News aggregator

Dancing in the Darkness

Geopoetry - Fri, 06/20/2014 - 09:59
Hatchet fish, approximately 3 cm long (photo taken by Adelaide Rhodes and Jarrod Scott)

Hatchet fish, approximately 3 cm long (photo taken by Adelaide Rhodes and Jarrod Scott)


In deep darkness, cunning lights are softly luring prey,

Drawing closer to the glow, only some will flee …

Subtle bodies, clear as glass, with organs on display,

Exquisite dances only certain piercing eyes can see.

Worm-like creatures undulate, jaws hang wide and gaping,

Iridescent, jeweled young ‘tween lurking hunters skitter.

The deadly art of eating faces that of death escaping,

From afar, a dazzling show, a many-legged glitter.

Armored, silver-plated, soft as jello, far from shore,

Seeking wonder, terror, treasure, out here I will be.

Stranger than the strangest film on aliens at war:

The scintillating, gorgeous sight of plankton in the sea.



Further reading:

UNOLS Chief Scientist Training Cruise, “See Monsters Here”

UNOLS Chief Scientist Training Cruise, “Microscopic Zoo”

This poem was inspired by time spent on a UNOLS Chief Scientist Training Cruise (Barbados to Bermuda, June 2014).


This is one in a series of poems written by Katherine Allen, a researcher in geochemistry and paleoclimate at the Lamont-Doherty Earth Observatory.

Herbie’s Great Adventure: NUM Dendroecological Fieldweek

Kristen de Graauw and Cari Leland

Cari and Kristen here, checking in from Mongolia. This year we were invited to be instructors for the Third National Dendroecological Fieldweek, May 23-29 in Udleg, Mongolia. We arrived to Ulaanbaatar on May 20th so we were fortunate enough to have a few days to recover from some pretty terrible jetlag before beginning the fieldweek marathon. Anyone who has ever attended a fieldweek anywhere in the world knows how challenging (and rewarding!) these events can be. Our first few days of the fieldweek were spent at the NUM (National University of Mongolia) research station near Udleg, a few hours north of UB. We were so happy to see the beautiful countryside for a few days. We got to ride there in this awesome Russian vehicle, which Cari nicknamed Herbie.


The roads were rough but Herbie was a trooper and we arrived at the research station safely.

The roads were rough but Herbie was a trooper and we arrived at the research station safely.

We took a break at Teacher’s Pass for a nice panoramic view of the mountains before continuing on to the research station.

We took a break at Teacher’s Pass for a nice panoramic view of the mountains before continuing on to the research station.

The research station was a complex of buildings for housing, a kitchen, and lecture rooms. We shared a cozy room for two and enjoyed beautiful views of the valley and mountains surrounding us.

The NUM Forestry research station

The NUM Forestry research station

Our room from the outside...

Our room from the outside…

..and the inside.

…and the inside (Hi Cari!).

After everyone settled in, we met for the opening ceremony. Baatar gave a nice introduction of the project and the history of the CEME collaboration. There were 8 students in total, and 7 of them were female (girl power!). There was a good mix of participants; from first year undergraduates to PhD students.

Baatar giving the opening ceremony speech.

Baatar giving the opening ceremony speech.

After the opening ceremony we went out to the field. Baatar gave us a guided tour of all the current research projects at the station (there were many!) and the potential sites for the fieldweek. Then we gave a quick lecture on the basics of dendrochronology and headed back towards the research station to discuss potential fieldweek projects.

The flux tower on the research station property. It was pretty impressive.

The flux tower on the research station property. It was pretty impressive.

We noticed Gypsy moth larvae emerging from their cocoons on the ground near the forest.

We noticed Gypsy moth larvae emerging from their cocoons on the ground near the forest.

More gypsy moth larvae after emerging from their cocoons.

More gypsy moth larvae after emerging from their cocoons.

We headed back after a nice hike through the forest.

We headed back after a nice hike through the forest.

Day 2 at the research station was field sampling day. Unfortunately we woke up to a cold and rainy day but that didn’t stop our groups from heading out into the forest. After a long discussion we decided Cari would teach the Climate group and Kristen would teach the Ecology group. Cari’s group headed up the mountain in search of old larch and pine trees to core while Kristen’s group went to a portion of the forest that had been logged. The goal for the climate group was to find moisture-stressed trees and look at the relationship between tree rings and climate. The ecology group’s goal was to determine logging dates and the effects on surviving trees.

Cari’s group preparing to core a large pine near the mountain ridge.

Cari’s group preparing to core a large pine near the mountain ridge.

Kristen’s group coring a living larch near the stump graveyard.

Sundermaa coring a living larch near the stump graveyard for Kristen’s ecology group.

After one of the coldest and rainiest field days we’ve ever experienced we headed back to the field station to thaw and dry ourselves and the cores.

Cari’s group heading back from the ridge.

Cari’s group heading back from the ridge.

While we waited for the cores to dry, the students practiced skeleton plotting.

The students mounting wet cores with tape to help them dry straight.

Margad, Togii, and Badra mounting wet cores with tape to help them dry straight.

Byamba teaching Oyunna a skeleton plotting exercise.

Byambaa teaching Oyunna a skeleton plotting exercise.

The students are working hard on their skeleton plot exercises, while Kristen and Cari check their work.

The students are working hard on their skeleton plot exercises!

Everyone was very anxious to see if their skeleton plots matched!

Everyone was very anxious to see if their skeleton plots matched!

After a rainy day, we were treated with a beautiful sunset.

After a rainy day, we were treated with a beautiful sunset.

The next day we mounted the cores with glue and taught the students how to sand. They quickly learned that a well sanded core took time, patience, and persistence. At the end of the day we headed back to UB to begin laboratory methods.

Sainaa sanding her first core.

Sainaa sanding her first core.

Kristen telling the students they need to sand more! “Sand more!!”

Kristen telling the students they need to sand more…“Sand more!!”

The view from our sanding “room”. Not bad!

The view from our sanding “room”. Not bad!

Back at the university we had to hit the ground running with lab methods. The students skeleton plotted the samples from the research station one day, learned how to do the list method and measure the next day, and finally on the last day they learned how to run COFECHA and read the output files. It was challenging but everyone worked their hardest. The final day was very busy. The students were working on their presentations until the very last minute. The groups did an outstanding job presenting their projects, which made us feel so grateful for being able to teach such a bright and dedicated group of students. During the closing ceremony Baatar gave us both a really nice Mongolian tree and shrub guide book and then presented each student with a certificate of achievement. The students then gave us the most thoughtful gifts of Mongolian art and script.

Oyunna discussing the correlations between climate and pine during the climate group presentation.

Oyunna discussing the correlations between climate and pine tree growth during the climate group presentation.

Baatar presenting Margad with her certificate of achievement.

Baatar presenting Margad with her certificate of achievement.

 Cari, Margad, Togii, Sundermaa, Oyunna, Sainaa, Gerelee, Baatar, Sanaa, Kristen, M?, Byambaa, and Badra.
The whole group after an amazing fieldweek! From the left: Cari Leland*, Margad Ovgonkhuu, Togtokhbayar Erdene-Ochir, Sundermaa Sergelen, Oyunmunkh Byambaa, Sainbayar Gombo, Oyungerel Sereenen, Baatarbileg Nachin*, Oyunsanaa Byambasuren*, Kristen de Graauw*, Myagmarsuren Batdorj, Byambagerel Suran*, and Badar-Uugan Khasbaatar. ( *Instructors)



Categories: TRL

A Quick Retreat from ‘Mountain Lion’ Savannah

Sculpting Tropical Peaks - Tue, 06/17/2014 - 12:03
Max 5.1

The discovery of a flat grassland leads to a morning of exploration.

By Max Cunningham
June 10, 2014

Mike, Colin and I made meticulous plans for exploring Mount Chirripó before we left New York, but on the way to the summit Mike and I saw something that made us change direction: at about 9,500 feet, a mysterious grassland beckoned beneath jagged peaks. With just one day to go before our trip back to the Cloudbridge Reserve to refuel, we decided to make an early morning trek to this unusual valley to investigate why it is so flat and devoid of vegetation.

Max 5.2

The dry stream bed is sharply cut but lined with angular rocks suggesting minimal erosion.

Over the course of a beautiful, sunny day Mike and I trekked over the rugged terrain from Crestones Base Camp before reaching a sudden transition from forest to grassland. A few things struck us. First, a thin river snakes through this entire shallow valley. Around bends in the river we noticed sharply cut banks where the stream has become more powerful and eroded away the banks.

Max 5.3

A stone marks the place where a lion killed someone in 1956.

Second, we were surprised to find the stream bed completely dry. From a distance, we had expected to find a powerful body of water. In another test of our geomorphology knowledge we discovered that this dry stream bed is paved mostly in cobble-sized rocks, the type you might find on a cobblestone street except these cobbles are sharp and angular instead of smooth and rounded. Mike and I spent the morning walking the Sabena de Leones valley and the more we looked, the more baffled we remained by the processes that shaped this landscape. Why is the river bed dry and its sediment load so large and angular? We hope to find more clues in the coming week.

In the early afternoon, Mike and I stumbled on a small marker along the river channel in Spanish dated 1956. Combining our Spanish skills, Mike and I deduced that the sign commemorated the unfortunate death of a man by mountain lion, and then I realized that Sabana de los Leones translates to “Savannah of the Lions.” That’s all we needed to know before skedaddling back to the Talari Valley and the security of the Crestones Base Camp.

Landslide Up Close

Sculpting Tropical Peaks - Mon, 06/16/2014 - 12:31

By Max Cunningham
June 9, 2014

Max 4.1

The landslide below the dark rocks in the center of this photo was discovered first in satellite images.

During the last decade, scientists have noticed an apparent rise in catastrophic events in mountain valleys as glaciers retreat and permafrost thaws. Some evidence suggests that thawing glacial valleys are responsible for enormous, fast-moving landslides that can destabilize river dams and cause other damage. Last July, my colleague Colin Stark and others at Lamont identified one such landslide in Alaska.

The idea that catastrophic processes may become more frequent as glacial valleys warm globally is a frightening one, but further information is needed to assess the threat. I came to Mount Chirripó hoping to find evidence of past landslides. Before flying here, Stark and I used high-resolution satellite images to identify potential landslide features on Mount Chirripó. On our second day in the field, Kaplan and I tried to locate them on foot.

We found our first landslide in Valle de los Conejos, a cirque valley carved into Mount Chirripó’s southern side. Apparently, we walked right by it on our previous day of fieldwork; the trees and bushes growing amid the fallen boulders provide an excellent disguise.The glacial debris blends in almost perfectly with the hillside. To highlight it, I have outlined the scarp in red where the failure occurred, but even this image, taken more than a half-mile away, is deceiving. Mike and I spent what felt like hours whacking through thick bushes to get there. You can just make out some of the large boulders in the background.

Max 4.2

Kaplan bushwhacks to the landslide.

From a distance I thought we could scale the landslide, but the house-sized blocks were too big to scramble over. During the slide, boulders stacked up on each other and formed crevasses and caves that are now covered in treacherous mats of vegetation. I suspect that pumas may sleep in the caves by day if they are able to withstand the altitude.

Mike and I traipsed around the landslide, stopping at various scarps to enjoy the views. The run-out distance appears to be only about a tenth of a mile, and the boulders are densely packed. Looking down, I got the impression that the landslide created a crevasse somewhere between 60 to 100 feet in depth. When did this major failure happen in relation to deglaciation?

Max 4.4

Quartz sampled from the landslide debris may help us discover when the event happened.

Mike and I decided to use our CRN dating tools to find out. We made our way to several boulders on the east side of the landslide, where the rock is sedimentary, unlike the granodiorite found in the Valle de las Morrenas. Once again, Mike and I found bits of fine-grained quartz in the rocks, indicating we can measure their Beryllium-10 levels to understand how long this landslide has been exposed to cosmic rays. Mike and I think that the extent of weathering on these boulders is a clue to the age of the landslide: For the surface of these boulders to undergo alteration, they probably sat in the same place for a long period of time. Perhaps this landslide is indeed paraglacial, a result of glacier retreat and permafrost thaw. We hope our efforts to measure CRN production here will inform us.

Chiseling Away

Sculpting Tropical Peaks - Fri, 06/13/2014 - 10:52

By Max Cunningham
June 8

Max 3-4

Cunningham chisels away at this glacial moraine for a sample that will reveal when the ice last withdrew.

Our expedition has two main goals: assess glacial erosion features on Mount Chirripó and search for clues of the summit’s age. Were the broad, flat landscapes on Mount Chirripó formed by glacial erosion or a change in tectonic forces pushing the Talamanca Range up about 2.5 million years ago?

A chemical dating technique called Cosmogenic Radionuclide (CRN) Dating may lead us to the answer. This technique will help tell us how long ago the valleys flanking Mount Chirripó eroded, and therefore, whether Mount Chirripó’s high elevation landscape is older than 2.5 million years or whether it eroded into its current shape as recently as 10,000 years ago.

Earth is being constantly bombarded by high-energy protons and neutrons from beyond our solar system, and CRN dating exploits this process. The collision of high-energy particles and atoms in the atmosphere and on rock at Earth’s surface produces new atoms of different mass, or isotopes. Fortunately for many Earth scientists, the impact of cosmic rays and oxygen produces an extremely rare isotope of the element Beryllium: Beryllium-10. Oxygen is abundant in Earth’s crust, and quartz (SiO2) is among the most common minerals found there. When cosmogenic rays react with quartz at the surface, about six atoms of Beryllium-10 are produced per gram of quartz per year.

Measuring concentrations of Berylium-10 at the surface can potentially tell us how long the rock has been exposed to the atmosphere, and quartz is a particularly convenient mineral for measuring Beryllium-10 concentrations. Mike and I sought out glacial features with quartz-bearing rocks at Mount Chirripó with the hope of understanding whether rocks here were exposed to the atmosphere after the recent retreat of ice.

Max  3-1

Glacial debris can create natural dams where lakes form.

Glacial features jumped out at us during our initial tour of Mount Chirripó. We saw broad cirque valleys, floored by large lakes likely filled during glacial retreat. We also saw striated rocks and moraine ridges scattered with cobbles and boulders. In one valley, Valle de Las Morrenas, we noticed several lakes above the boulder-strewn ridges. This fits in neatly with previous observations of lakes dammed by moraines.

Max 3-2

Kaplan inspects a moraine.

Because moraines are abandoned when the ice retreats, measuring concentrations of Beryllium-10 in boulders on top of moraines may give us an idea of how long ago glacial erosion happened here. After locating boulders sitting on moraines, our next step was to see what the boulders are made of.


Max 3-3

Chiseling exposes a fresh surface of quartz.

We discovered that many are granodioritic, an intrusive igneous rock composed of the minerals plagioclase, amphibole and our good friend quartz! Next we took samples to analyze their Beryllium-10 levels in the lab later. Collecting samples is a physically rigorous process, especially in the low-oxygen, rainy conditions at 10,000 feet on Mount Chirripó. With a hammer and a chisel, and a bandanna to protect our faces from shattering rock fragments, we chipped away at the surface of the boulder, hoping to come away with about two pounds of rock to analyze.

We collected samples from boulders on two moraine crests. After months of processing, we hope to be able to describe how long ago glacial ice retreated from different parts of the valley. Calling the day a success, we hiked back through the afternoon rain to Crestones Base Camp.



Geopoetry - Fri, 06/13/2014 - 08:57
 BBC World Service

Images of Apophis from BBC World Service

You may have heard the recent cries:
An asteroid towards us flies!
Apophis, a rocky mass,
Some years from now will closely pass,
Into the “keyhole,” if she falls,
The president will get some calls.
Chances that this fate arrive?


Further reading:

Apophis asteroid: Large space rock flies past Earth, BBC News, Jan. 9, 2013

This is one in a series of poems based on science news, written by Katherine Allen, a researcher in geochemistry and paleoclimate at the Lamont-Doherty Earth Observatory. “Lake Goo Clue” first appeared on Allen’s website on Jan. 11, 2013.

Climbing Mount Chirripó

Sculpting Tropical Peaks - Thu, 06/12/2014 - 15:09

By Max Cunningham
June 7

After arriving in the town of San Gerrardo de Rivas, Mike Kaplan and I immediately started gearing up for our trek to Mount Chirripó.

Our arrival here was somewhat hectic. After landing in San Jose around 10:30 a.m., we hopped a bus to San Isidro de el General, a town just west of Chirripó National Park. Winding through the rugged mountains of the Talamanca Range, we were treated to spectacular views of central Costa Rica’s countryside. Max 2a

Once in San Isidro de el General, we navigated our way to the local office of Ministerio de Ambiente y Energia de Costa Rica, the government agency that provides research permits for Chirripó National Park. Our contact, Marisol Rodríguez Pacheco, showed remarkable patience with our broken Spanish and helped us pull together some final requirements for the permit.

By 5 p.m., the two of us made base camp at the Cloudbridge Reserve, above the San Gerrardo de Rivas. Founded in 2002, the Cloudbridge Reserve supports researchers in Costa Rica and works towards sustainable forest management. Volunteers at the Cloudbridge Reserve provided us with a beautiful working space and a warm place to sleep.

Max 2-1

The clouds rolled in early, by 9 a.m., on their way from San Isidro de el General in the distance.

The weather here can be erratic. During the early morning hours the sun is intense and the sky is blue; by 1 p.m. clouds roll in. You can anticipate heavy rain from 4 to 6 every day, and nights are cold.

After taking a day to gather food supplies and find porters to help us carry heavy packs up to Mount Chirripó, Mike and I set off around 4:30 a.m. to make our way to the top of Mount Chirripó before the afternoon rain.

Travelers and locals alike warned us that the hike would be strenuous, and indeed they were correct. The trail leading to Mount Chirripó is steep and rugged (although pristinely maintained), and we gained nearly 5,000 feet in elevation over nine miles of trail.

The trail leading up to Mount Chirripó around 8,000 feet is densely vegetated and humid.

The trail leading up to Mount Chirripó around 8,000 feet is densely vegetated and humid.

One especially difficult aspect of our climb was the dramatic change in climate with elevation. Below 10,000 feet, we trekked through a humid, dense rain forest, but once above about 9,500 feet, the vegetation became sparse and the temperature dropped. At the summit of Chirripó, we rarely experienced temperatures warmer than 60°F.

In terms of Earth surface processes, this dramatic change in environment invokes thoughts about difference in landscape evolution: How does change in altitude, and associated changes in climate, affect erosion processes in the long term? This is just one question we hope our research can eventually inform.

Above 10,000 feet, the climate is extremely different, and so is the terrain.  At high elevations we see broad U-shaped valleys, and cold conditions inhibit dense vegetation growth.

Above 10,000 feet, the climate is extremely different, and so is the terrain. At high elevations we see broad U-shaped valleys, and cold conditions inhibit dense vegetation growth.

After an 8.5 hour hike, we finally reached Talari Valley, a lowland about 500 feet below Mount Chirripó. We made camp at the Crestones Base Camp, a meticulously maintained hostel in the Talari Valley, near Cerro Chirripó. The Crestones Base Camp is home to many travelers seeking the thrill of climbing Mount Chirripó. Impressively, many of the hikers we encountered wake up around 2:30 a.m. to hike the remaining 5,000 feet to the peak of Cerro Chirripo to watch the sunrise over this beautiful mountain. Mike and I made no such plans, and instead rested for a busy week of fieldwork.

Max 2-5

From Crestones Base Camp, you can pick out our hostel with the green roof in this expansive view of Talari Valley.


Mount Chirripó: Shaped by Glaciers or Tectonic Forces?

Sculpting Tropical Peaks - Fri, 06/06/2014 - 14:38

By Max Cunningham

Max Cunningham

Max Cunningham

I’m a graduate student at the Lamont-Doherty Earth Observatory and work in Colin Stark’s Earth Surface Processes Group. My research focuses on the role that climate plays in molding Earth’s surface, and how we can use clues carved into landscapes to learn more about climate and climate change in the past.

Since arriving at Lamont-Doherty, I’ve focused my attention on glacial valleys responding to climate change. I want to learn more about erosion in landscapes undergoing a transition from cold, frozen conditions to warm conditions. Questions about the timing of glacial retreat in the past and the erosional processes that occur as landscapes unfreeze are particularly relevant today, as glaciers around the world shrink in response to a warming global climate. max 1

Specifically, I want to learn about the history of glacial erosion in tropical mountains. Features on many tropical peaks around the world suggest that glaciers once persisted at low latitudes, but nearly all of these places are far too warm to sustain glaciers today.

Google Earth images of glacial thumbprints at Mount Chirripo, Costa Rica (left) and Mount Wilhelm, Papua New Guinea (right).  Both mountains are located within 10° latitude of the equator.

Google Earth images of glacial thumbprints at Mount Chirripo, Costa Rica (left) and Mount Wilhelm, Papua New Guinea (right). Both mountains are located within 10° latitude of the equator.

Glaciers are a crucial link between climate and erosion: They form only under very specific climatic conditions and leave very distinctive marks after they retreat. During a glacier’s lifetime, snow accumulates at high elevation and compacts into hard ice that flows downslope; at lower elevations warmer temperatures melt away layers of snow, allowing ice deeper within the glacier to move toward the surface. The total effect of compacting ice above and disappearing ice below is a “scooping” motion, and rocks caught in this “ice scoop” wear away bedrock. A combination of this rock-on-rock wear and other processes produces features unique to glacial erosion, such as circular valleys called cirques. In map view glacially sculpted valleys look like thumbprints in clay.

A somewhat startling realization is that these glacial thumbprints can be found on mountains in hot, tropical places like Costa Rica, Uganda, Kenya and Papua New Guinea. Some major questions arise: How long ago did glaciers carve out valleys in the tropics? How far down mountainsides did glaciers persist in these perennially warm regions? To start honing in on these questions, I’ll be traveling to Costa Rica’s tallest peak, Mount Chirripó, in Chirripó National Park for the month of June.

On Mount Chirripó, which rises to 12,530 feet, glacial thumbprints are clustered a few hundred feet below the summit. River profiles have a distinctive shape, exiting U-shaped valleys along gentle gradients and then breaking suddenly into a steep slope at about 6,500 feet. Waterfalls, or more technically “knickpoints,” form at this steep slope change.

Scientists have studied the unusual glacial thumbprints and clustering of knickpoints at Mount Chirripó. In 2000, researchers at the University of Tennessee identified a series of lakes that formed as a result of glacial erosion. They extracted sediment cores from the lakes and noticed a sharp transition from granular, glacially-produced sediment to organic material with depth in the core. Using 14C radiometric dating, they found that the transition occurred between 12,000 and 9,800 years ago.

Why is that important? Between 20,000 and 10,000 years ago the world was thawing out of an ice age. The 14C dates imply that glaciers persisted at about 12,000 feet at Mount Chirripó as recently as 9,800 years ago. By comparison, North America’s Laurentide ice sheet, which once extended south of New York City, retreated into Canada well before 9,800 years ago.

A 2012 study looked at Mount Chirripó from a different lens. The collision of tectonic plates in the tropical Pacific Ocean pushed Mount Chirripó to its modern elevation, but the timing of this uplift remains unclear. The 2012 study suggested that the clustering of knickpoints could reveal when tectonic uplift began.

Rapid tectonic uplift provides rivers with potential energy that expresses itself in steep slopes that slowly creep up mountainsides, creating a “wave” of erosion that travels up hillslopes. By assuming a “vertical” erosion rate, these researchers estimate that knickpoints at 6,500 feet signify tectonic upheaval that began about 2 million years ago.

The conclusions reached by these independent studies present a major conflict. On the one hand, valleys atop Mount Chirripó may have been carved by glaciers. If this is the case, the landscape must be “young,” as glacial erosion would have occurred during the last 2.5 million years. On the other hand, the valleys at high elevations at Mount Chirripó may represent a landscape that existed before 2 million years ago and rode a pulse of uplift to 12,500 feet.

In other words, two competing hypotheses have emerged: Is Mount Chirripó a sculpture of glacial erosion, or an ancient landscape perched at high elevations by tectonic forces?

My colleague Mike Kaplan and I plan to analyze evidence of past glaciation on Mount Chirripó in an attempt to test these two competing hypotheses. Using a geochemical technique called surface exposure age dating, which will allow us to measure how long rocks at the summit of Mount Chirripó have been exposed to the atmosphere, we will attempt to test how “old” the landscape is—is it relatively young, around 9,800 years old? Or does it predate a massive shift in tectonic uplift that began 2 million years ago?

Lake Goo Clue

Geopoetry - Fri, 06/06/2014 - 12:53
Lake Tanganyika, Tanzania

Lake Tanganyika, Tanzania. Photo: K. Allen

The lands of Africa’s Horn,
Great Valleys sliced by a Rift,
By drought and famine are torn …
What drives such a large rainfall shift?
Detectives of lake muck and goo,
Through models and efforts terrific,
Put forth a paleo-clue
From the Indian, not the Pacific.


Further reading:

Multidecadal variability in East African hydroclimate controlled by the Indian Ocean, Tierney et al. Nature 2013

This is one in a series of poems based on science news, written by Katherine Allen, a researcher in geochemistry and paleoclimate at the Lamont-Doherty Earth Observatory. “Lake Goo Clue” first appeared on Allen’s website on Jan. 18, 2013.

Some Do Not Like It Hot

Geopoetry - Fri, 05/30/2014 - 14:35
 Sun et al. 2012, Science

Image: Sun et al. 2012, Science

The Great Dying, The Big One — The Permo-Triassic!
(In a time machine, not sure if that’s where I’d aim …)
As extinctions go, this one’s a blockbuster classic,
When most of Earth’s species dropped out of the game.
Conodont fossils reveal massive changes
In sea surface temperatures (and CO2?).
Terrestrial critters reduced their lat ranges;
Low-oxygen regions in deep ocean grew.
Peat swamps disappeared (a great gap in coal),
And at the equator, most fish would fry.
At times like these, seems wise to head for the pole!
In a hot-steamy world … adapt, move, or die.


Further reading:

Lethally Hot Temperatures During the Early Triassic Greenhouse, Yadong Sun et al., Science, 2012

Life in the Early Triassic Ocean, David J. Bottjer, Science, 2012

This is one in a series of poems based on science news, written by Katherine Allen, a researcher in geochemistry and paleoclimate at the Lamont-Doherty Earth Observatory. “Some Do Not Like It Hot” first appeared on Allen’s website on Oct. 19, 2012.

Clock Is Ticking in West Antarctic

Melting Glaciers-Tracking Their Path - Fri, 05/23/2014 - 12:54
Pine Island Glacier, Antarctica

The leading edge of the floating ice tongue of the Pine Island Glacier, Antarctica. Photo: M. Wolovick

Reports that a portion of the West Antarctic Ice Sheet has begun to irretrievably collapse, threatening a 4-foot rise in sea levels over the next couple of centuries, surged through the news media last week. But many are asking if even this dramatic news will alter the policy conversation over what to do about climate change.

Glaciers like the ones that were the focus of two new studies move at, well, a glacial pace. Researchers are used to contemplating changes that happen over many thousands of years.

This time, however, we’re talking hundreds of years, perhaps — something that can be understood in comparison to recent history, a timescale of several human generations. In that time, the papers’ authors suggest, melting ice could raise sea levels enough to inundate or at least threaten the shorelines where tens of millions of people live.

“The high-resolution records that we’re getting and the high-resolution models we’re able to make now are sort of moving the questions a little bit closer into human, understandable time frames,” said Kirsty Tinto, a researcher from Lamont-Doherty Earth Observatory who has spent a decade studying the Antarctic.

“We’re still not saying things are going to happen this year or next year. But it’s easier to grasp [a couple of hundred years] than the time scales we’re used to looking at.”

The authors of two papers published last week looked at a set of glaciers that slide down into the Amundsen Sea from a huge ice sheet in West Antarctica, which researchers for years have suspected may be nearing an “unstable” state that would lead to its collapse. The West Antarctic Ice Sheet is mostly grounded on land that is below sea level (the much larger ice sheet covering East Antarctica sits mostly on land above sea level).

Advances in radar and other scanning technologies have allowed researchers to build a detailed picture of the topography underlying these glaciers, and to better understand the dynamics of how the ice behaves. Where the forward, bottom edge of the ice meets the land is called the grounding line. Friction between the ice and the land holds back the glacier, slowing its progress to the ocean. Beyond that line, however, the ice floats on the sea surface, where it is exposed to warmer ocean water that melts and thins these shelves of ice. As the ice shelves thin and lose mass, they have less ability to hold back the glacier.

What researchers are finding now is that some of these enormous glaciers have become unhinged from the land – ice has melted back from earlier grounding lines and into deeper basins, losing its anchor on the bottom, exposing more ice to the warmer ocean water and accelerating the melting.

In their paper published in Geophysical Research Letters, Eric Rignot and colleagues from the University of California, Irvine, and NASA’s Jet Propulsion Laboratory in Pasadena, Calif., described the “rapid retreat” of several major glaciers over the past two decades, including the Pine Island, Thwaites, Haynes, Smith and Kohler glaciers.

“We find no major bed obstacle upstream of the 2011 grounding lines that would prevent further retreat of the grounding lines farther south,” they write. “We conclude that this sector of West Antarctica is undergoing a marine ice sheet instability that will significantly contribute to sea level rise in decades to come.”

The region studied holds enough ice to raise sea levels by about 4 feet (Pine Island Glacier alone covers about 62,000 square miles, larger than Florida). If the whole West Antarctic Ice Sheet were to melt, it could raise the oceans about 16 feet.

 Eric Rignot

The glaciers studied by Rignot’s research team. Red indicates areas where flow speeds have increased over the past 40 years. The darker the color, the greater the increase. The increases in flow speeds extend hundreds of miles inland. Image: Eric Rignot

In the second paper, Ian Joughlin and colleagues from the University of Washington used models to investigate whether the Thwaites and Haynes glaciers, which together are a major contributor to sea level change, were indeed on their way to collapsing. “The simulations indicate that early-stage collapse has begun,” they said. How long that would take varies with different simulations – from 200 to 900 years.

“All of our simulations show it will retreat at less than a millimeter of sea level rise per year for a couple of hundred years, and then, boom, it just starts to really go,” Joughin said in a news release from the University of Washington.

Many scientists who’ve been studying the region were already braced for the storm.

“It’s gone over the tipping point, and there’s no coming back,” said Jim Cochran, another Lamont researcher with experience in the Antarctic. “This … confirms what we’ve been thinking for quite a while.”

Cochran is principal lead investigator for Columbia University in Ice Bridge, the NASA-directed program that sends scientists to Antarctica and Greenland to study ice sheets, ice shelves and sea ice using airborne surveys. Much of the data used in the new papers came from the Ice Bridge project.

Tinto, also an Ice Bridge veteran, agreed. “I thought it was pretty exciting, because we’ve all been working on this area for a long time, and that potential for the West Antarctic Ice Sheet to behave in this way, we’ve been aware of it for a long time,” she said. “[It] made me want to get in there and look at the rest of the area, what else is going on.”

And there are still many questions about what’s going on: How fast the ocean that swirls around Antarctica is warming, how those ocean currents shift, and to what extent that is influenced by global warming.

“I have a problem with the widespread implication (in the popular press) that the West Antarctic collapse can be attributed to anthropogenic climate change,” said Mike Wolovik, a graduate researcher at Lamont-Doherty who studies ice sheet dynamics. “The marine ice sheet instability is an inherent part of ice sheet dynamics that doesn’t require any human forcing to operate. When the papers say that collapse is underway, and likely to last for several hundred years, that’s a reasonable and plausible conclusion.”

But, he said, the link between CO2 levels and the loss of ice in West Antarctica “is pretty tenuous.” The upwelling of warmer waters that melt the ice has been tied to stronger westerly winds around Antarctica, which have been linked to a stronger air pressure difference between the polar latitudes and the mid-latitudes, which have in turn been linked to global warming.

“I’m not an atmospheric scientist, so I can’t evaluate the strength of all of those linkages,” Wolovik said. “However, it’s a lot of linkages.” And that leaves a lot of room for uncertainty about what’s actually causing the collapse of the glaciers, he said.

Researchers have been discussing the theory of how marine ice sheets become unstable for many years, said Stan Jacobs, an oceanographer at Lamont-Doherty who has studied ocean currents and their impact on ice shelves for several decades.

“Some of us are a bit wary of indications that substantial new ground has been broken” by the two new papers, Jacobs said. While ocean temperatures seem to be the main cause of the West Antarctic ice retreat, there’s a lot of variability in how heat is transported around the ocean in the region, and it’s unclear what’s driving that, he said. And, he’s skeptical that modeling the system at this point can accurately predict the timing of the ice’s retreat.

But, he added, “this is one more message indicating that a substantial sea level rise from continued melting of the West Antarctic Ice Sheet could occur in the foreseeable future. In the absence of serious near-term greenhouse gas mitigation efforts, such as an escalating tax on carbon, they may well be right.”

“It starts bringing it a little closer to home,” said Tinto. “It’s a significant amount of change, but something we can start planning for. Hopefully [this will] make people stop procrastinating and start planning for it.”

Cochran agreed: The papers’ message is “that … over the next couple hundred years, there’s going to be a significant rise in sea level, and at this point we can’t stop it.” But, he added, “it doesn’t say give up on trying to cut emissions. … [Just] don’t buy land in Florida.”


For further details on what’s going on in West Antarctica, check out these resources:

The two papers in question:

Widespread, rapid grounding line retreat of Pine Island, Thwaites, Smith and Kohler glaciers, West Antarctica from 1992 to 2011, E. Rignot, J. Mouginot, M. Morlighem, H. Seroussi, B. Scheuchl, Geophysical Research Letters (2014)

Marine Ice Sheet Collapse Potentially Underway for the Thwaites Glacier Basin, West Antarctica, Ian Joughin, Benjamin E. Smith, Brooke Medley, Science (2014)

Unexpected Sisters

Geopoetry - Fri, 05/23/2014 - 09:42
 BBC Photo Library.

An artist’s rendering of the extinct Elephant bird (Aepyornis maximus), which lived in Madagascar. Aepyornis stood over 3 meters tall. Image source: BBC Photo Library.


An ancient island’s trove of treasure: Madagascan fauna
Tenrec, fossa, lemur, hippo, dugong, bat, iguana.
A giant bird – O, wondrous beast! – a half a ton, and tall,
Laid foot-long eggs, had beefy legs, and did not fly at all.
Another ratite, far away within the South Pacific,
The kiwi! Shy, with furry feathers, appetite terrific.
Among the old-jawed birds, you wouldn’t guess that they’re close kin,
But DNA reveals a link from deep, deep down within.
If the kiwi’s closest kin is not its moa neighbor,
Drawing up the family tree might seem a puzzling labor.
The simplest answer blows the mind – it seems that they all flew
With wings they spread across the globe, and filled in niches new.
Dinos gone (darn asteroid) left lots of open spaces,
Birds came in, diversified, flew on an as-need basis.
From this, it seems that flightlessness evolved six separate times!
The song of life, though improvised, with patterns clear it chimes.



Further reading:

Ancient DNA reveals elephant birds and kiwi are sister taxa and clarifies ratite bird evolution, Mitchell et al., 2014, Science.

Little kiwi, huge extinct elephant bird were birds of a feather, Reuters

The Surprising Closest Relative of the Huge Elephant Birds, National Geographic

This is one in a series of poems based on science news, written by Katherine Allen, a researcher in geochemistry and paleoclimate at the Lamont-Doherty Earth Observatory.

Weak Underbelly

Geopoetry - Fri, 05/16/2014 - 11:44
 New York Times.

A view of the West Antarctic Ice Sheet (Landsat). Source: New York Times.


Antarctica’s uncertain fuse,
A “weak underbelly,” said Hughes.
Pine Island and Thwaites,
Thrown open, the gates?
As humans, what path should we choose?

The East’s held strong millions of years,
Despite cries of wolf from some peers.
West into the sea,
Up one foot, or three?
Uncertainty some meet with sneers.

Below salty waves, ice is grounded …
In this case, we see fears are founded.
In our defense,
Some centuries hence,
I hope they’ll say reason resounded.



Further reading:

Scientists Warn of Rising Oceans From Polar Melt, Justin Gillis and Kenneth Chang, New York Times.

Marine Ice Sheet Collapse Potentially Underway for the Thwaites Glacier Basin, West Antarctica, Joughin et al., 2014, Science.

Widespread, rapid grounding line retreat of Pine Island, Thwaites, Smith and Kohler glaciers, West Antarctica from 1992 to 2011, Rignot et al., 2014, PNAS.

This is one in a series of poems based on science news, written by Katherine Allen, a researcher in geochemistry and paleoclimate at the Lamont-Doherty Earth Observatory.

The New World

Geopoetry - Fri, 05/09/2014 - 10:24
Archaeological expedition in the Peruvian Andes (Kurt Rademaker, University of Maine at Orono).

Archaeological expedition in the Peruvian Andes (Kurt Rademaker, University of Maine at Orono).


On a man in the mountains, dusk falls;

Shadows seep upward and spread.

Scaling the black, chiseled walls,

He silently seeks the dead.


The Andes, sharp spine of Peru,

Shelter small secrets of stone.

That night, an ancient milieu:

Obsidian, jasper, bone.


Into deep history, peer:

Sharp edges of tools, human craft!

Adventurous people lived here,

Climbed, feasted, laughed.


Archaeological expedition in the Peruvian Andes (Kurt Rademaker, UMaine)

Archaeological expedition in the Peruvian Andes (Kurt Rademaker, UMaine)


Further reading:

Science-2014-Gibbons-567-8 (pdf)

“New Sites Bring the Earliest Americans Out of the Shadows,” Ann Gibbons, Science, 2014

This is one in a series of poems based on science news, written by Katherine Allen, a researcher in geochemistry and paleoclimate at the Lamont-Doherty Earth Observatory.

The Breathing Ocean

Geopoetry - Fri, 05/02/2014 - 11:10
 Jaccard et al. (2013) Science

Image: Jaccard et al. (2013) Science

Far south and farther south, where winds are cold and screaming,
Waters churn, and deep below, old sediments lie dreaming.
A million years’ residuum of life and death and dust,
A library of ice ages reposed upon Earth’s crust.
Very finely teased apart, this elemental tale,
On barium and opal deep into the past we sail.
With all the evidence aligned, a pattern brightly blazes:
Descent into an ice age world proceeds in two key phases.
An orchestra with many players ‘tween warm-cold inflecting;
Tiny cells, abyssal flow, great winds … now, who’s directing?


Further reading:

Two Modes of Change in Southern Ocean Productivity Over the Past Million Years, Jaccard, Hayes et al., Science, 2013

This is one in a series of poems based on science news, written by Katherine Allen, a researcher in geochemistry and paleoclimate at the Lamont-Doherty Earth Observatory. “The Breathing Ocean” first appeared on Allen’s website on March 22, 2013.

Hell’s Chicken

Geopoetry - Fri, 04/25/2014 - 10:00
 Mark Klingler/Carnegie Museum of Natural History

The dinosaur Anzu wyliei. Illustration: Mark Klingler/Carnegie Museum of Natural History

From our great, wild west, those rusty, dusty hills,
Bones of a beast who would give a cowboy chills.
A fierce-looking crest – a mohawk made of bone!
Claws, beak, bony tail, locked within hard stone.
Heavy as a tiger, scary yet absurd;
Anzu, feathered giant: a dino, not-quite-bird.
Mysterious, its habits – egg-eaters? A chance.
But this terrifying creature may have also eaten plants.
We piece together dreams of the verdant late Cretaceous,
Shards, broken clues from the patient and tenacious.
How I wish I could’ve seen this dinosaur humungous;
I guess I’ll have to settle for their relatives among us!



© Wikipedia:NVO

A New Large-Bodied Oviraptorosaurian Theropod Dinosaur from the Latest Cretaceous of Western North America, PLoS One, 3/19/14

Dinosaur dubbed ‘chicken from hell’ was armed and dangerous, The Guardian, 3/19/14

National Geographic, 3/19/14

Huffington Post, 3/19/14

This is one in a series of poems based on science news, written by Katherine Allen, a researcher in geochemistry and paleoclimate at the Lamont-Doherty Earth Observatory. You can read more on Allen’s website.

Black Holes

Geopoetry - Fri, 04/18/2014 - 15:54

Image Credit: Science Videolab

In most observed galaxy hearts,
Massive black holes reside,
Formed from dark-baryon parts,
As huge stars collapse or collide.
Telescopes secrets divulge,
Hinting at coevolution,
The key: a galaxy’s bulge?
We do not yet know the solution.
Whence the crucial gas-fuel
With which to feed a black hole?
Do galaxies, holes often duel?
Or play a more symbiont role?
Next, we tackle all spectra;
Our tools, from low to high climb,
Sensing waves from far plectra,
Over the whole Hubble time.


Further reading:

The Formation and Evolution of Massive Black Holes, M. Volonteri, Science, 2012

This is one in a series of poems based on science news, written by Katherine Allen, a researcher in geochemistry and paleoclimate at the Lamont-Doherty Earth Observatory. “Black Holes” first appeared on Allen’s website on Aug. 6, 2012.

Lords of the Past

Geopoetry - Fri, 04/11/2014 - 10:21
 Vassil/Alias Collections.

Paraceraurus trilobite, Ordovician, from the Volchow River, Russia. Photo: Vassil/Alias Collections.

With life, legged and finned, Earth had been teeming,
Slitherers, predators, graceful trees tall …
Now, of these species, we are only dreaming:
Glossopteris, trilobites, eurypterids, all.

Creatures of intrigue, lords of the past!
How did they grow; their color, what hue?
Why did some perish, and why did some last?
In Earth’s litholibrary, sometimes a clue.

Catastrophe beautifully carved into stone,
Graveyards ‘neath graveyards, so deep do we ply,
Silent yet eloquent, shadows of bone,
The greatest extinction, the big one – but why?

Deserts and oceans spanned latitudes wide,
Lava erupted as oceans of fire,
What means of death? It’s hard to decide:
Heat, acid, darkness, a host of things dire.

Yet from these strange ashes (if ashes they be)
Life rose up gorgeously, brilliantly new!
From lucky survivors, a vast, branching tree;
Some tendrils persisted, and weird, wild things grew!

Time is the key to death and new life,
And time can lie hidden, awaiting fresh eyes.
A haze of uncertainty, cut with a knife –
From zircon in China, chronologies rise!

To stand at the Permo-Triassic, it seems,
One faces a shockingly sharp, razor brink;
Of rapid events, the Meishan bed screams …
The “Great Dying” flew by in a mere cosmic blink.


Further reading:

An extinction in the blink of an eye, MIT News, 2/10/14

High-precision timeline for Earth’s most severe extinction, PNAS, 2014

Earth’s Greatest Killer Finally Caught, LiveScience, 12/12/13

This is one in a series of poems based on science news, written by Katherine Allen, a researcher in geochemistry and paleoclimate at the Lamont-Doherty Earth Observatory. You can read more on Allen’s website.

Greenland Ice

Geopoetry - Mon, 04/07/2014 - 11:13
 Christian Morel (Nature)

A Greenland ice core. Photo: Christian Morel (Nature)

If you went to Greenland, almost 80 North,
And drilled your way down … a mile, then more,
You’d find some strange layers, a story’d come forth
A record of ice ages locked in a core.
You’d find glacial ice that is clearer, more soft
Than Eemian ice (long crystals, more rigid)
And clues that the ice height was higher aloft
Than thought for that time (with air temps less frigid).
A puzzle indeed, this view down a hole –
If NEEM endured warmth, whence the sea rise?
Some question the records, some look to South Pole …
In the decades that come, are we in for surprise?


Further reading:

Greenland defied ancient warming / But Antarctic glaciers may be more vulnerable than thought, Nature (2013)

NEEM Community Members, Nature (2013)

This is one in a series of poems based on science news, written by Katherine Allen, a researcher in geochemistry and paleoclimate at the Lamont-Doherty Earth Observatory. “Greenland Ice” first appeared on Allen’s website on Jan. 25, 2013.

Armin Van Buuren, Ancient Wood, and Ghengis Khan: This is not your father’s field research in Mongolia

We never expected this. Enkhbat had us hovering at warp speed along the Millennium Road in the northern shadows of the Khangai Mountains. Armin Van Buuren’s A State of Trance filling our rig. We were starting a new project to study the interaction between climate, fire, and forest history in the land of Chinggis Khaan and a silky voice was lifting us higher, “and if you only knew, just how much the Sun needs you, to help him light the sky, you’d be surprised. Do…do…”. We were exhilarated. The Sun was shining. This was not exactly Chinggis’ steppe. But little did we know, we would eventually be chasing his ghost.



Byarbaatar & Amy in front of Khorgo, unknowingly about to meet Chinggis’s ghost. Photo credit: Enkhbat.

After about a day’s travel we started passing the Khorgo lava field. Amy asked, “What’s that?” Neil had forgotten about this landmark despite having walked upon it 10 years prior. It is a ~30 km2 lava field with old trees on it. Gordon Jacoby, Nicole Davi, Baatarbileg Nachin, and others had sampled in the early aughts and put together a ca 700 yr long drought record from Siberian larch. Neil relayed this information to Amy and she said that we should sample on it knowing that a 2,000 yr long record in the American Southwest had been produced on a similar landscape feature. We had a tight schedule, but as we drove out to the western edge of the Khangai’s, sampled sites, witnessed a sheep in the dying throes of a brain worm infection, got snowed on, and then sweated in much warmer temperatures, we decided it was worth the time to see what was out there. Little did we know.

By the time we arrived to start sampling, Neil was getting sick (we learned days later that Neil was coming down with tonsillitis) and we were on fumes from some bone-challenging swings in the weather. Amy pushed on during the first day with Byarbaatar and Balginnyam. The found a pile of dead horse bones and couldn’t get the chainsaw running stopping them from acquiring samples from downed, dead trees. It felt almost hopeless.

We summoned our strength the next day and explored a new section of the lava field. Soon after getting out there we starting seeing Siberian pine, a tree Neil hadn’t seen on his first visit and hadn’t been sampled previously at this site. We decided that after our fire history collection we would sample some pine trees just to see what They might have to say.



The Logo Tree: The Siberian pine that clued us into the possibility that there might be something extraordinary on the Khorgo lava field. Photo credit: Amy Hessl

As this collection wasn’t priority, these samples sat until late January of the following year. Here is the first email of the discovery (partially redacted for some sensitive language).


The sample “locked in and said the inner ring i measured was 1235…whoa! that was cool b/c i started a good bit from the pith…. i race back to me scope and measuring stage…..make mistakes. going too fast. fix the mistakes…..the PITH is 1142!!!!

yes, i can see the yr Chinggis was born. i can see the yr he died. i can see the yrs Mongolia rose to rule Asia!

this has been our Holy Chinggis during the entire Mongolian project.

this is totally hot censored.


ps – i guess we are going back to Khorgo, huh?”



KLP0010a – the first sample of Siberian pine from the 2010 Khorgo lava collection to break the 1200s. The pith is 1142 CE (Common Era). Photo credit: Neil Pederson

We secured funding and we went back to Khorgo in 2012 with a bigger crew and one goal in mind – collect more wood.

We cannot believe what we have found.

For centuries, common wisdom held that the Mongols were driven to conquest because of harsh conditions – drought. Our new record, dating back with confidence to 900 CE (Common Era), indicates the opposite. After the unification of the Mongols, Chinggis Khan, you know him as Ghengis Khan, led his army from Northern China in 1211 to the Caspian Sea in 1224 CE. Our new record in PNAS indicates that it was consistently wet from 1211-1225, a period we are calling the Mongol Pluvial (look for an open access version of this paper here or contact Amy or me). No years during this period were below the long-term average, which is a singular rare run of moisture conditions in our 1,100 year long record. Independent tree-ring records over extra tropical Asia also indicate that this period was warm.

On the cool semi-arid steppe of Central Asia, water is life and in those days, water was energy. The Mongol diet is heavily based on the meat of grazers. Their mode of transportation was the short, but Pheidippidic horse. So, for food and for travel, grass is life. Grass is energy. An abundance of moisture would seem to provide the horsepower for the rapidly growing Mongol Empire. The Mongol soldier had five steed at their disposal. With a large army, that quickly translates into a huge herd and a huge need for grass.

Our tree-ring record suggests that the grasslands of central Mongolia were likely productive. They strongly agree with satellite estimates of grassland productivity. Going back in time, then, the trees would suggest the Mongol Empire during its rapid expansion was sitting in a sea of grass, a sea of energy, a potential abundance of life.

That is our hypothesis, anyhow, and something we will test in the coming years with historical documents, environmental records from lake sediments, more tree rings, and ecological modeling experiments.

While this record speaks to a rapid transformation of Eurasian culture during the 13th century, it also speaks about an abrupt transformation in Mongol culture today. Towards the end of our tree-ring record we see a prolonged drought from the end of the 20th century into the beginning of the 21st century. This drought followed the wettest century of the last 11 and occurred during the warmest period of the last 1,100 years in Asia. The abrupt transition in the environmental conditions, a transition that saw hundreds of lakes and wetlands disappear from the landscape, occurs during the transition from a more agriculturally-based economy to a more urban-based economy. These severe conditions, in combination with some harsh winters, killed millions of livestock and are thought to be one trigger of a mass migration of Mongols from the countryside into the capital of Ulaanbaatar.



Ulaanbaatar in 2006. The homes on the far hills likely reflect climatic and economic refugees moving from the countryside into the city. Photo credit: N. Pederson

Though we cannot connect this heat drought to climate change (though maybe we kind of can), warming temperatures have stacked the deck towards higher evaporative demand, so even if the amount of precipitation remains the same, high temperatures will generate a more intense drought. That’s what we observed in the early 21st century and based on past moisture variation in Mongolia and future predictions of warming, we would expect to see similar events in the future.

From Armin Van Buuren to Chinggis Khaan to Armin Van Buuren again. We had no clue of how Summer 2010 would light the sky.*




* this post was requested by a media outlet so they could have the ‘author’s voice’ on this discovery. That version was ultimately sanitized for your protection. Here it is unadultered.



Categories: TRL



Subscribe to Lamont-Doherty Earth Observatory aggregator