News aggregator

IcePod Clears Hurdles and Takes to the Air

Peering Through Polar Ice - Sun, 02/03/2013 - 22:14

LC130 aircraft waits in the Stratton Air Force hangar for the IcePod instrument to be installed. (Photo M. Turrin)

Monday:The morning briefing room was filled with layers of engineers and technicians from the civilian side, matched with pilots, navigators and air support staff from the Air National Guard side. Spanning the middle were the two Systems Project Office (S.P.O.) representatives. Adding new instrumentation and equipment to any aircraft requires intense scrutiny, but on a military plane there are extra rounds of reviews and sign offs required, and it is the S.P.O. office that is responsible for overseeing this final testing and approval. Specialists at avionics (aircraft electrical systems) and aerodynamics (air interaction and flow meeting the aircraft/pod) the first part of the week was theirs as they observed, measured, questioned and weighed equipment as it was installed in the aircraft, and prepared to monitor the in-air operation of the pod for turbulence, and potential aircraft/equipment interference.

Crate containing the IcePod is prepared for the pod to be removed. (photo M. Turrin)

The IcePod team arrived at Stratton Air Force Base with a carefully planned schedule of equipment installation and flight-testing. One day of install followed by two days of S.P.O. testing and then five additional days available for our own flight maneuvers to test the full potential of the pod and instruments. Inside the airport hanger crates of electrical wiring, connectors, tools and supplies were piled around aircraft 21094 the LC130 labeled ‘Raven Gang’ that was selected for the test flight. The biggest item on the floor was the 700 lb. crate containing the IcePod. The plan was to finalize the installation of the 350 lb.avionics (AV) rack located inside the plane, and then move straight to installing the arm and hanging the pod. By close of business Monday the goal was that the S.P.O. ground tests to ensure all the equipment was functional could be completed.

View of the back of the AV rack thick with cables and equipment wires. (Photo R. Bell)

We were set back almost before we started. Rack pieces tightly matched to the curve of the plane body needed realigning, electrical connections needed adjusting, and by 7 p.m., the arm that would hold the pod was just being connected. Adjusted plans were agreed upon with an early morning return to add the pod and complete the ground check in the a.m. with a S.P.O. flight in the p.m. Snow was predicted over the evening but for flight the weather looked promising.

Fat arms of cables, the band of muscles that will make the pod arm work, are wrapped and tied up out of the way. (Photo M. Turrin)

Tuesday: The morning briefing covered plans for a 10 a.m. flight time, which quickly slipped to a noon decision on the possibility of an afternoon flight. With the 500-700 foot cloud base predicted to rise to 1500 feet in the afternoon, this was not unwelcome news. In the hangar, electricians and engineers worked with thick ropes of cables taming them into place, floor pieces were notched and the pod support arm and special door secured in anticipation of hanging the pod, but delays continued. Before noon, a no-flight decision for the day was reached, as work continued at a slow but steady pace to prepare for to pod. The hope was that the ground testing could be completed before the close of day and Wednesday morning would bring the first round of flight testing.

The pod is moved into position and attached. (Photo M. Turrin)

By mid-afternoon, the pod was moved into place and fastened to the arm. The first S.P.O. concern was that the pod weight be within the approved limit of 400 lbs.  Airport hangars have scales for weighing pallets of equipment but for this application a high degree of accuracy was needed. The first attempt showed a more accurate set of scales was needed. Each instrument, bracket, and set of cables added weight to the pod, so locating, calibrating and lowering the pod onto an accurate set of scales provided a few tense moments until the weight was established and S.P.O. clearance for test flights was provided.

The pod is weighed using twin scales for the first of the S.P.O. clearance tests. (Photo M. Turrin)

Test Flights included turbulence testing for laminar (smooth) airflow done by installing tapered lines on the pod ends with sections of string inset to demonstrate airflow – 174 sections of string were added like a lion’s mane to the pod, and extending back behind the domed door. Exterior accelerometers were added to detect and monitor vibration on the pod as the group approached a 9 p.m. close to the workday.  No matter what the status of the work the plane would be released from the hangar first thing in the a.m.

The pod covered with tapered lines and 174 sections of string to assess airflow. (Photo M. Turrin)

Wednesday: The weather dictated the day; socked in conditions with poor visibility meant no flights. S.P.O. ground testing was completed, but flying would be pushed off another day.

 

Thursday: High winds and driving rain arrived during the night with the morning briefing noting that although there was a high cloud ceiling and 3000-mile visibility, 25 mph winds and turbulence would keep us grounded early in the morning, but a 10 a.m. reassessment might allow a flight later in the day. Updates during the morning cited extreme turbulence for other flights forcing additional postponements. Mid-afternoon a decision was made to take up a minimal team to complete day one of inflight S.P.O. testing. On the runway engines are fired up, first 3 then 4 then 2 and 1, ready to go, but a problem with the Auxiliary Power Unit forced the mission to abort. Cancellation, and another day gone. As we headed out for the night we were warned that the APU issue could down the plane for up to two days.

Looking down on the pod from the belly of the LC130 on the first test flight. The skis of the LC130 landing gear can be seen in the top right of the photo. (photo M. Turrin)

Friday The hope is for at least one flight for this week, but we worry about the news on the APU. The morning briefing notes the APU seems to be holding and the first IcePod flight is a go! The plane is prepped; we are loaded onboard. Engine 3-4-2-1 fired up and we launch down the runway only to squeal to a stop. The domed door over the pod shows as not secure. The door is re-secured. A second attempt to move down the runway ends with the same results. Support is brought on-board and the door is reinforced for take off attempt #3.

10:56 a.m. we are up! The pod is deployed, lowering flawlessly. We begin the test flight at 5000 feet but lower to 2500 feet to move under the weather. The plan includes sets of cloverleaf maneuvers banked at 30 degrees to test GPS and lasers. The turns feel steep, and the ride is bumpy but after all the waiting we are happy to be in the air. There is no electromagnetic interference between the pod equipment and the aircraft, and the exterior accelerometers show a smooth ride for the pod. Test flight #1 for S.P.O. is complete, and everyone can head home for the weekend with a sense of accomplishment. In a week that seemed filled with adages (schedules are subject to change, everything hangs on the weather, anything that can go wrong will go wrong) at least we ended with …anything good is worth waiting for!

For more on the IcePod project see: http://www.ldeo.columbia.edu/res/pi/icepod/

email outage

IT Announcements - Tue, 01/29/2013 - 09:40

 Email for most users was down earlier this morning, January 29.   Service was restored around 9:30 AM..  We are

investigating the cause.

Welcoming a New Instrument for ‘Probing’ the Polar Regions

Peering Through Polar Ice - Thu, 01/24/2013 - 14:30

The new Common Science Support Pod (CSSP) Ice Imaging System for Monitoring Changing Ice Sheets (IcePod), designed by Lamont’s Polar Geophysics Group (Image M. Turrin).

In 2009 it was just a dream. But creative vision, sweat equity, good partnerships and funding can bring dreams to reality, and 2013 delivered.

It was four years ago that a small team of Lamont scientists, Polar Geophysicist Robin Bell, Engineer Nick Frearson and Ocean Climate Physicist Chris Zappa, began discussions of an instrument that could be used to collect measurements on polar ice during routine field-support flights in both the Arctic and Antarctic. Named the IcePod, it would fit onto the LC130 aircraft, a massive four-engine turboprop plane that is the workhorse of the U.S. polar support services. The pod design focused on a 9 foot long cylindrical “boot” that would hold a range of instruments and gather data on ice conditions as the aircraft carried out its seasonal polar mission. The pod would be removable, fitting in the rear paratroop door, and modular allowing for a range of instruments and ultimate utility.

New York Air National Guard directing the landing of the large LC130 aircraft, backbone of the flight support for NSF polar science. (image courtesy of NYANG)

Funding came through special Recovery Act Funding of a National Science Foundation Major Research Instrumentation grant. NSF saw this as an opportunity for the full science community to increase data collection and understanding of polar ice conditions, yet with a significant reduction in the logistical support needed.

The polar flights for the LC130 are coordinated through NSF but flown by the New York Air National Guard, requiring close planning and coordination with both groups as the Icepod was developed. Any design would need to meet full air safety standards, cause limited drag on the aircraft and be easily mounted or removed by the air-crew as needed.

(l-r) Nick Frearson (Lamont Engineer), Capt. Josh Hicks (NYANG pilot) and Bernie Gallagher (Lamont Senior Electrical Technician) review the interior mount of the removable door where the IcePod will be installed in the LC130 (Image M. Turrin)

Panel openings in the side of the IcePod instrument show two of the equipment boxes. There is an additional box between these two that remains covered in this photo, as well as space in the nose and tail caps of the pod. (Image M. Turrin)

The instruments housed in and around the pod would need to be insulated from any interference with the plane and its equipment. Additionally as the pod arm is extended below the aircraft, the instruments would need to be tightly sealed for temperature control and able to pass intense turbulence testing. Calling up visions of the electromagnetic shrinking machine from “Honey I shrunk the kids,” an additional challenge was the need to fit the instruments in the small interior cubicles of the pod. Instruments and equipment were compacted and streamlined.

The starting line up of instruments:

Radar (RAdio Detection And Ranging) uses radio waves to image through the ice. In order to collect both deep and shallow ice information Icepod will carry two types of radar. Deep-Ice Radar (DICE) is a blade antenna resembling black shark fins designed to collect data thorough more than 4 km (resolution of 10 m). The DICE radar antenna will work over the deep interior of the ice sheets to measure ice thickness and bed wetness where water may be lubricating the base of the ice sheet and changing conditions. The Shallow-Ice radar (SIR) is a horn antenna for penetrating closer to the surface of the icesheet, through approximately 300 meters of snow (25 cm resolution). SIR focuses on recent processes in the snow/ice system, looking at annual rates of snow accumulation and the layer of snow (firn layer) not yet compressed into glacial ice, estimated to range in depth from 40-100 m below the surface.

Two blade antenna for the Deep Ice Radar extend from the pod. (Image R. Bell)

Optics: Laser, is an instrument that uses light to image and collect data on surface elevation and snow texture.  Two different cameras will be used to collect data on reflectivity and temperature (visible-wave and infrared cameras). As we layer together all the information collected from the instruments we can integrate our understanding of the ice conditions at the base of the ice sheet up through the internal ice layers, to the ice sheet surface, and up to the reflective return from the ice.

Next week the Lamont’s Polar Geophysics Team will fly with the New York Air National Guard, bringing the long envisioned IcePod into the air for field-testing. The team is excited to take to the skies to see what the instruments can do, although with the first battery of tests flown close to home in upstate New York, not all the instruments can be performance tested. If all goes well and the go-aheads are received, a trip to Greenland is planned for later in the spring to allow full instrument testing in true polar conditions.

To learn more about the Icepod project see: http://www.ldeo.columbia.edu/icepod/

For more on the Polar Geophysics Group: http://www.ldeo.columbia.edu/polar-geophysics-group/

Funding for this project from #ANT 0958658 under the MRI initiative.

Welcoming a New Instrument for ‘Probing’ the Polar Regions

Arctic Thaw: Measuring Change - Thu, 01/24/2013 - 14:30

The new Common Science Support Pod (CSSP) Ice Imaging System for Monitoring Changing Ice Sheets (IcePod), designed by Lamont’s Polar Geophysics Group (Image M. Turrin).

In 2009 it was just a dream. But creative vision, sweat equity, good partnerships and funding can bring dreams to reality, and 2013 delivered.

It was four years ago that a small team of Lamont scientists, Polar Geophysicist Robin Bell, Engineer Nick Frearson and Ocean Climate Physicist Chris Zappa, began discussions of an instrument that could be used to collect measurements on polar ice during routine field-support flights in both the Arctic and Antarctic. Named the IcePod, it would fit onto the LC130 aircraft, a massive four-engine turboprop plane that is the workhorse of the U.S. polar support services. The pod design focused on a 9 foot long cylindrical “boot” that would hold a range of instruments and gather data on ice conditions as the aircraft carried out its seasonal polar mission. The pod would be removable, fitting in the rear paratroop door, and modular allowing for a range of instruments and ultimate utility.

New York Air National Guard directing the landing of the large LC130 aircraft, backbone of the flight support for NSF polar science. (image courtesy of NYANG)

Funding came through special Recovery Act Funding of a National Science Foundation Major Research Instrumentation grant. NSF saw this as an opportunity for the full science community to increase data collection and understanding of polar ice conditions, yet with a significant reduction in the logistical support needed.

The polar flights for the LC130 are coordinated through NSF but flown by the New York Air National Guard, requiring close planning and coordination with both groups as the Icepod was developed. Any design would need to meet full air safety standards, cause limited drag on the aircraft and be easily mounted or removed by the air-crew as needed.

(l-r) Nick Frearson (Lamont Engineer), Capt. Josh Hicks (NYANG pilot) and Bernie Gallagher (Lamont Senior Electrical Technician) review the interior mount of the removable door where the IcePod will be installed in the LC130 (Image M. Turrin)

Panel openings in the side of the IcePod instrument show two of the equipment boxes. There is an additional box between these two that remains covered in this photo, as well as space in the nose and tail caps of the pod. (Image M. Turrin)

The instruments housed in and around the pod would need to be insulated from any interference with the plane and its equipment. Additionally as the pod arm is extended below the aircraft, the instruments would need to be tightly sealed for temperature control and able to pass intense turbulence testing. Calling up visions of the electromagnetic shrinking machine from “Honey I shrunk the kids,” an additional challenge was the need to fit the instruments in the small interior cubicles of the pod. Instruments and equipment were compacted and streamlined.

The starting line up of instruments:

Radar (RAdio Detection And Ranging) uses radio waves to image through the ice. In order to collect both deep and shallow ice information Icepod will carry two types of radar. Deep-Ice Radar (DICE) is a blade antenna resembling black shark fins designed to collect data thorough more than 4 km (resolution of 10 m). The DICE radar antenna will work over the deep interior of the ice sheets to measure ice thickness and bed wetness where water may be lubricating the base of the ice sheet and changing conditions. The Shallow-Ice radar (SIR) is a horn antenna for penetrating closer to the surface of the icesheet, through approximately 300 meters of snow (25 cm resolution). SIR focuses on recent processes in the snow/ice system, looking at annual rates of snow accumulation and the layer of snow (firn layer) not yet compressed into glacial ice, estimated to range in depth from 40-100 m below the surface.

Two blade antenna for the Deep Ice Radar extend from the pod. (Image R. Bell)

Optics: Laser, is an instrument that uses light to image and collect data on surface elevation and snow texture.  Two different cameras will be used to collect data on reflectivity and temperature (visible-wave and infrared cameras). As we layer together all the information collected from the instruments we can integrate our understanding of the ice conditions at the base of the ice sheet up through the internal ice layers, to the ice sheet surface, and up to the reflective return from the ice.

Next week the Lamont’s Polar Geophysics Team will fly with the New York Air National Guard, bringing the long envisioned IcePod into the air for field-testing. The team is excited to take to the skies to see what the instruments can do, although with the first battery of tests flown close to home in upstate New York, not all the instruments can be performance tested. If all goes well and the go-aheads are received, a trip to Greenland is planned for later in the spring to allow full instrument testing in true polar conditions.

To learn more about the Icepod project see: http://www.ldeo.columbia.edu/icepod/

For more on the Polar Geophysics Group: http://www.ldeo.columbia.edu/polar-geophysics-group/

Funding for this project from #ANT 0958658 under the MRI initiative.

Recovering ‘Sea Spiders’ and Heading Home

Earth's Tectonic Plates - Tue, 01/15/2013 - 17:42

Recovering an MT instrument.

Lamont graduate student Natalie Accardo reports from the Pacific.  Blog 4: Jan. 13, 2013

The NoMelt project is more than just a seismic experiment; it also has an important magnetotelluric (MT) component. MT instruments measure natural magnetic and electric fields on the seafloor, allowing scientists to estimate the electrical conductivity of the underlying rocks. Conductivity is highly sensitive to tiny amounts of water and molten rock within the upper mantle and thus can help distinguish whether the mantle is “wet” (and thus easy to deform) or “dry” (rigid and plate-like).

To obtain information concerning the conductivity of the mantle, six long-period MT instruments were deployed along with the seismographs from the R/V Langseth in 2011. These instruments, which appear more like sea spiders than scientific hardware, sit on the ocean floor and record electrical and magnetic fields approximately every minute. We recover these instruments in the same way that we retrieve the OBS (previous post), although they proved to be much more shy than the OBS in communicating with us. We welcomed back our first MT instrument on a dark and windy night, and over the course of two weeks we recovered five additional instruments without incident, displaying them in all of their neon-orange glory on the stern deck.

With the last instruments safely strapped down, we have put the NoMelt site in our rearview mirror and are steadily speeding to our final destination of Honolulu. Sunny skies and calm seas accompany the slowing pace of activity during our four-day transit to port.  Behind the boat, we trail fishing lines with every color of bait in the hopes that a tuna or mahi mahi might take a bite. Deck chairs have snuck their way out from the shelter of the hangers and onto the sun-drenched back deck where we, like moths to a lantern, try to soak up every last ray of sun before we must head back to the chilly Northeast.

Today we passed close enough to the island of Hawaii to give us our first glimpse of dry land in almost a month. The crew poured onto the main deck to snap photos and hunt for the tiniest glimpse of cellphone reception. There may be no better way to be welcomed back to land than the awesome sight of Mauna Loa towering above the clouds. Overall, the trip has been a great success. Most of our instruments survived their year of solitude on the dark, cold seafloor and came back to us with a set of unique and priceless data. We consider ourselves lucky to have gotten the chance to visit this remote region of the world, which will likely not see comparable human activity for some time.

Until next time, Aloha!

Santa Comes Bearing an OBS

Earth's Tectonic Plates - Thu, 01/10/2013 - 11:44

Lamont graduate student Natalie Accardo reports from the Pacific.  Blog 3:  Jan. 1, 2013.

Christmas found the R/V Melville in the middle of the Pacific Ocean on the last day of a seven-day transit to the NoMelt Project site. In a coincidence that we hoped would be auspicious, we reached our first OBS site late that night. As much as we yearn to be home to do celebrate the holidays with our families, we also realize how fortunate we are to have the chance to do what we do. Many of us began Christmas day with phone calls home to offer holiday greetings to our families and loved ones. Then the entire crew mustered on the upper deck for the requisite group photo, with more than one Santa Claus in attendance. Sunshine abounded as the captain led a crew-wide gift exchange that produced enough chocolate candies to feed an army. The rest of the day was filled with a “coits” (a ring toss) tournament on the main deck, where two young female scientists (that is us!!) came from behind to win the championship and all the pride and glory that come with it. An epic feast topped off with homemade pies and cakes ended the day for most of the crew; for the science party our adventure was just beginning.

We arrived at the first OBS station late into the night of the 25th with apprehension abounding. Recovering OBS instruments from the ocean floor is always a tricky business, especially in our case; these instruments have been sitting beneath more than 3.5 miles of water for over a year. With cold, tired batteries powering the instruments’ acoustic transponders, communicating with them through miles of ocean currents amounts to a whispered conversation on a stormy night.

We initiate communication with an OBS by transmitting audible “chirps” from a communications box in the main science lab to a transducer on the ship’s hull. The transducer acts as a speaker to transmit the chirp through the ocean and down to the instrument. If the OBS is alive and well, it transmits seven chirps in response. Given the distance these signals have to travel, it takes about eight long, stressful seconds to hear the instruments reply. Sometimes there is no reply, and we try again, at different locations, from different angles, with alternate acoustic devices.

Once we know an instrument is up and running, we conduct an acoustic survey by cruising around and sending continuous chirps. We measure the time it takes for the instrument to chirp back to determine the distance to the OBS, providing a precise estimate of the instrument’s actual location on the seafloor. Once we have completed the survey, we are ready to bring the OBS up. We send another series of commands that tells the instrument to release itself from the seafloor and then monitor the distance to it as it rises through ocean. Once on the surface, the captain skillfully steers the ship very close to the OBS so that we can hook lines onto it and pull it safely on board.

Our Christmas Night OBS was successfully recovered, and by New Year’s Day we had retrieved 12 OBS and one magnetotelluric instrument (to be discussed in the next installment). Sadly, two instruments never responded and are assumed lost to the deep; we are likely to never know why. Our success can be seen in the growing army of instruments that stand at attention on the main deck.

We are completing the charge around the perimeter of the deployment, picking up instruments approximately every 10 hours. Soon we will make the turn and head onto the central line of the deployment, where interstation spacing is much shorter and the recoveries come hard and fast. From the Pacific we wish everyone a happy and healthy New Year!

Transiting the Pacific

Earth's Tectonic Plates - Sun, 12/30/2012 - 18:18

Lamont graduate student Natalie Accardo reports from the NoMelt recovery cruise.

Blog 2:  Dec. 23, 2012

Calm seas and sunshine find the R/V Melville in the Pacific.

Today marks our sixth day aboard the R/V Melville on a journey to a remote region of the Pacific to retrieve seismic instruments that have been quietly recording earthquake signals on the ocean floor for the past year. We have covered more than 2,600 km thus far but must cruise for another two and a half days before we reach the NoMelt project site. We have been making good time — the ship’s crew has been pushing the Melville to move at a quick pace, 12.3 knots or 14 miles per hour – and should be at the project site around midnight on the 25th of December.

The Melville initially met rough seas off the coast of California that forced most of the science party to remain horizontal in our bunks in an attempt to sleep off the affects of seasickness. We hastily tied down laptops, keyboards, and a glittering Christmas-themed snow globe so that they would not be chucked about by the rolling waves. Sticky mats and cup holders found their way into the mess hall so that the those of us who could stomach a meal would not find ourselves with a lap full of spaghetti or coca-cola.

However, calm seas found their way to us two days out of port and have stuck with us since. Hotter temperatures and increasingly sunny days remind us that we are steadily cruising toward our tropical destination. We fill our days at a leisurely pace acquiring bathymetric and magnetic data from the ship’s onboard instruments, deploying drifter instruments, and working on projects we’ve brought from home. As we near the project site, the pace will pick up, and the science party will commence 24-hour round-the-clock scientific operations.

A “drifter” instrument floating away from the R/V Melville.

The science party makes up only six of the total 30 people on board. The rest represent the talented, permanent crew of the Melville, who work tirelessly to keep her safe and operational in the open ocean. Their vocations span the gamut from the engineers that keep the huge diesel engines humming smoothly to the computer technicians that keep the Internet running and the onboard ship computers (and scientists!) happy. The crew is gregarious and inviting, welcoming any question or concern, no matter how banal. They may even invite you to join in their card games … though few of us are brave enough to test their skills.

Christmas and New Year’s are just around the corner and promise to be exciting, as they will mark our first days retrieving the OBS from the deep. Until then we wish everyone safe holiday travels and happy holidays!

One Year Later – Return to the NoMelt Site

Earth's Tectonic Plates - Sun, 12/30/2012 - 18:03

The R/V Marcus G. Langseth completed the initial portion of the NoMelt experiment on Dec 29, 2011. In the subsequent year, scientists began analyzing the active-source seismic data collected on that cruise, constructing initial models of the oceanic plate. The full analysis awaits the so-called “passive source” data – the year-long recordings of earthquakes and natural electrical and magnetic signals on the instruments that remain on the seafloor.

On Dec. 18, 2012, the R/V Melville departed San Diego to recover remainder of the NoMelt instruments and data. The expedition includes two scientists from Columbia’s Lamont-Doherty Earth Observatory: Post-doctoral scientist Patty Lin and graduate student Natalie Accardo. Natalie is sending regular reports from the ship, and I will post them here.

Post 1:  Natalie Accardo, Dec. 19, 2012.

Map displaying the NoMelt project site located ~1200 km southeast of Hawaii.

In the early hours of Dec. 18, a team of scientists aboard R/V Melville set out from San Diego to a remote portion of the Pacific Ocean on a trip that will take 28 days and cover more than 8,500 kilometers. On this voyage, we aim to recover 27 ocean bottom seismographs (OBS) instruments that have been sitting silently on the ocean floor for nearly a year. Throughout their stay on the seafloor, the OBS have been continuously listening and recording the shaking caused by distant earthquakes all over the world. By recording ground motion, we can constrain seismic wave properties and in turn the geologic characteristics of the oceanic plate. With this information, we hope to answer the multilayered question of what defines a tectonic plate.

For decades, geologists have focused most of their attention on locations where tectonic plates come together (i.e. subduction zones like Japan) and break apart (i.e. rift settings like the East African Rift System). Yet to better understand the complex processes happening at those sites, we must first understand the fundamental characteristics of a tectonic plate. For further information concerning instrument deployment and other aspects of this project, please refer to previous blog entries.

It takes seven days to make the 4,300 km journey from San Diego to the NoMelt OBS sites. During the transit time, we use instruments aboard the Melville to map topography and gravity of the ocean floor. Additionally, at regular intervals we toss “drifter” instruments overboard. These so-call “instruments of opportunity” were designed by students at the University of California San Diego (UCSD) to be deployed by any research vessel traveling through an area of interest. They are completely autonomous and will record sea surface information (temperature, salinity, etc.) wherever the currents take them, data that will be of use to oceanographers at UCSD.

Today marks only our second day on board and has given us our first true glimpse of the open ocean. Rocky seas have confined most of the science party to their bunks in a group effort to retain what is left of our last meal. However, the promise of calmer weather in the coming days has brought some cheer to the entire crew.

Role-Reversal (and Some Fun) at AGU

francesco-aguFrancesco Fiondella is normally behind the scenes writing web stories, developing audio slideshows and videos for the International Research Institute for Climate and Society (IRI). But at this year’s annual American Geophysical Union (AGU), the tables were turned for a brief moment. He was video ambushed by climate scientist Andrew Robertson and forced to explain [...]

LDEO email back up

IT Announcements - Mon, 12/17/2012 - 10:05

email outage

IT Announcements - Sun, 12/16/2012 - 08:22

Currently email service is down for most users due to multiple hardware failures.  We are working on the problem.  There is no estimate as to when we will be back up.

mail service outage

IT Announcements - Sun, 12/16/2012 - 03:38

 Mail service for many users is down due to mutiple hardware failures.  We are working on the problem.

A River Runs Through It: Predicting Floods in the Midwest

Andy1Focusing on the American Midwest, Andrew Robertson analyzes the relationships between floods, weather and climate patters throughout the 20th century.

Clues from Last Ice Age May Hint at Drying Ahead for Some Regions

Aaron Putnam sampling a boulder rooted in the Tachanggay Tso moraine. Drukso Gangri is in the background. (David Putnam)In the spectacular collapse of ice sheets as the last ice age ended about 18,000 years ago scientists hope to find clues for what regions may grow drier from human caused global warming. In a talk Thursday at the American Geophysical Union’s annual meeting, Aaron Putnam, a postdoctoral scholar at Lamont-Doherty Earth Observatory, painted a picture of earth’s dramatic transformation as seen in climate records extracted from ancient cave formations, ice cores, lake shorelines and glacial moraines.

Huge Landslide Linked to Glacier Surge in Tajikstan’s Pamir Mountains

A view of Tajikstan's Pamir Mountains from air. (Irene2005)Glaciers advance in colder temperatures, but sometimes a big rock avalanche can also make a glacier grow, new research results presented at the American Geophysical Union’s annual meeting suggests.

Tree Rings and Teachable Moments

Nicole Davi, Post Doctoral Researcher at IRI and Lamont Doherty Earth Observatory's Tree Ring LabNicole Davi, a postdoctoral scientist at the International Research Institute for Climate and Society and the Lamont Doherty Earth Observatory, thinks tree rings are an ideal way to motivate students to collect and analyze data as well as to learn about climate change.

Improving the Water Outlook in the Himalayas

Kullu, IndiaAndrew Robertson, a climate scientist at the International Research Institute for Climate and Society, discusses his research on helping reservoir managers in northern India make better planning decisions by improving their ability to predict how climate change will influence water availability.

Managing Hazard Risk and Weather Extremes at AGU

Researchers from the Earth Institute's Center for Research on Environmental Decisions will present their work at the 2012 American Geophysical Union Conference in San Francisco this week. Psychology doctoral candidate Katherine Thompson will present a poster entitled “The Psychology of Hazard Risk Perception”; and visiting research scholar Diana Reckien will present a poster entitled “Realities of Weather Extremes on Daily Life in Urban India—How Quantified Impacts Infer Sensible Adaptation Options.”

Predicting the Future of Soy in South America

Arthur FeaturedIn this Q&A, Arthur M. Greene discusses improving climate and agricultural modeling in South America using a new stochastic simulation of future climate.

Visualizing Malaria from Space

PietroPublic health professionals are increasingly concerned about the impact climate variability and change can have on infectious diseases such as malaria, dengue fever and bacterial meningitis. However, in order to study the relationships between climate and ...
Syndicate content