being presented on preserving the science legacy of the Apollo missions to the moon.
AGU On-Demand Channel: Union

Wednesday, Dec. 16

1:40 p.m. – 3:40 p.m. PST – Extreme Weather and the Changing Polar Climate
Xiaojun Yuan convenes a session on extratropical and high-latitude storms, teleconnections, extreme weather, and the changing polar climate. Karen Smith is the coauthor of paper being presented on the impact Arctic amplification could have on weather and climate in the mid-latitudes of the Northern Hemisphere.
AGU On-Demand Channel: Climate

4 p.m. – 6 p.m. PST – The Impact of Fracking on Water Quality
Beizhan Yan, with coauthors Martin Stute, Steve Chillrud and James Ross, have been analyzing ions found in water samples from gas wells in Pennsylvania, possibly related to hydraulic fracturing. Starting at 4:45 p.m., Yan presents their latest results during a session exploring environmental impacts of hydraulic fracturing.
AGU On-Demand Channel: Natural Resources

Thursday, Dec. 17

2:40 p.m. – 2:55 p.m. PST – Friction in Subduction Zones
Hannah Rabinowitz, working with Heather Savage, discusses how carbonate-rich layers of sediment can impact the frictional behavior of subduction zones.
AGU On-Demand Channel: Extreme Events and Hazards

Learn more about the work underway at Lamont-Doherty Earth Observatory.

Making sense of megafauna: The canyon hypothesis

Chasing Microbes in Antarctica - Sun, 12/13/2015 - 08:16

Earlier in the week we had our orca show, yesterday this was the view of the top of our boat ramp:

A group of elephant seals lounges at the top of the Palmer Station boat ramp.

In fact that view hasn’t changed.  From the science office I can just make out the penguin colony on Torgersen Island, and there are plenty of their flying relatives around.  Does every bay on the Antarctic Peninsula look like this?  Or is there something special about the location of Palmer Station?

The answer is a little of both.  Certainly the West Antarctic Peninsula has more marine megafauna than just about anywhere else on Earth.  My experience from the Palmer LTER cruise two years ago was that seals and penguins are fairly ubiquitous along the coast.  That is not to say that they are equally distributed however, and the site for Palmer Station was selected in part for the high concentration of animals here – perhaps most visibly the Torgersen Island penguin colony.

The bathymetery of the canyon leading into Montery Bay.

The bathymetery of Monterey Canyon, terminating at the Salinas River at the head of the bay.  Image from the website of the Naval Postgraduate School at https://savage.nps.edu/Savage/Locations/MontereyBayCalifornia/_pages/page03.html.

A lot of work has gone into understanding how and why marine fauna is distributed along the West Antarctic Peninsula, and this has given rise to what is called the canyon hypothesis.  Anyone who’s ever been to Monterey Bay, California or read John Steinbeck’s famous novel Cannery Row is already familiar with the role that submarine canyons can play in marine ecology.  In the case of Monterey Bay dense schools of sardines congregate (or rather congregated, before they were all fished out) at the head of a deep marine canyon that cuts across the continental shelf.  Sardines, much like krill in the Antarctic, are a critical intermediate in the food web, being small enough to feed on nearly-microscopic plankton and large enough to serve as a practical food source for big predatory fish, seals, and whales.

Sardines concentrate at the head of Monterey Canyon because their food source concentrates there.  If we follow that logic further down the food web we reach a point where abundant nutrients, namely phosphorous, nitrogen, and silicate, support the growth of phytoplankton.  These are fed on by small zooplankton, which in turn are fed on by sardines, and the biomass is slowly channeled up the foodweb.  So the distribution of megafauna is dependent on the distribution of nutrients, but what do canyons have to do with all this?

Throughout the world’s oceans deep water is generally more nutrient rich than surface water.  In the photic zone, the portion of the water column that has enough light to support photosynthesis, nutrients are quickly used up by phytoplankton.  By contrast in the deep, dark ocean there is no photosynthesis, and the bacterial degradation of organic matter sinking out of the photic-zone releases a considerable fraction of these nutrients back into the water column.  Generally the deeper the water the older it is, and the longer it has had to accumulate nutrients.  Places in the ocean where this deep, nutrient-rich water reaches the surface are highly productive and are often famous for their fisheries.

Coastal upwelling site, where nutrient-rich deep water is returned to the photic zone.  Figure taken from

Coastal upwelling sites, where nutrient-rich deep water is returned to the photic zone. Figure taken from Capon and Hutchins, 2013.  Notable upwelling sites are circled in white and include the (clockwise from top-left) California current, Canary, Benguela, and Peruvian upwelling systems.

Much of this upwelling of deep nutrient-rich water is caused by a geophysical phenomenon called Ekman transport.  Locally however, marine canyons can provide an additional opportunity for upwelling by channeling deep water onto and across the continental shelf.  Returning to Palmer Station, let’s take a look at the bathymetery of Arthur Harbor:

The Bathymetry of Arthur Harbor, reconstructed from data collected by Philippe Tortell.

The Bathymetry of Arthur Harbor, reconstructed from data collected by Philippe Tortell.  Station B, one of the regular LTER sampling sites, is shown by an open circle (Station E, our other regular sampling site, is off the map along a trajectory 160 degrees from Station B).  The green area that terminates at Station B is the head of a network of marine canyons.

We have nothing like the detailed bathymetery of Monterey Canyon, probably one of the best-studied submarine canyons in the world, but you don’t need ultra-high resolution to make out the network of submarine canyons snaking into Arthur Harbor.  These canyons don’t cut to the phenomenal depth of Monterey Canyon, but due to the unique setting of the coastal Antarctic they don’t need to.  Away from the immediate coastal area surface waters around Antarctica are iron limited.  This is the result of limited dust deposition and a lack of rivers.  Because of this iron limitation nitrogen, silicate, and phosphate are less likely to be drawn down.  Submarine canyons along the West Antarctic Peninsula are able to channel intermediate-depth nutrient-rich water from offshore areas right into coastal bays and fjords.  The result is a convergence of iron-rich nearshore water and macronutrient-rich offshore water and high biological productivity.

Ashley and Chelsea take one of the Schoefield group's gliders for a test swim in advance of deployments later this month.

Ashley and Chelsea take one of the Schofield group’s gliders for a test swim in advance of deployments later this month.

Of course the penguins and seals know all this, but it’s taken us a while to figure it out.  Oscar Schofield‘s group in the Palmer LTER project has done some really amazing work with gliders to validate the canyon hypothesis; tagging penguins from Torgesen Island and programming gliders equipped with bio-optical sensors to follow the penguins to their feeding grounds.  Not surprisingly the penguins feed on krill that congregate at the head of the submarine canyon, just as sardines congregate in Monterey Bay.  We are still data-limited for much of the West Antarctic Peninsula, but there seems to be a remarkable correlation between the locations of penguin colonies and major submarine canyons, suggesting that the canyon hypothesis is not limited to Arthur Harbor.

As I’m writing this Nicole, Ashley, and Chelsea are back at Station B in an attempt to return to our bi-weekly sampling program.  Boating was shut down for most of the week from ice and/or high winds, and winds and warmer temperatures have finally succeeded in breaking up much of the fast ice in Arthur Harbor.  After six weeks our ice station is finally gone, and in less than two weeks Jamie and I will be gone as well!

What is the U.S. Commitment in Paris?

The 2015 Paris Climate Summit - Fri, 12/11/2015 - 08:55

US emissions chartThe United States has joined 185 countries in promising to curb carbon dioxide and other greenhouse gas emissions, develop other ways to mitigate the impacts and to make communities more resilient to climate change. These proposals, called the “Intended Nationally Determined Contributions,” have been submitted to the United Nations prior to 12 days of negotiations going on now in Paris.

At the opening of the talks Monday, President Obama told the gathering, “I’ve come here personally as the leader of the world’s largest economy and the second largest emitter [of greenhouse gases] to say that the United States not only recognizes its role in creating this problem, we embrace our responsibility to do something about it.”

So what exactly is the United States proposing to do?

The United States has committed to reduce its greenhouse gas emissions by 26-28 percent below the 2005 level in 2025, and to make “best efforts” to reduce emissions by 28 percent. That would include curbs on carbon dioxide, methane, nitrous oxide, perfluorocarbons, sulfur hexafluoride and nitrogen trifluoride, all of which contribute to global warming.

How will we do that? The United States already is taking measures that will help reduce emissions. The nation can continue that effort by becoming more efficient in how we use energy in everything from buildings and cars to washing machines and cell phones; using a greater portion of alternative energies like solar and wind over fossil fuels; and developing better technologies for energy storage, and for the capture, storage and recycling of carbon.

All of that could take place through a combination of laws, regulations and incentives—Congress and the courts willing. That includes regulations under the Clean Air Act that would force electric power plants to reduce their carbon emissions; and grants and tax incentives to propel the development of more alternative energy sources like wind and solar power.

The power sector now accounts for 31 percent of U.S. emissions. Efforts to upgrade the electricity grid to better accommodate intermittent sources like solar and wind would help, as would development of better energy storage technologies.

The efforts to date have put the U.S. on a path to reduce emissions 17 percent below the 2005 level by 2020. To reach the new 2025 goal, the nation will have to double the pace.

 EPA

U.S. greenhouse gas emissions by economic sector. Source: EPA

Here’s a look at key ways we’re cutting emissions:

Fuel economy standards: Transportation accounts for about 27 percent of U.S. emissions. The government has been setting “corporate average fuel economy” standards since 1975—requiring automakers to meet an average miles-per-gallon standard for their products (with exceptions), or pay a penalty. The U.S. has adopted new standards for light-duty vehicles produced between 2012 and 2025, and for heavy duty vehicles for 2014-2018. The U.S. Department of Transportation and the Environmental Protection Agency are preparing to set new standards for heavy-duty vehicles post 2018.

Buildings and appliances: The Department of Energy is preparing measures to curb emissions by setting energy conservation standards for appliances and other types of equipment, and building code standards for commercial and residential buildings. Many of these standards already exist; they are likely to become stronger.

 EPA

U.S. greenhouse gas emissions by type. Source: EPA

Power plants: 31 percent of greenhouse gas emissions come from the production of electricity, most of which relies on fossil fuels, mostly natural gas and coal. The Clean Power Plan established by the EPA under the Clean Air Act sets goals for each state to cut carbon pollution, and allows states to come up with their own plans to meet those goals. The plan is likely to greatly reduce reliance on coal, which is the most polluting fuel. The plan has been challenged in Congress and the courts.

Other greenhouse gases: The EPA has pushed for other ways to reduce emissions of other greenhouse gases, such as methane, nitrous oxide, perfluorocarbons, sulfur hexafluoride, and nitrogen trifluoride. The EPA is developing standards to address methane emissions from landfills and the oil and gas sector.

Financial and aid commitments: The U.S. already has pledged $3 billion to the Green Climate Fund, an international pool of funding intended to help countries adopt less-polluting energy sources and cut emissions. This week, Secretary of State John Kerry told the climate gathering that the United States also will double its commitment to $861 million in grant-based investments to help developing nations find ways to adapt to climate change. To what extent the U.S. Congress will go along with that remains to be seen.

To see the U.S. commitment, visit this site; and for an analysis, take a look at this blog post at the World Resources Institute site.

For a good overview of what different nations are saying they will do, try this site. http://cait.wri.org/indc/.

And what about other countries? Here are examples from key players:

The European Union: Similar to the United States, the EU has pledged to reduce emissions. They have committed to a target of at least 40 percent domestic emissions reductions below 1990 by 2030. The EU emphasizes the importance of transparency of accounting and reporting of emissions in quantitative assessments. The EU proposal does not specifically mention how the member countries plan to accomplish the goal.

There are challenges unique to each country in the EU. France is heavily dependent on nuclear energy, which should give them a boost. Germany on the other hand has been moving away from nuclear energy, and is committed to broadening its renewable energy portfolio, but has been hampered by higher energy prices.

China: China is the leading emitter of greenhouse gases. And, the country’s proposal includes measure aimed at climate change mitigation, adaptation, finance, technology development and transfer, capacity building and transparency of action and support. The country says it will reduce CO2 emissions per unit of GDP—known as carbon intensity—by 60 to 65 percent below 2005 levels by 2030. That means its energy consumption will continue to grow, but they plan to use it more efficiently, before they hope to peak energy use in 2030. China also plans to increase forest carbon stock volume by around 4.5 billion cubic meters from 2005 levels by 2030. In other words, they will plant a lot of trees that can soak up carbon from the atmosphere, mitigating some of the added energy they will be using.

According to an analysis by the World Resources Institute, “increasing forest carbon stocks by 4.5 billion cubic meters implies an increase in forest cover of 50-100 million hectares (124-247 million acres) of forest, or about two to four times the size of the United Kingdom. This amount of forest would create a roughly 1-gigaton carbon sink, equivalent to stopping tropical deforestation for almost a full year, or taking 770 million cars off the road.”

India: India is particularly interesting to look at because of its growing population. As a developing nation, India is concerned with how it can develop while lowering the emissions intensity—the amount of emissions per capital or per unit of production. They hope to accomplish decreased emissions with financial help from developed nations, who have been responsible for the bulk of greenhouse gas emissions over the past 150 years.

India hopes to reduce emissions intensity of its GDP by 33-35 percent by 2030, and achieve 40 percent cumulative electric power installed capacity from non-fossil fuel based energy resources by 2030 with the help of transfer technology and low-cost international financing from the Green Climate Fund. That fund was set up by the UN to help developing countries mitigate and adapt to climate change.

Jennifer Sweeney, an intern at The Earth Institute, contributed research and writing for this post.

COP21_ad2

Optimism, But Also a Hard Bottom Line for Island States

The 2015 Paris Climate Summit - Thu, 12/10/2015 - 13:23
 Kadra Rayale, Rija Rasul, Tong, Vidya Nair and Laura Maxwell.

Students from the University of Waterloo in Canada had a breakfast meeting with the Kiribati delegation and met the island nation’s president, Anote Tong, on Dec. 6. From left: Kadra Rayale, Rija Rasul, Tong, Vidya Nair and Laura Maxwell.

Four students in the Masters in Public Administration in Development Practice program at the University of Waterloo in Canada are in Paris for the UN climate summit to represent the Republic of Kiribati. The small island nation is one of several threatened by sea level rise.

This week they have been sitting in on various thematic discussions. Rija Rasul reports she has attended climate finance discussions. Her colleagues Laura Maxwell and Kadra Rayale have been in sessions on adaptation to, and loss and damage from climate change. Vidya Nair has been in discussions about technology and capacity building.

“We are looking at [these topics] from the perspective of small island developing states, including Kiribati,” Rajul said. “Collectively, small island developing states have brought forward a strong voice at the table in regards to the above four thematic areas, because for them, it is an issue of survival.”

The talks are meant to wind up Friday, and the students are hopeful.

“Reaching an agreement would firstly mean an increase in awareness for the particular situation faced by small island developing states,” Rajul said. “States such as Kiribati are on the front line of climate change since they are already experiencing its effects, and an agreement would enhance recognition of [their] vulnerability.”

 Eskinder Debebe/UN

Kiribati faces the prospect of eventual inundation from sea level rise. Photo: Eskinder Debebe/UN

Many nations, particularly some of those most vulnerable to climate impacts, are calling for the agreement to recognize the need to keep global warming to 1.5 degrees C. Going into negotiations, the target was 2˚C over the pre-industrial-era average, which many feel is an upper limit needed to avoid the worst effects of climate change. Many feel 2˚C is not ambitious enough.

According to The Guardian news website, “Trinidad and Tobago’s delegate warned the Paris agreement would be ‘seriously flawed’ if it did not stick to an ambitious 1.5˚C target to limiting warming. Barbados offered even stronger language, warning: ‘We will not sign off any agreement that represents a certain extinction of our people.’ “

Rising sea levels have already engulfed large areas of Kiribati, and nearly a quarter of the country’s population has had to move, according to reporting by IRIN, an independent news website that focuses on humanitarian issues.

“What we need is a boost from the international community to lift us out of the water,” Tong told delegates in Paris, according to a story on the IRIN site. Tong and other leaders of similar states are pushing for the final Paris agreement to include measures that would facilitate migration as an adaptation to climate change threats and build capacity to cope with natural disasters and displacement. That will require significant financial support from the international community, IRIN reports.

According to The Guardian, Tong remained upbeat: “I’ve always said we need to come away from Paris with a deal that would ensure the survival of people. Nobody left behind—that’s the mission all along. This is quite a long way from where we started. It’s coming together.”

COP21_ad1Another contentious point is to what degree wealthier nations will contribute money to help poorer nations adapt. U.S. Secretary of State John Kerry has said the United States would double its commitment to help countries already under threat.

“There are countries … for which climate change is an existential threat today,” Kerry told the Paris gathering on Dec. 9. “For them, this isn’t a matter of annexes or peak years—it’s a matter of life and death. …

“One of the hard realities that we’re facing is that our collective delay now means that some of the impacts of climate change can’t be reversed,” Kerry said. “We have a moral responsibility to adapt and prepare for those impacts and enable the most vulnerable among us to be able to do the same.”

“We have definitely seen an increase in optimism as the days progress,” Rajul said. “And although negotiations are ongoing, we are hopeful for an ambitious agreement, which in turn would hopefully lead to increased resilience and capacity building.”

The Earth Institute’s Masters in Public Administration in Development Practice at Columbia University is part of a global association of related programs, including the one at the University of Waterloo. To find out more about the global association, go here.

Sea Level Rise: How Much, How Fast?

The 2015 Paris Climate Summit - Thu, 12/10/2015 - 11:33
 NOAA

Iceberg off Antarctica. Photo: NOAA

The Science, Revisited

In a past State of the Planet article, we looked at a paper written by James Hansen, director of the Program on Climate Science, Awareness and Solutions, and 16 other researchers warning of potentially dire affects of global warming. In the paper, Hansen argues that unless carbon emissions are drastically reduced, sea level rise caused by melting glaciers in Antarctica and Greenland could have catastrophic effects on coastal regions. Although the claim Hansen is making is one that scientists have long been arguing for, the evidence that he and his team put together in a paper published this summer suggests that things may be worse that we think.

By studying modeled climate evidence from the Eemian period (the last interglacial period, when temperatures were warmer than today) the team concluded that the warming going on today risks setting off “feedbacks” in the climate system. These feedbacks include changes in ocean circulation and the speed at which ice sheets may collapse. Just how much will this affect us, and how fast? The paper argues that sea levels could rise 10 feet within the next 50 to 100 years.

Visit the full scientific paper here to learn more about the research. Hansen is the former head of the NASA-Goddard Institute for Space Studies.

COP21_ad1This post is part of an ongoing series devoted to re-addressing important science stories in order to better inform our readership of the science and its consequences as the UN climate negotiations in Paris continue.

What Is Ocean Acidification & Why Does It Matter?

The 2015 Paris Climate Summit - Wed, 12/09/2015 - 19:14

As excess carbon dioxide is absorbed into the oceans, it is starting to have profound effects on marine life, from oysters to tiny snails at the base of the food chain.

Oysters raised on the mud flats of the U.S. Pacific Northwest are prized by restaurants around the country, but starting around 2007, the Pacific oyster population went into crisis. The oysters were hatching, but they weren’t secreting shells quickly enough to protect themselves. Without shells, the young oysters were vulnerable, and large numbers didn’t survive.

Biologists traced the problem to changing chemistry in the ocean – the water was becoming more acidic and currents were bringing in water that contained less of a calcium carbonate mineral called aragonite that oysters need to build their shells.

“Ocean acidification has been called the evil twin of global warming. It is the other carbon dioxide problem. As we increase the acidity of sea water, it has an effect on organisms,” said Bärbel Hönisch, a biologist and oceanographer at Columbia University’s Lamont-Doherty Earth Observatory. She explains ocean acidification and its effects in more detail in the video above, and discusses how scientists use ancient shells from the sea floor to understand how ocean chemistry has changed over time and could change in the future in the second video, below.

Ocean acidification itself is a fairly simple chemical process. As carbon dioxide (CO2) dissolves in water (H2O), it creates carbonic acid (H2CO3), which is a weak acid. Carbonic acid dissociates into hydrogen ions (H+) and bicarbonate ions (HCO3-1), and the hydrogen ions bond with carbonate ions (CO3-2) in the water. In the oceans, many sea creatures with calcium carbonate skeletons and shells also rely on those carbonate ions for aragonite and calcite to build their skeletons and shells.

Studies show that as carbon dioxide levels have increased in the atmosphere over the past two centuries, seawater has become less saturated with aragonite and calcite. The average pH of seawater has fallen from about 8.2 to 8.1, about a 30 percent increase in acidity on pH’s logarithmic scale.

In the Pacific Northwest, once biologists discovered the source of the oysters’ troubles, they were able to work with oyster growers to develop workarounds to help the oysters grow. Some timed spawning to afternoons, when photosynthetic activity would be higher and more carbon dioxide would be taken up in the water around the hatcheries. By carefully monitoring the acidity of the water brought into the oyster pools, they could also add carbonate to the water as needed and then move the growing oysters to the mud flats after their shells started to form.

For other marine life, however, there is no escape from ocean acidification.

“Ocean acidification has effects, in the end, for our food chain. We see it in pteropods – tiny marine snails are an important source of food for juvenile Pacific salmon. They are growing thinner shells, and the shells malform under acidified conditions. We see it in sea urchins; in crabs. We see it in a number of organisms that secrete calcium carbon shells; they are having a hard time making their shells,” Hönisch said.

Those changes play out in different ways in different parts of the oceans.

The climatological mean distribution of pH in the global ocean surface water in February 2005. The “+” symbol indicates areas affected by El Niño events. (Takahashi et al., 2014)

The climatological mean distribution of pH in the global ocean surface water in February 2005. On the pH scale, 7 is neutral. (Takahashi et al., 2014)

A global study in 2014 led by Lamont’s Taro Takahashi mapped acidification changes around the world and found the lowest pH levels in the cold waters off Siberia and Alaska, the Pacific Northwest and Antarctica. The scientists found that over extensive ocean areas, excluding the polar regions, pH had been declining by a mean rate of about 0.02 pH units per decade. The concentration of CO2 had been increasing at a rate of about 19 μatm per decade, consistent with the mean increase of 19 ppm per decade in atmospheric CO2 concentration over the past 20 years.

“This suggests that the global oceans are being acidified primarily in response to the atmospheric CO2 increase,” Takahashi and his co-authors write.

The National Oceanic and Atmospheric Administration found similar results in 2015, looking specifically at aragonite concentrations. Cold water holds more carbon dioxide, and the scientists found that the Arctic Ocean, northern Pacific and Antarctic waters were acidifying faster than other areas. All of the world’s oceans, from the surface down to 50 meters, are still considered supersaturated with aragonite, but the levels have declined globally, the NOAA study found. At depths down to 100 meters, NOAA found that aragonite saturation had fallen by an average rate of about 0.4 percent per year since 1989.

Scientists know from studying deep ocean sediment cores that acidification has wreaked havoc on marine life before. Watch the video below to learn more.

About 56 million years ago, during the Paleocene-Eocene Thermal Maximum, temperatures rose and there is evidence that coral reefs collapsed and many deep-sea benthic foraminifers, which produce shells of calcium carbonate, disappeared. “There is indication that sea water acidified at the time,” Hönisch said. “What we’ve realized is that the acidification at that time was about as large as what we’re predicting for the end of this century.”

Jeffrey Sachs Talks About the Talks in Paris

The 2015 Paris Climate Summit - Wed, 12/09/2015 - 15:55

At Le Bourget outside Paris, the site of the UN climate talks, Earth Institute Director Jeffrey Sachs talks to FRANCE 24 English TV about what’s likely to happen at the climate negotiations in Paris.

What kind of agreement will we get? Will it be too vague to be effective? What are the sticky issues, and will the developed world be willing to pony up billions of dollars to help out the developing nations? Sacks says the U.S. Congress “doesn’t want to give a penny” and accuses the Republicans of being stuck in denial and in the pockets of the fossil fuel industry.

Watch the video…

COP21_ad2

World Wildlife Fund, Earth Institute Form New Partnership

The 2015 Paris Climate Summit - Wed, 12/09/2015 - 13:14
 © naturepl.com / Lynn M. Stone / WWF-Canon

One of the world’s largest tiger populations is found in the Sundarbans—a large mangrove forest area shared by India and Bangladesh on the northern coast of the Indian Ocean. Rising sea levels caused by climate change threaten to wipe out these forests and the last remaining habitat of this tiger population. Photo: © naturepl.com / Lynn M. Stone / WWF-Canon

Conservation efforts have long been focused on preserving species and natural environments around the world, exemplified by campaigns to save iconic creatures such as whales, elephants and tigers, and preserve majestic areas such as Yellowstone, Yosemite and the Great Barrier Reef. But for many species, the changing climate is altering the equation for how best to do this. Plants and animals evolve, move away or die in the face of an altered habitat.

Now the World Wildlife Fund will collaborate with the Earth Institute’s Center for Climate Systems Research to incorporate climate change information into conservation efforts.

 WWF

Carter Roberts of the World Wildlife Fund, left, and Jeffrey Sachs of The Earth Institute signed an agreement this week to set up a partnership between the two organizations to incorporate climate research into conservation efforts. Photo: WWF

World Wildlife Fund President and CEO Carter Roberts, and Jeffrey Sachs, director of The Earth Institute at Columbia University, signed a memorandum of understanding today for a new partnership to advance resilience to climate change named “ADVANCE”—Adaptation for Development and Conservation. The signing took place in Paris, where hundreds of world leaders have come together at the global climate change negotiations.

The goal of this new collaboration is to advance adaptation to the impacts of climate change around the globe. The partners will create new ways of generating climate risk information and embedding it into the World Wildlife Fund’s conservation and development planning, policies and practice.

ADVANCE envisions a future where the world is using co-generated climate risk information based on the best available science to guide conservation, development and disaster risk reduction in order to benefit both people and nature.

The Center for Climate Systems Research scientists and World Wildlife Fund experts are working together with local stakeholders to create and test a new approach to “co-generate” climate information for initiatives in Africa, Asia and Latin America. ADVANCE has already begun work in Myanmar, and upcoming pilot projects have been identified in Colombia, Bhutan and Tanzania. Learning from these early projects will catalyze future work and help inform policy guidance for partner institutions.

 WWF

Cynthia Rosenzweig of the Center for Climate Systems Research joined World Wildlife Fund President and CEO Carter Roberts at the announcement in Paris this week of a new collaboration on climate science and conservation. Photo: WWF

No region on Earth has been untouched by climate change and its cascading impacts. Even with a successful climate agreement in Paris, the climate will continue to change for centuries. The impacts will continue to affect people and their livelihoods, sensitive ecosystems and endangered species across the globe. This is why climate scientists and conservationists need to urgently work together to provide solutions to enhance resilience.

“The world needs big ideas that can move at the speed and scale necessary to make a difference. I love this partnership; it brings together extraordinary institutions to help the world adopt, adapt, implement and learn,” said Roberts. “ADVANCE aims to incubate, and identify, models that matter.”

“The ADVANCE partnership with the World Wildlife Fund is a wonderful program to help communities around the world to adapt to climate change with best practices based on rigorous science and active collaboration of scientists and affected communities,” said Sachs. “The climate scientists at the Center for Climate Systems Research have a vast experience in working with stakeholders to provide them with the very best climate risk information. From Asia’s high mountains to Myanmar and upcoming pilot projects in Colombia, Bhutan and Tanzania, the World Wildlife Fund and Columbia’s Earth Institute are already working to advance conservation and development.”

To learn more about the partnership, contact Shaun Martin at shaun.martin@wwfus.org or Cynthia Rosenzweig at crr2@columbia.edu.

For more information about the World Wildlife fund, visit www.worldwildlife.org and follow the organization’s news conversations on Twitter @WWFnews.

For more information on the Center for Climate Systems Research, visit www.ccsr.columbia.edu.

COP21_ad2

The Changing Climate of Security

The 2015 Paris Climate Summit - Wed, 12/09/2015 - 08:44
iraqndvia_spt_200804

Drought in the Fertile Crescent region of Iraq and Syria. Photo: NASA Earth Observatory.

By Dylan Adler

In the Democratic presidential primary debate on Nov. 14, CBS’s John Dickerson asked U.S. Sen. Bernie Sanders, “In the previous debate you said the greatest threat to national security was climate change. Do you still believe that?” Senator Sanders quickly replied “Absolutely. In fact, climate change is directly related to the growth of terrorism…you’re going to see countries all over the world…struggling over limited amounts of water, limited amounts of land to grow their crops…you’re going to see all kinds of international conflict.”

21145251444_34a5a66543_o

Democratic Presidential Candidate Bernie Sanders speaks at a campaign event in Iowa. Photo: Phil Roeder, Flickr.

The senator’s answer was met with a wide range of responses. Environmentalists praised his response and the attention he gave to climate change. Some Republicans called his statement absurd, and claimed Sanders was combining two unrelated issues. While Sanders’ response has brought this into the national spotlight, the idea of climate change posing a national security threat is nothing new.

Officials at different levels of the United States Government have already been incorporating climate change into their analysis of national security threats. In 2014, Secretary of State John Kerry, in a speech in Indonesia, stated that climate change was a global threat of the same magnitude as terrorism, epidemics and weapons of mass destruction.

“The reality is that climate change ranks right up there with every single one of them,” Kerry said.

A 2014 Department of Defense report used the term “threat multiplier” to describe climate change. The report explained climate change has “the potential to exacerbate many of the challenges we are dealing with today—from infectious disease to terrorism. We are already beginning to see some of these impacts.”

In February of this year, the White House acknowledged the link between climate change and national security. “Climate change is an urgent and growing threat to our national security, contributing to increased natural disasters, refugee flows, and conflicts over basic resources like food and water,” says a statement released from the White House.

This followed President Obama’s release of his 2015 national security strategy. In the strategy, the president ranked climate change among the top threats to the United States’ security. In a speech at the U.S. Coast Guard Academy in May, Obama stated, “Climate change will impact every country on the planet. No nation is immune. So I’m here today to say that climate change constitutes a serious threat to global security, an immediate risk to our national security.”

Screen Shot 2015-12-04 at 1.16.03 PM

President Barack Obama gives a commencement speech to the Coast Guard Academy. Image: Youtube.

In May, the White House released a report titled “The National Security Implications of a Changing Climate.” The report summarized positions from a variety of reports from the Department of Defense and the Department of Homeland Security. The White House report explains that climate change increases the frequency and/or intensity of extreme weather events. These weather events can aggravate existing stressors in a region by uprooting people’s lives, increasing poverty and causing environmental degradation. These can lead to economic and political instability, which have dangerous national security implications.

These government organizations base their ideas on research that has been done on the relationship between climate change and regional instability. Criminology studies have shown that weather patterns can influence the amount of criminal activity, and this relationship has been explored in computer models. It is well established that climate change will lead to higher temperatures, extreme weather events and changing levels of rainfall. These have been modeled to show an increase in personal strain, societal unrest and opportunities for conflict, all of which increase crime levels.

In fact, research has been conducted into how drought contributed to the Syrian civil war. The severe drought lasted for five years, devastated Syrian farming, and drove an estimated one million people off their land and into urban slums. It is projected to have pushed 800,000 Syrians into extreme poverty. This income gap is one of the main drivers of the Syrian revolt. A 2015 paper examined the relationship between drought and instability in Syria. It explained that the drought, combined with unsustainable farming practices and the inability of the government to address the displaced population, was a significant factor leading to the conflict.

9577263960_7386c8631e_o

Syrian refugees in Kawrgosk refugee camp, Irbil, Iraq, set up by the IHH Humanitarian Relief Foundation. Image: IHH Humanitarian Relief Foundation, Flickr.

While climate change cannot be proven to have caused the Syrian drought, it is well established that climate change leads to an increase in frequency and severity of extreme weather events. The same 2015 paper concluded that, although multiyear droughts occur periodically in Syria, recent trends of low precipitation in the region are likely due to warming global temperatures. The nonprofit policy research organization the Center for Climate and Security came to the same conclusion. Co-founder Francesco Femia explains, “We can’t say climate change caused the civil war. But we can say that there were some very harsh climatic conditions that led to instability.”

Finally, reconsider Sander’s answer that climate change is the greatest threat to national security. Climate change is clearly linked to the severity of the Syrian drought, which contributed to the civil war, which created a national security threat. However, declaring climate change the largest national security threat is misleading because it, by itself, does not instigate violence. Climate change is a “threat multiplier,” and worsens the greatest national security threats.

COP21_ad1After the Paris attacks, Gina McCarthy, administrator of the U.S. Environmental Protection Agency, said, “There are a variety of impacts that we’re feeling from a changing climate, and we need to stop those impacts from escalating … one of those is instability. … So it is a national security issue for us.”

Climate change’s indirect effects make it a security issue. Sanders’ answer highlights the broad range of impacts climate change has on the world. While the most severe effects of climate change will certainly be caused by rising sea levels and extreme weather, the exaggeration of pre-existing threats cannot be overlooked.

Dylan Adler is a student in the Masters of Public Administration-Environmental Science and Policy program and an intern at the Columbia Climate Center.

National Geographic moment

Chasing Microbes in Antarctica - Tue, 12/08/2015 - 16:39

This is a very short post to share the spectacular National Geographic moment we had this morning when a pod of killer whales swam into Arthur Harbor and spent about an hour terrorizing the local seals.  Spoiler alert for the soft hearted – they didn’t kill any.  It was fascinating behavior to observe; the clearly could have taken the seal in the video at the end of this post (shot by and posted with the permission of Chuck Kimball, the Palmer Station comms tech), but didn’t.  Just practicing?  Teaching the kids how to hunt seals?  Just having fun?  Who knows.  Everyone ran out onto the dock to watch the action and this definitely caught their attention.

An orca comes in for a closer look at the crowd on the Palmer Station dock.

An orca comes in for a closer look at the crowd on the Palmer Station dock.

This

A large male cruises the ice edge.

Watch: Using Climate Information to Boost Resiliency

The 2015 Paris Climate Summit - Tue, 12/08/2015 - 15:37

The International Research Institute for Climate and Society and its partners work in some of the most impoverished areas of the world to increase food security, decrease vulnerability to disasters and predict outbreaks of diseases such as malaria. IRI helps bring historical climate data online, monitor present conditions, and look to the future with forecasts and models. It also gives experts and decision makers the access and training they need to be able to use this climate information effectively and with measurable impact.

A new animation explains IRI’s approach to building and maintaining climate resiliency. Head over to the institution’s web site to learn more.

COP21_ad2

Partnering Best Minds in Science & Business to Take on Climate Change

The 2015 Paris Climate Summit - Mon, 12/07/2015 - 19:27

While national governments can set goals for combating climate change, the decisions that lead to action will come from business leaders and personal choices. With a strong foundation of science, the business world can lead the way to a cleaner future.

CCL-logo-half-round-1000x442

Ignoring climate change is bad for business. Droughts can close the tap on water supplies that factories and farms rely on. Heat waves take a toll on agriculture and public health, and rising sea levels put properties and entire communities at greater risk of flooding.

These aren’t distant threats. They’re risks to businesses worldwide today—and opportunities for innovation.

To plan for a thriving future, business leaders need to understand how rising global temperatures can change their investment landscape in the near future. Those at the forefront already see the potential in climate solutions, such as cleaner energy and transportation, and products that improve water and energy efficiency. They now have a new resource to expand their knowledge base: Columbia University has launched the Center for Climate and Life to bring business, finance and science together to advance global understanding of the impact a changing climate will have on life’s essentials—food, water and shelter—and to find ways to make energy more sustainable.

“Scientific knowledge is a market force,” said Center for Climate and Life Director Peter deMenocal, who discussed the challenges ahead with business leaders during the UN Climate Summit in Paris. “With its focus on life systems and their responses to climate change, the center can address issues and find solutions to the most important challenges facing global societies today.”

The more than 70 scientists affiliated with the Center for Climate and Life have interdisciplinary studies underway across these areas and more, many of them at Columbia’s acclaimed Lamont-Doherty Earth Observatory. The center uses philanthropic impact funding and university support to fund research that will accelerate knowledge generation in these key areas.

Maureen Raymo, for example, leads studies to help forecast future sea level rise. Joerg Schafer’s work includes assessing the risks that nuclear power and hydropower plants face as glaciers they rely on for meltwater recede in warming temperatures. Richard Seager and his team examine the causes and impacts of regional-scale, multi-year drought events in the American West and Middle East regions. Sonya Dyhrman uses novel genomic methods to explore impacts of ocean acidification and warming on microbes that form the base of the ocean’s food chain. Other scientists and economists work on climate impacts on crop yields, pricing and food supplies.

Together, their research can provide the knowledge base necessary for business and finance to reduce their risk exposure and maximize emerging opportunities.

That knowledge and research skill drew the interest of the World Surf League, which is working with the Center for Climate and Life to develop a research program on the changing oceans. Aerospace giant Airbus is discussing another program, called AirBridge for Science, that would outfit an A320 fuselage as a flying scientific lab to conduct pole-to-pole missions studying changes in the Earth’s ice sheets, oceans, atmosphere and ecosystem health.

COP21_ad1

The Center for Climate and Life will host seminars and Climate-Business Roundtable events to bring scientists and business and finance leaders together to discuss cutting-edge climate research and business solutions. It also aims to change the dynamics of science funding by increasing private support for fundamental research, and it is developing a curriculum through Columbia’s School for Professional Studies for executives to expand their understanding of climate changes and inspire new ideas.

The Paris summit was the only a beginning. The Center for Climate and Life is working beyond Paris toward a better future.

“Climate science is making great strides in defining how, when and why major components of the global climate and life systems are in flux,” deMenocal said. “For stakeholders, this knowledge is actionable power.”

Learn more about the Columbia Center for Climate and Life at Lamont-Doherty Earth Observatory.

The Human Contribution to the California Drought

The 2015 Paris Climate Summit - Mon, 12/07/2015 - 09:57
 calfire.ca.gov

Park Williams’ recent study looked at what percentage of the drought in California has been caused by human-induced climate change. Photo: calfire.ca.gov

The Science, Revisited

Park Williams, a bioclimatologist from the Lamont-Doherty Earth Observatory and a California native, weighs in on the California drought and its connection to global warming in this past interview.

Park explains that this drought (like any drought) is primarily caused by climate variability. In this case, global warming has made the situation worse, because when things heat up, it increases the atmosphere’s ability to take water out of the environment. Park also goes into further detail about the nature of his work as a researcher and the importance of resilience when planning for future climate related changes.

“We know that there are many aspects of climate that will be unfamiliar to us, meaning that records will be broken in all kinds of things: rainfall, temperature, lake levels, stream flow, snow packs,” Park said. “None of these changes are going to occur all that gradually.

“Future extremes are going to occur more and more frequently. In planning, we don’t need to plan for the 2 degree warming that we are aiming for as a globe, we need to plan for the 10 degree increase in a day, or the year when there’s no water. We need to plan for worst-case scenarios. These scenarios may only occur once in the next century, but in many cases that’s all it takes.”

As the UN climate summit continues in Paris, we will continue posting past stories to help our readers understand climate science and its consequences.  Stay tuned for more climate related stories as the scientists at Lamont continue to keep a pulse on our planet.

COP21_ad2

The news from Palmer Station

Chasing Microbes in Antarctica - Sun, 12/06/2015 - 09:39

It’s been another quiet week at Palmer Station, out here on the edge of Antarctica…

This week was punctuated by a set of intense storms.  The one that came in on Wednesday was the most intense storm that we’ve had this season (see Jamie’s blog on the unusual winds this year here).  Just before the storm hit we made a quick run out to one of our regular sampling stations.  It was eerily quiet and the ice was drifting in.  Within an hour of our return to station the wind was up over thirty knots and the ice was coming in fast.  By the time the storm ended Arthur Harbor was chock-full of icebergs and large pieces of sea ice.  This shut boating operations down for the rest of the week.  The ice finally drifted out this morning with another (warm, wet) storm blowing from the east.  Chances don’t look good for getting out before the next storm arrives on the tail end of this one.

Whale

We got cruised – “whale watched” in Conor’s words – by this humpback whale on our last sampling trip, just before Wednesday’s storm hit.

Cut off from boating for a few days we took the opportunity to complete some side projects.  One that I’ve been particularly interested in doing is to take a look at the dense blooms of algae that form on top of the sea ice.  I’ve written quite a bit in the past on the ice algae that grow below sea ice (see here).  Wherever sea ice floods however, you also get a dense bloom at the ice surface.  Although this does happen in the Arctic this is primarily an Antarctic phenomenon.  The reason for this is that there is generally much more snow on Antarctic sea ice; the snow both insulates the ice and pushes it downward, making it warmer and more porous, and allowing seawater to infiltrate to the surface.  The reason for that is largely geographic.  One of the key distinctions between the Arctic and the Antarctic is that the latter is a continent surrounded by water.  The ring of ice around the Antarctic continent in winter eventually gives way to open water, and open water means precipitation.

We couldn’t use a boat to get a fresh chunk of ice (on account of there being too much ice), fortunately it was easy enough to get in a drysuit and wrangle one close to shore.

Jamie

Jamie keeps a lookout while I go wading after some algae-rich ice.

Scrape

Scrape the snow off of any of these floes and this is what you find; a thick ice-top algal bloom.

Conducting experiments on ice algae is non-trivial and I’m fortunate to have spent a good portion of my time in graduate school dealing with the peculiarities of sea ice biota.  One of the issues that we have to deal with is the semi-solid (emphasis on the semi for this slushy ice) nature of the sea ice matrix.  The bacteria and algae that we want to separate out for further study are located in brine channels within the ice, we need to melt the ice to get them out.  Simple enough, but consider that even for this very warm sea ice the salinity of the brine channels is roughly 37 ppt, while the bulk salinity of the ice (that is, the final salinity if you just let everything melt) is about 11 ppt (check out this open-access paper for a further explanation).  Taking the sea ice microbes from 37 ppt to 11 ppt would have induced quite a shock.  To avoid that we need to melt slowly into a sterile, pH controlled, high salinity brine so that the final melt is about equal in salinity to the brine channels.  That done we incubated the melt outside in clear bottles for a few hours to get everything acting like it was back on the ice floe.

Ice

Happy algae obtained from a carefully controlled melt.  Surprisingly the algal community was fairly diverse, although that may be the result of recent seawater intrusion.  The dominant diatom morphotype, the pennate diatoms with the long spines, is one that I haven’t observed in any other samples this season.  Another interesting detail is the low abundance of bacteria.  There are plenty there, they are the small dots scattered across the background, but are rare relative to the number of phytoplankton.  There is some debate about a possible decoupling of primary production and bacterial production in really productive sea ice that I touch on in this open access paper.  In this case bacteria might be inhibited by the high light conditions or by the ice algae themselves.

Once we felt that everything was acclimated we threw our complete analysis suite* at it; in addition to the core LTER measurements this includes measurement of photosynthetic efficiency, the reactive oxygen species superoxide and hydrogen peroxide, samples for RNA and DNA analysis, and lipid analysis.  The main thing that I’m interested in learning from these samples is how the ice top algal community differs from that below or within the ice.  The light regimes are completely different.  Algae growing underneath the ice are generally thought to be low-light specialists.  After all only a small fraction of the light that hits the ice surface makes it through into the water below.  The light conditions at the ice surface by contrast are intense – too intense for most phytoplankton species to perform well.  Given too much light the photosynthetic machinery of phytoplankton runs amok and starts to destroy the cell.

Experiments have demonstrated that low-light adapted ice algae are quickly destroyed by ice-top conditions.  Given enough time however, the range of conditions that algae can adapt to is quite phenomenal.  So are the ice algae at the surface the same as those underneath, but physiologically adapted to high light conditions?  Or are they a different species (or assemblage of species) specially adapted to this ecological niche?  So far all we know from yesterday’s effort is that they’re making quite a lot of the reactive oxygen species hydrogen peroxide and superoxide!  We’ll learn more over the next few days as we complete more of our analyses.  The real data however, RNA and DNA sequence abundances and the lipid profiles that Jamie is working on will take months to develop…

Not all side projects undertaken while we wait out the weather and the sea ice conditions have been research related, however.  Ashley and Chelsea, Rutgers undergraduates with the Schofield Palmer LTER group, found some time to get us all in the holiday spirit.

The chemis-tree; another US Antarctic Program infrastructure milestone.

The chemis-tree; another US Antarctic Program infrastructure milestone.

Well, that’s the news from Palmer Station, where all the seals are fat, all the penguins are curious, and all the science is above average.

*Many thanks to both the Schofield and Ducklow Palmer LTER teams for going along with crazy idea #2 for the season (#1 being the sea ice station.  #3 is still in development).

Antarctica’s Ice: the Big Picture

The 2015 Paris Climate Summit - Sun, 12/06/2015 - 09:00
Map of Antarctica, from NASA.

Map of Antarctica, from NASA.

The Science, Revisited:

The impacts of climate change are being felt around the world, but the changes in the polar regions have been more pronounced. The world began to take notice to these changes when an ice shelf roughly the size of Rhode Island collapsed into the ocean in 2002. At 10,000 years old, the Larson B Ice Shelf only took 35 days to fall completely into the sea. The event was a wake-up call to the world.

This article by Christine Evans, a graduate student in the Sustainability Management program, and Margie Turrin of the Lamont Doherty Earth Observatory, gives a comprehensive view of the state of Antarctic ice.

The article also helps contextualize the current research being conducted over the Ross Ice Shelf by the IcePod team. Be sure to check out the ongoing posts from the field here. And you can watch a video of scientist Robin Bell explaining the impact of the Larsen B collapse, and what’s going on with ice at the poles, here.

This is one in an ongoing series looking back at some key State of the Planet stories about climate science. We hope to help readers better understand the science and just what is at stake at the UN climate conferences in Paris. Stay tuned for more.

COP21_ad2

Using LiDAR to Shine a Light on Ross Ice Shelf

The pod preparing to be mounted onto the LC130 aircraft for another day of work. (photo S. Pascaud)

The pod preparing to be mounted onto the LC130 aircraft for another day of work. (photo S. Pascaud)

As we closed out November the project team had completed 18 survey lines and 4 tie lines from a total of 9 flights, producing over 16,000 line km of data. The IcePod and team have been a working hard! The closing email for the month of November included these beautiful LiDAR images.

What is LiDAR?

LiDar (Light Detection and Ranging) is a remote sensing technique that uses light to develop an image of the surface of the Earth, and is an important part of our geophysical suite of measurements in ROSETTA. In the IcePod the instrument is located on the pod bottom behind a protected window. In flight, when the pod is lowered to collect data, the window cover slides open and a series of light pulses are sent to illuminate the area below. The time is then measured for the reflected light to return. Because we know the speed of light. and that speed is a constant (0.3 meters per nanosecond…or a very fast 186,000 miles per second!), we can use light to calculate distance with a high degree of accuracy. The equation is simple:

Distance = (speed of light X time of flight)/2 in order to account for the distance down and back from the aircraft. The result is the ability to create these 3 dimensional images of the land surface.

Enjoy these wonderful LiDAR images collected by the project team!

McMurdo Base, Antarctica imaged with LiDAR.  (processed by S. Starke)

McMurdo Base, Antarctica imaged with LiDAR. (processed by S. Starke)

The first image is from a standard pass over McMurdo Base in order to calibrate and confirm that the LiDAR system is working accurately. You can clearly see every building, fuel tank, road/pathway and the very systematic way that the base is laid out. The scale bar showing meters of elevation (or height) listed with elevation noted by ‘Ellipsoidal Height’ in meters, not a unit we see every day.

What is ellipsoid height?

We describe the Earth’s shape as an ellipsoid, rather than round or spherical, as the radius at the polar regions is slightly shorter than the radius at the equator. In reality the Earth’s surface is not smooth like an ellipsoid, instead we have mountains, deep valleys, ocean trenches and other surface features with elevation. However, GPS receivers used to locate placement follow a map of sea level using a reference ellipsoid to calculate elevation. To view these images the best approach might be to look at them as relative measures, for example the image of McMurdo shows a 185 m elevation difference between the the surface at 166°42’E and the surface at 166°39’E.

White Island in the Ross Ice Shelf of McMurdo (processed by S. Starke)

White Island in the Ross Ice Shelf of McMurdo (processed by S. Starke)

Located close to McMurdo on the Ross Ice Shelf is a small island ~28 km or 15 miles long called White Island. Protruding up through the ice shelf it is named for its covering of snow, and is a sister to Black Island, named, not surprisingly for its lack of snow cover. Both were discovered on the same expedition in the early 1900s. Using the scale for this image you will see the elevation contours for the island peaking out at 40 m Ellipsoid Elevation, approximately 80 m higher than the ice at the ice shelf.

Crary Ice Rise, Ross Ice Shelf, Antarctica (processed by S. Starke)

Crary Ice Rise, Ross Ice Shelf, Antarctica (processed by S. Starke)

The third image is of crevassing near Crary Ice Rise.

What is an ice rise?

An ice rise is a region of increase in elevation in the relatively flat expanse of the ice shelf caused by floating ice in the shelf physically ‘grounding’ or touching the seafloor below. It differs from an island as the land in an island sits above sea levels. Here the ice is touching land that is still below sea level; it is a section of sea floor raised so that it causes the flowing ice in the deep ice shelf to hit it and drag. This tension of the ice dragging over the contact area, combined with the faster flowing ice around the edges, causes the ice to crevasse as seen in the image.

Yes those are seals! Weddell seals lying on the  ice and imaged by the LiDAR. (Processed by S. Starke)

Yes those are seals! Weddell seals lying on the ice and imaged by the LiDAR. (Processed by S. Starke)

Our fourth image is of seals laying out on the ice. The Weddell seal is well represented in the area of McMurdo, although they are also found distributed around the circumpolar Antarctica. Weddells are well studied by the science community, as they are very accessible, abundant in numbers, and are easily approached by humans. Perhaps they have been imaged in LiDAR previously, but we are happy to have captured them resting on the ice! To provide some context we have included a video of a Weddell seal collected by our project GPS specialist, Sarah Starke.

Be sure to check our GIS flight tracker for the most up to date flights!

For more about this NSF and Moore Foundation funded project, check our project website: ROSSETTA.

Margie Turrin is blogging for the IcePod team while they are in the field.

Cities Face up to the Climate Challenge

The 2015 Paris Climate Summit - Fri, 12/04/2015 - 10:30
 Somayya Ali Ibrahim

Jakarta, Indonesia. Photo: Somayya Ali Ibrahim

Millions of people living in cities around the world already feel the impacts of climate change: heat waves, flooded streets, landslides and storms. All of these affect important infrastructure such as transportation and water supplies, ports and commerce, public health and people’s daily lives. And it is cities that are at the forefront of the response.

Experts from the Earth Institute attending the Paris climate summit are presenting a fresh report today on what’s at stake for the world’s growing urban population, and what many cities are doing to adapt. “Climate Change and Cities” is the Second Assessment Report of the Urban Climate Change Research Network, a consortium of 600 researchers from around the world based at the Center for Climate Systems Research, part of the Earth Institute at Columbia.

Cities report snip“Cities and their citizens already have begun to experience the effects of climate change. Understanding and anticipating these changes will help cities prepare for a more sustainable future,” the report says. “This means making cities more resilient to climate-related disasters and managing long-term climate risks in ways that protect people and encourage prosperity. It also means improving cities’ abilities to reduce greenhouse gas emissions.”

The task is daunting: Each city has its own resources, needs and political dynamics. And the challenges are different for rich and poor nations. For instance, the report notes, “Urban transport emissions are growing at 2 to 3 percent annually. The majority of emissions from urban transport is from higher-income countries. In contrast, 90 percent of the growth in emissions is from transport systems in lower-income countries.”

Tackling the problems involves work on many fronts, from urban planning to infrastructure, housing and hospitals to transit and waste removal. The problems are especially acute for coastal cities: The report projects that more than half of the global urban population will live in coastal zones by the middle of this century. Storm surges, erosion and salt water intrusion are already a problem in many places. “[S]ea level rise and climate change will likely exacerbate these hazards,” the report says. It estimates annual losses from flooding along coastlines could amount to $71 billion by 2100.

But while national leaders debate what to do about climate change, city officials around the world cannot afford to wait, and are already taking action. The report includes more than 100 case studies of what cities are doing to mitigate and adapt to climate change. The online “Case Study Docking Station” is meant to spread information about how cities are coping and offer models other cities can emulate. The report emphasizes the importance of integrating mitigation and adaptation strategies.

million treesFor instance, New York is well on the way to reaching a goal of planting a million trees by 2017 (900,000 as of August 2014, the report says). The project serves to both mitigate and adapt to climate changes. Among other benefits, the trees absorb CO2, helping to curb greenhouse gases; and by helping to lower air temperature in summer, they reduce the amount of energy used for cooling. They also improve air quality and reduce stormwater runoff.

The tree planting is one of more than 100 initiatives that are part of PlaNYC 2030, a broad strategy to support the long-term sustainability of the city. Following the devastation of Superstorm Sandy in 2012, New York also has adopted an aggressive strategy to build a more resilient shoreline, by upgrading building codes, protecting important infrastructure such as subways and power systems, raising bulkheads and building seawalls, and restoring wetlands and beach dunes.

 angspud.blogspot.com

New Songdo City, under construction. Photo: angspud.blogspot.com

A more dramatic case study comes from South Korea, where a whole new city is being built with sustainability in mind. New Songdo City, a $35 billion development eventually projected to have 65,000 residents and a workforce of 300,000, incorporates the highest concentration of LEED-certified buildings in the world. Forty percent of the city will be green space. It will incorporate extensive public transit, pedestrian- and bicycle-friendly design and a cutting-edge waste collection that sends garbage out through a pneumatic system (in other words: no garbage trucks).

The city “aims to generate efficient energy use through ‘ubiquitous’ technology that uses the internet to link hardware and software to monitoring systems to generate efficient resource consumption. Consequently, Songdo consumes 40 percent less energy per capita than cities of similar scale,” says the Songdo case study.

The “Climate Change and Cities” report being released Friday is an executive summary: The full report is still being prepared. But it offers some key findings regarding disaster preparation; urban planning and design; public health, water and waste systems; transportation and energy systems; financing solutions and urban governance; protecting urban ecology;  and insuring equitable approaches that encompass the needs of poor and low-income residents and neighborhoods.

The report outlines five “pathways to urban transformation”:

  • Disaster risk reduction and climate change adaptation are the cornerstones of resilient cities.
  • Actions that reduce greenhouse gas emissions while increasing resilience are a win-win.
  • Risk assessments and climate action plans co-generated with the full range of stakeholders and scientists are most effective.
  • Needs of the most disadvantaged and vulnerable citizens should be addressed in climate change planning and action.
  • Advancing city creditworthiness, developing robust city institutions, and participating in city networks enable climate action.

Cynthia Rosenzweig, an adjunct senior research scientist at the Center for Climate Systems Research and the NASA-Goddard Institute for Space Studies, is the report’s lead author. To see the report and find out more, visit the Urban Climate Change Research Network.

COP21_ad2

American Geophysical Union 2015: Key Earth Institute Events

American Geophysical Union Fall Meeting - Thu, 12/03/2015 - 15:04

Scientists at Columbia University’s Earth Institute will present important findings at the American Geophysical Union fall 2015 meeting, Dec. 14-18 in San Francisco–the world’s largest gathering of earth and space scientists. Unless otherwise noted, presenters are at our Lamont-Doherty Earth Observatory. Abstracts are in the AGU meeting program.  Reporters may contact scientists directly. More info: Senior science editor Kevin Krajick, kkrajick@ei.columbia.edu 917-361-7766.

 

1North American Diamonds: What Is Their Origin?   Yaakov Weiss
In the 1990s, rich diamond mines were discovered in the tundra of Canada’s Northwest Territories. A continent-wide search continues for more. Weiss has studied tiny fluid inclusions within some of the Canadian diamonds, which shed light on the conditions under which they formed. The results could apply to other parts of North America, and the world.
Monday, Dec. 14, 8:00am-12:20pm, Moscone South Posters.    V11C-3072
Story/photo essay on North American diamonds and Weiss’s work

 

Humidity May Magnify Killer Heat
Ethan Coffel & Radley Horton, Center for Climate Systems Research 
Heat is the world’s leading weather-related killer, but most future projections leave out a huge magnifier: the added effects of humidity. Using new global projections of “wet bulb” temperature–combined heat/humidity—the scientists suggest that by mid-century, regions populated by hundreds of millions could see potentially fatal conditions never encountered by modern people. The heat would affect not just health, but infrastructure, power generation and economies. Large areas could become essentially uninhabitable. The team looks specifically at the U.S. East Coast, India, West Africa and eastern China.
Monday, Dec. 14, 8am-12:20pm, Moscone South Posters.   GC11A-1016
PRESS CONFERENCE: Monday, Dec. 14, 5pm: Impacts of Heat Stress on Densely Populated Areas in the 21st Century. With Coffel, Horton and Noah Diffenbaugh (Stanford University).

 

arctic-ice-refugeRestoring Arctic Sea Ice  Stephanie Pfirman
The ongoing loss of Arctic sea ice is a well-known story—but that is not the end of the story, say Pfirman and colleagues. They do a thought experiment asking what it would take to bring the ice back. The next few generations will inevitably see ice-free summers, but aggressive action against climate change could start restoration by maybe 2100, with reductions in greenhouse gases, large-scale carbon sequestration and geoengineering to cool the atmosphere. Sea ice provides worldwide benefits—reflecting heat back into space, buttressing the Greenland ice sheet, and possibly stabilizing weather patterns–so, the political constituency for restoring the ice may extend to cities and nations across the globe.
Monday, Dec. 14, 8:00am-12:20pm, Moscone South Posters.   GC11G-1087
Article on ‘The Last Sea Ice Refuge’

 

 Possible Extraterrestrial Impact off East Africa   Dallas Abbott
Geologist Dallas Abbott and her colleagues are investigating whether an asteroid or comet struck the Indian Ocean in human time, producing a megatsunami that struck Africa. Up to now, the main evidence has been the presence of unusual gigantic dunes on Madagascar; but skeptics say these could have been formed in other ways. Abbott presents new geochemical evidence that the dunes indeed were formed by a tsunami origin; she expects to report a date for the event.
Monday, Dec. 14, 8:00am-12:20pm, Moscone South Posters.   NH11A-1883
2006 New York Times article on Abbott’s work

 

Battling Vector-Borne Diseases from Space
Pietro Ceccato, International Research Institute for Climate and Society (IRI)
Ceccato explores a new NASA initiative to develop remote-sensing tools to help predict outbreaks of climate-sensitive African diseases including malaria, trypanosomiasis (sleeping sickness), leishmaniasis and schistosomiasis. Increasingly sophisticated monitoring and analyses of temperature, vegetation, water bodies and flooding are now making it practical to make areas suffering from these diseases more resilient. Examples from South Africa, Zimbabwe, Tanzania and Malawi.
Monday, Dec. 14, 8:00am-12:20pm, Moscone South Posters.   GC11H-1116
Ceccato explains in a 1-minute podcast

 

 Why Are Scientists Holding Back on Sea Level Projections?James-Hansen-250
James Hansen, Climate Science, Awareness and Solutions
Hansen coauthored a widely discussed paper this year that projects sea levels could surge up to 10 feet this century. He will discuss what he sees as the dangers of scientists’ reluctance to seriously consider such bold assertions. (He has based his estimates in part on accumulating evidence that the great ice sheets are undergoing the start of an accelerating collapse—the elephant in the room left out of many other projections.)
Monday, Dec. 14, 1:40-2:00pm, 102 Moscone South.   U13A-01
Hansen’s warning on rapid sea-level rise

 

 New Evidence of Caribbean Tsunami Potential    Belle Philibosian
Following the 2010 Haiti earthquake, researchers considered whether other Caribbean areas might generate earthquakes that could threaten the coasts of the Americas with tsunamis. Contrary to previous findings, Philibosian presents new evidence that the outermost islands might present such a threat. Studies of corals in the lesser Antilles show the islands have subsided during the 20th century–motion that suggests strain building on the seabed that could lift a tsunami when released. By contrast, recent GPS measurements suggest little motion—but GPS data present only part of the picture, and go back only about 10 years.
Monday, Dec. 14, 2:55-3:10pm, 104 Moscone South.   T13F-06 

 

IMG_9565 Did Greenland Melt to Bedrock?   Joerg Schaefer
Despite evidence of big climate swings in the last 2.5 million years, many scientists think the Greenland ice sheet has never completely melted. Schaefer and his colleagues say there is new evidence, in the bedrock below the deepest ice, that the sheet disappeared for at least 10,000 years. Using state-of the art techniques to analyze samples drilled out in the 1990s, they have found cosmogenic isotopes indicating exposure to open air. This suggests the ice sheet may be more unstable than many think.
Monday, Dec. 14, 5:00-5:15pm, 3005 Moscone West.   GC14C-05

 

 Undersea Volcanoes, Ice Sheets and Sea Level   Wallace Broecker
This year, two controversial papers looked at how undersea volcanoes, sea levels, and volcanoes and ice sheets on land may interact to produce cyclic seesaw shifts in earth’s climate. Even within Lamont, the hypothesis is debated by separate groups. Broecker—one of the founders of modern climate science–synthesizes the evidence and discusses his own ideas. Part of a larger session on the issue.
Tuesday, Dec. 15, 5:45-6pm, 102 Moscone South.   V24-08
Paper linking climate to seafloor processes
Paper de-linking climate from seafloor processes
RELATED: Broecker presents results of Iceland’s CarbFix project to mineralize CO2 underground. Thurs., Dec. 17, 8am-12:20pm, Moscone South Posters.   H41C-1315

 

 The Lamont-Doherty Earth Observatory Party   
Traditionally on Tuesday night, Lamont-Doherty Earth Observatory and Columbia’s Department of Earth and Environmental Sciences gather staff, and alumni now at other institutions worldwide. Journalists covering AGU are welcome—a chance to make friends, hear informally about new work and have fun.
Tuesday Dec 15, 6:30pm-8:30pm (or beyond), San Francisco Marriott Union Square, 480 Sutter Street, Union Square Ballroom

 

 1_010Arctic Pollutants on Thin Ice   Robert Newton
Winter ice isn’t disappearing from the Arctic; it’s just getting thinner, and that makes it more mobile than the multiyear ice that used to dominate many regions. Because currents now push ice faster and farther, this is increasing the flow of pollutants, nutrients and microorganisms across national boundaries. Newton examines the political and environmental implications of transnational sea-ice export and import. Materials that might be transported more efficiently include nickel and mercury from smelting plants in Siberia, and seed populations of microbes that could establish themselves in unfamiliar regions.
Wednesday, Dec. 16, 9:45-10am, 103 Moscone South.    PA31D-08

 

 Drones over Polar Seas   Christopher Zappa *
Unmanned aerial vehicles are being used for a widening range of scientific applications. Zappa covers their first use to study the intricacies of Arctic sea ice and water, starting with a pilot project off Norway’s Svalbard archipelago this past summer. Drone imagery is providing otherwise unavailable close-up views of ice albedo, roughness, air-sea-ice fluxes and other parameters. Drone flights are not only producing spectacular new images, but dropping tiny instruments into the icepack that report back to base. (*Zappa is currently on an Antarctic research vessel, deploying instruments. Another session member will probably give his talk, but he may be contacted by email.)
Thursday, Dec. 17, 9:30-9:45am, 302 Moscone South.  NH41E-07
Climate Central story on pilot project  

 

 Lava Lakes: Windows into Earth’s Fiery Insides   Einat Lev3
Persistently open, roiling lakes of lava are rare; only about a half dozen are currently known. Lev and colleagues are studying them in three volcanic craters: Hawaii’s Kilauea, Antarctica’s Mount Erebus, and the Democratic Republic of Congo’s Nyiragongo. Because they can be observed visually (although at some risk to researchers), they offer direct windows into the magmatic processes that drive volcanic eruptions, rifting and the formation of crust. Lev has been documenting Kilauea’s Halemaumau crater in particular, and will discuss her latest findings, with moving images from the crater.
Friday, Dec. 18, 8am-12:20pm, Moscone South Posters.   V51D-3060
Story, slideshow & video on Lev’s work  

 

 Antarctic Warming: Natural, Not Human-Caused?   Karen Smith
West Antarctica, especially the rapidly warming Antarctic Peninsula, has been held up as a poster child for human-driven climate change. Here, Smith makes what may be a controversial case that this warming is actually the result of natural multi-decadal-scale cycles of sea-surface temperatures and sea ice—not human-induced global warming. She bases her conclusions on examinations of 40 climate models going back to the 1970s.
Friday, Dec. 18, 9:28-9:40am, 3008 Moscone West.   A51V-07

 

Discovering Giant Landslides Using Seismology   Colin Stark
Stark and colleagues have shown that massive landslides can be detected in real time by the seismic waves they produce. This opens a new field of study, since many slides occur in remote areas where they otherwise might not detected in a timely way, if at all. Stark will discuss his team’s discovery of multi-kilometer slides across the world from Tibet to the Yukon, some of which have previously never been reported. The technique is already yielding insights into the physics of giant landslides, and was applied to rescue operations after the recent Nepal earthquake.
Friday Dec 18, 9:45-10:00am, 2005 Moscone West.  EP51D-08
Article on the new method  Massive slide detected in Alaska
NASA images of the latest slide

DSC_0220

 An App That Dives Deep Into Sea Level   Margie Turrin
Turrin demos a new app that offers viewers a sophisticated but accessible look at sea-level rise and its causes around the world. The question-driven interactive app offers multilayered maps, text and audio that address the roles of ice, atmosphere and movements of land.  Part of a session on “Amazing Games and Superb Simulations for Science Education.”
Friday, Dec. 18, 2:25-2:40pm, 303 Moscone South.   ED53F-04

 

India Steps Up on Climate Change

The 2015 Paris Climate Summit - Thu, 12/03/2015 - 10:35

By Abhijit Sharan

“Climate Change has taken on political dimensions…that’s odd because I don’t see people choosing sides over E=mc2 or other fundamental facts of science!” – Neil deGrasse Tyson, astrophysicist

This December, more than 40,000 delegates from over a 150 countries will meet in Paris for the much awaited 21st Conference of the Parties (COP21), the most important United Nations climate change conference since 1997’s famed but ultimately failed Kyoto Protocol was signed. This year, delegates will meet to discuss steps to be taken after the Kyoto Protocol expires in 2020, and to consider a possible new agreement.

India, the second largest country in the world and the third-largest emitter of greenhouse gasses after the United States and China, will be among them, with Prime Minister Narendra Modi joining U.S. President Barack Obama, Chinese President Xi Jinping and other world leaders at the summit.

India is blessed with varied and abundant natural resources, tapped and untapped, upon which a major portion of its economy is based, including agriculture for food and textiles, forestry and logging and mining. From the Himalayan and other mountainous regions, to the major coastline, to the Thar Desert or the many wetlands, islands, and the intricate riverine system running all across the country, India’s economic growth cannot be imagined without its natural resources.

Desert in India.

Desert in India. Photo from CIPT.

As a nation still in its developing phase, with 1.25 billion citizens and counting, India can’t afford to forego even part of its industrial progress. But we also cannot go on developing without taking into account the emissions produced by industries that are major contributors to global warming.

Urban

Urban India. Photo by CIPT.

 

It has been argued that because current climate concerns are the result of the unabated emissions of developed countries—starting when the Industrial Revolution began more than 200 years ago—that it is those countries who must take the lead in curbing emissions. To put things in perspective, in spite of its large population, only 6-7 percent of global emissions are attributed to India, while India’s historical responsibility for global warming has been calculated to be less than 3 percent. The corresponding numbers for the other two major emitters, China and the U.S., are 3 to 10 times higher.

Nevertheless, given what will happen if the worsening effects of ongoing climate change are not contained, a cooperative arrangement to minimize global emissions from all players is necessary for our own good.

COP21_ad1Although previous COP meetings have largely been missed opportunities to reach a consensus and act accordingly to cut global emissions by all countries, the Paris conference is taking an approach that is both more ambitious and more realistic than prior summits, as it has asked all the participating countries to submit their own plans on cutting their emissions.

These nation-determined plans (also called Intended Nationally Determined Contributions, or INDCs), though not legally binding, do give an indication of how serious each country is in efforts to mitigate and adapt to climate change.

Recognizing the disruptions climate change will cause, India has demonstrated its seriousness on climate change issues by voluntarily announcing its intention to cut the emissions intensity of its GDP by 20-25 percent over 2005 levels by 2020. The country is already making good progress on these goals, reporting a reduction of 12 percent of its emissions intensity of GDP between 2005 and 2010. The 2014 Emission Gap Report by the United Nations Environment Programme has recognized India as one of the few countries that are achieving their voluntary reduction goals.

This doesn’t mean that the Intended Nationally Determined Contributions are without problems. One is credibility: Some might ask, and rightly so, how trustworthy emissions reduction reports really are. Recent controversies such as Volkswagen’s alleged software tampering to pass pollution tests in the lab even as its cars emit more on the road are a matter of grave concern, as are reports that China has been emitting 17 percent more than it has been reporting.

More concerning is recent research suggesting that even if nations report their emissions accurately, the current Intended Nationally Determined Contributions goals won’t be enough to cap the average global temperature rise under the scientifically agreed 2 degrees Celsius rise from the pre-industrialized level by the end of this century. An assessment by the European Commission’s Joint Research Centre shows that the commitments submitted by 155 countries, which are responsible for around 90 percent of global emissions, would still allow the average global temperature to increase by almost 3 degrees C, even if followed religiously by every single country.

Though these concerns must be addressed at this conference and beyond, India’s commitments do show that the country is serious about emissions, as it is one of the countries most vulnerable to the brutal wrath of climate change.

Almost 50 per cent of the world’s population resides in coastal areas. Sea level rise due to climate change will submerge many of these areas, hitting people in the developing world hardest. India has a coastline of over 7,500 km. A recent report by Climate Central shows that nearly 55 million Indians residing on these coasts are under direct threat from sea level rise. The recent floods in southern India, more frequent weather extremes, delayed seasons—all point to a changing climate. If nothing is done to cap anthropogenic emissions, the worst is yet to come, and in all probability will come sooner than expected.

The plans of action outlined in the Intended Nationally Determined Contributions—including the development and promotion of clean and efficient energy systems, making industries more energy efficient, creating climate resilient urban centers and green transportation systems, among others—are ambitious but achievable. They face challenges not only in the realm of governance and execution challenges, but also from lack of proper financing mechanisms for such mega-scale projects.

An efficient Clean Development Mechanism could benefit countries like India in many respects when it comes to emissions reductions. The Clean Development Mechanism, provisioned by the UN Framework Convention on Climate Change under the Kyoto Protocol, lets industries incentivize their emissions reductions by generating Certified Emission Reduction units, which can be further traded in various emissions trading schemes such as the European Union Emissions Trading Scheme, the largest carbon market in the world. This allows the industrialized countries to buy Certified Emission Reduction units and invest in emission reductions in any country where it is the cheapest.

For a developing country like India, where the costs of production are considerably lower than other places, such mechanisms could not only help other countries meet their Intended Nationally Determined Contributions, but also generate funds for India to meet its own emission targets.

Many observers raised concerns when Clean Development Mechanisms were first started in 2001, including governments’ reluctance to guarantee its future existence and the low cost of carbon along with many other technical, socio-economic and financial issues. These concerns must be addressed seriously at the upcoming Paris talks in order to not defeat the overall purpose of the mechanism.

In the endeavour to effectively deal with climate change, all nations must actively engage in emissions reductions. At the same time, international cooperation and recognition of challenges and constraints faced by the developing world must also be one of the outcomes of the Paris meetings.

Countries like India do need their carbon space for development and poverty alleviation. Even so, the Intended Nationally Determined Contributions India has put forward are without doubt aggressive given India’s per capita energy consumption, which already is well below the global average. India, by all means, is ready to play an important role in these multilateral deliberations and future actions to save humankind.

Abhijit Sharan works as senior research assistant at The Columbia Water Center’s India affiliate, the Centers for International Projects Trust in New Delhi, India.

From Good Intentions to Deep Decarbonization

The 2015 Paris Climate Summit - Wed, 12/02/2015 - 11:42

This commentary was also published on the Project Syndicate website.

By Jeffrey D. Sachs, Guido Schmidt-Traub and Jim Williams

In the run-up to the United Nations Climate Change Conference (COP21) in Paris, more than 150 governments submitted plans to reduce carbon emissions by 2030. Many observers are asking whether these reductions are deep enough. But there is an even more important question: Will the chosen path to 2030 provide the basis for ending greenhouse-gas emissions later in the century?

According to the scientific consensus, climate stabilization requires full decarbonization of our energy systems and zero net greenhouse-gas emissions by around 2070. The G-7 has recognized that decarbonization—the only safe haven from disastrous climate change—is the ultimate goal this century. And many heads of state from the G-20 and other countries have publicly declared their intention to pursue this path.

Yet the countries at COP21 are not yet negotiating decarbonization. They are negotiating much more modest steps, to 2025 or 2030, called Intended Nationally Determined Contributions. The United States’ contribution, for example, commits the U.S. to reduce CO2 emissions by 26-28 percent, relative to a 2005 baseline, by 2025.

COP21_ad1Though the fact that more than 150 intended contributions have been submitted represents an important achievement of the international climate negotiations, most pundits are asking whether the sum of these commitments is enough to keep global warming below the agreed limit of 2º Celsius (3.6º Fahrenheit). They are debating, for example, whether the contributions add up to a 25 percent or 30 percent reduction by 2030, and whether we need a 25 percent, 30 percent or 40 percent reduction by then to be on track.

But the most important issue is whether countries will achieve their 2030 targets in a way that helps them to get to zero emissions by 2070 (full decarbonization). If they merely pursue measures aimed at reducing emissions in the short term, they risk locking their economies into high levels of emissions after 2030. The critical issue, in short, is not 2030, but what happens afterward.

There are reasons to worry. There are two paths to 2030. We might call the first path “deep decarbonization,” meaning steps to 2030 that prepare the way for much deeper steps after that. The second path could be called the way of “low-hanging fruit”—easy ways to reduce emissions modestly, quickly and at relatively low cost. The first path might offer little low-hanging fruit; indeed, the low-hanging fruit can become a distraction or worse.

Here is the reason for worry. The simplest way to reduce emissions to 2030 is by converting coal-fired power plants to gas-fired power plants. The former emit about 1,000 grams of CO2 per kilowatt-hour; the latter emit around half of that. During the coming 15 years, it would not be hard to build new gas-fired plants to replace today’s coal plants. Another low-hanging fruit is great gains in the fuel efficiency of internal combustion engines, taking automobile mileage from, say, 35 miles per gallon in the U.S. to 55 miles per gallon by 2025.

The problem is that gas-fired power plants and more efficient internal-combustion vehicles are not nearly enough to get to zero net emissions by 2070. We need to get to around 50 grams per kilowatt-hour by 2050, not 500 grams per kilowatt-hour. We need to get to zero-emission vehicles, not more efficient gas-burning vehicles, especially given that the number of vehicles worldwide could easily double by mid-century.

Deep decarbonization requires not natural gas and fuel-efficient vehicles, but zero-carbon electricity and electric vehicles charged on the zero-carbon electricity grid. This more profound transformation, unlike the low-hanging fruit eyed today by many politicians, offers the only path to climate safety (that is, staying below the 2º C limit). By pursuing coal to gas, or more efficient gas-burning vehicles, we risk putting ourselves into a high-carbon trap.

per capita emissions JSachs articleThe figure above illustrates the conundrum. The low-hanging-fruit pathway (red) achieves a steep reduction by 2030. It probably does so at lower cost than the deep-decarbonization pathway (green), because the conversion to zero-carbon electricity (for example, wind and solar power) and to electric vehicles might be more costly than a simple patch-up of our current technologies. The problem is that the low-hanging-fruit pathway will achieve fewer reductions after 2030. It will lead into a dead end. Only the deep-decarbonization pathway gets the economy to the necessary stage of decarbonization by 2050 and to zero net emissions by 2070.

The allure of the short-term fix is very powerful, especially to politicians watching the election cycle. Yet it is a mirage. In order for policymakers to understand what’s really at stake in decarbonization, and therefore what they should do today to avoid dead-end gimmicks and facile solutions, all governments should prepare commitments and plans not only to 2030 but also at least to 2050. This is the main message of the Deep Decarbonization Pathways Project, which has mobilized research teams in 16 of the largest greenhouse-gas emitting countries to prepare national Deep Decarbonization Pathways to mid-century.

The project shows that deep decarbonization is technically feasible and affordable, and it has identified pathways to 2050 that avoid the traps and temptations of low-hanging fruit and put the major economies on track to full decarbonization by around 2070. The pathways all rely on three pillars: major advances in energy efficiency, using smart materials and smart (information-based) systems; zero-carbon electricity, drawing upon each country’s best options, such as wind, solar, geothermal, hydro, nuclear, and carbon capture and storage; and fuel-switching from internal combustion engines to electric vehicles and other shifts to electrification or advanced biofuels.

A key question for Paris, therefore, is not whether governments achieve 25 percent or 30 percent reductions by 2030, but how they intend to do it. For that, the Paris agreement should stipulate that every government will submit not only an Intended Nationally Determined Contribution for 2030, but also a non-binding Deep Decarbonization Pathway to 2050. The U.S. and China have already signaled their interest in this approach. In this way, the world can set a course toward decarbonization—and head off the climate catastrophe that awaits us if we don’t.

 Jeffrey D. Sachs, Guido Schmidt-Traub, Jim Williams.

From left: Jeffrey D. Sachs, Guido Schmidt-Traub, Jim Williams.

Jeffrey D. Sachs is professor of sustainable development, professor of health policy and management, and director of the Earth Institute. He is also special adviser to the United Nations secretary-general on the Millennium Development Goals. Guido Schmidt-Traub is executive director of the UN Sustainable Development Solutions Network. Jim Williams is director of the Deep Decarbonization Pathways Project.

Pages

 

Subscribe to Lamont-Doherty Earth Observatory aggregator