News aggregator

Climbing Mount Chirripó

Sculpting Tropical Peaks - Thu, 06/12/2014 - 14:09

By Max Cunningham
June 7

After arriving in the town of San Gerrardo de Rivas, Mike Kaplan and I immediately started gearing up for our trek to Mount Chirripó.

Our arrival here was somewhat hectic. After landing in San Jose around 10:30 a.m., we hopped a bus to San Isidro de el General, a town just west of Chirripó National Park.  Winding through the rugged mountains of the Talamanca Range, we were treated to spectacular views of central Costa Rica’s countryside. Max 2a

Once in San Isidro de el General, we navigated our way to the local office of Ministerio de Ambiente y Energia de Costa Rica, the government agency that provides research permits for Chirripó National Park. Our contact, Marisol Rodríguez Pacheco, showed remarkable patience with our broken Spanish and helped us pull together some final requirements for the permit.

By 5 p.m., the two of us made base camp at the Cloudbridge Reserve, above the San Gerrardo de Rivas. Founded in 2002, the Cloudbridge Reserve supports researchers in Costa Rica and works towards sustainable forest management. Volunteers at the Cloudbridge Reserve provided us with a beautiful working space and a warm place to sleep.

Max 2-1

The clouds rolled in early, by 9 a.m., on their way from San Isidro de el General in the distance.

The weather here can be erratic.  During the early morning hours the sun is intense and the sky is blue; by 1 p.m. clouds roll in. You can anticipate heavy rain from 4 to 6 every day, and nights are cold.

After taking a day to gather food supplies and find porters to help us carry heavy packs up to Mount Chirripó, Mike and I set off around 4:30 a.m. to make our way to the top of Mount Chirripó before the afternoon rain.

Travelers and locals alike warned us that the hike would be strenuous, and indeed they were correct. The trail leading to Mount Chirripó is steep and rugged (although pristinely maintained), and we gained nearly 5,000 feet in elevation over nine miles of trail.

The trail leading up to Mount Chirripó around 8,000 feet is densely vegetated and humid.

The trail leading up to Mount Chirripó around 8,000 feet is densely vegetated and humid.

One especially difficult aspect of our climb was the dramatic change in climate with elevation. Below 10,000 feet, we trekked through a humid, dense rain forest, but once above about 9,500 feet, the vegetation became sparse and the temperature dropped. At the summit of Chirripó, we rarely experienced temperatures warmer than 60°F.

In terms of Earth surface processes, this dramatic change in environment invokes thoughts about difference in landscape evolution: How does change in altitude, and associated changes in climate, affect erosion processes in the long term? This is just one question we hope our research can eventually inform.

Above 10,000 feet, the climate is extremely different, and so is the terrain.  At high elevations we see broad U-shaped valleys, and cold conditions inhibit dense vegetation growth.

Above 10,000 feet, the climate is extremely different, and so is the terrain. At high elevations we see broad U-shaped valleys, and cold conditions inhibit dense vegetation growth.

After an 8.5 hour hike, we finally reached Talari Valley, a lowland about 500 feet below Mount Chirripó. We made camp at the Crestones Base Camp, a meticulously maintained hostel in the Talari Valley, near Cerro Chirripó. The Crestones Base Camp is home to many travelers seeking the thrill of climbing Mount Chirripó. Impressively, many of the hikers we encountered wake up around 2:30 a.m. to hike the remaining 5,000 feet to the peak of Cerro Chirripo to watch the sunrise over this beautiful mountain. Mike and I made no such plans, and instead rested for a busy week of fieldwork.

Max 2-5

From Crestones Base Camp, you can pick out our hostel with the green roof in this expansive view of Talari Valley.

 

Race to Read the H-bomb Timestamp in All Cells - New Scientist

Featured News - Sun, 06/08/2014 - 11:00
Cites Lamont-Doherty scientist Kevin Uno's work using the "bomb curve" to fight the illegal ivory trade.

Mount Chirripó: Shaped by Glaciers or Tectonic Forces?

Sculpting Tropical Peaks - Fri, 06/06/2014 - 13:38

By Max Cunningham

Max Cunningham

Max Cunningham

I’m a graduate student at the Lamont-Doherty Earth Observatory and work in Colin Stark’s Earth Surface Processes Group. My research focuses on the role that climate plays in molding Earth’s surface, and how we can use clues carved into landscapes to learn more about climate and climate change in the past.

Since arriving at Lamont-Doherty, I’ve focused my attention on glacial valleys responding to climate change. I want to learn more about erosion in landscapes undergoing a transition from cold, frozen conditions to warm conditions. Questions about the timing of glacial retreat in the past and the erosional processes that occur as landscapes unfreeze are particularly relevant today, as glaciers around the world shrink in response to a warming global climate. max 1

Specifically, I want to learn about the history of glacial erosion in tropical mountains. Features on many tropical peaks around the world suggest that glaciers once persisted at low latitudes, but nearly all of these places are far too warm to sustain glaciers today.

Google Earth images of glacial thumbprints at Mount Chirripo, Costa Rica (left) and Mount Wilhelm, Papua New Guinea (right).  Both mountains are located within 10° latitude of the equator.

Google Earth images of glacial thumbprints at Mount Chirripo, Costa Rica (left) and Mount Wilhelm, Papua New Guinea (right). Both mountains are located within 10° latitude of the equator.

Glaciers are a crucial link between climate and erosion: They form only under very specific climatic conditions and leave very distinctive marks after they retreat. During a glacier’s lifetime, snow accumulates at high elevation and compacts into hard ice that flows downslope; at lower elevations warmer temperatures melt away layers of snow, allowing ice deeper within the glacier to move toward the surface. The total effect of compacting ice above and disappearing ice below is a “scooping” motion, and rocks caught in this “ice scoop” wear away bedrock. A combination of this rock-on-rock wear and other processes produces features unique to glacial erosion, such as circular valleys called cirques. In map view glacially sculpted valleys look like thumbprints in clay.

A somewhat startling realization is that these glacial thumbprints can be found on mountains in hot, tropical places like Costa Rica, Uganda, Kenya and Papua New Guinea. Some major questions arise: How long ago did glaciers carve out valleys in the tropics? How far down mountainsides did glaciers persist in these perennially warm regions? To start honing in on these questions, I’ll be traveling to Costa Rica’s tallest peak, Mount Chirripó, in Chirripó National Park for the month of June.

On Mount Chirripó, which rises to 12,530 feet, glacial thumbprints are clustered a few hundred feet below the summit. River profiles have a distinctive shape, exiting U-shaped valleys along gentle gradients and then breaking suddenly into a steep slope at about 6,500 feet. Waterfalls, or more technically “knickpoints,” form at this steep slope change.

Scientists have studied the unusual glacial thumbprints and clustering of knickpoints at Mount Chirripó. In 2000, researchers at the University of Tennessee identified a series of lakes that formed as a result of glacial erosion. They extracted sediment cores from the lakes and noticed a sharp transition from granular, glacially-produced sediment to organic material with depth in the core. Using 14C radiometric dating, they found that the transition occurred between 12,000 and 9,800 years ago.

Why is that important? Between 20,000 and 10,000 years ago the world was thawing out of an ice age. The 14C dates imply that glaciers persisted at about 12,000 feet at Mount Chirripó as recently as 9,800 years ago. By comparison, North America’s Laurentide ice sheet, which once extended south of New York City, retreated into Canada well before 9,800 years ago.

A 2012 study looked at Mount Chirripó from a different lens. The collision of tectonic plates in the tropical Pacific Ocean pushed Mount Chirripó to its modern elevation, but the timing of this uplift remains unclear. The 2012 study suggested that the clustering of knickpoints could reveal when tectonic uplift began.

Rapid tectonic uplift provides rivers with potential energy that expresses itself in steep slopes that slowly creep up mountainsides, creating a “wave” of erosion that travels up hillslopes. By assuming a “vertical” erosion rate, these researchers estimate that knickpoints at 6,500 feet signify tectonic upheaval that began about 2 million years ago.

The conclusions reached by these independent studies present a major conflict. On the one hand, valleys atop Mount Chirripó may have been carved by glaciers. If this is the case, the landscape must be “young,” as glacial erosion would have occurred during the last 2.5 million years. On the other hand, the valleys at high elevations at Mount Chirripó may represent a landscape that existed before 2 million years ago and rode a pulse of uplift to 12,500 feet.

In other words, two competing hypotheses have emerged: Is Mount Chirripó a sculpture of glacial erosion, or an ancient landscape perched at high elevations by tectonic forces?

My colleague Mike Kaplan and I plan to analyze evidence of past glaciation on Mount Chirripó in an attempt to test these two competing hypotheses. Using a geochemical technique called surface exposure age dating, which will allow us to measure how long rocks at the summit of Mount Chirripó have been exposed to the atmosphere, we will attempt to test how “old” the landscape is—is it relatively young, around 9,800 years old? Or does it predate a massive shift in tectonic uplift that began 2 million years ago?

Lake Goo Clue

Geopoetry - Fri, 06/06/2014 - 11:53
Lake Tanganyika, Tanzania

Lake Tanganyika, Tanzania. Photo: K. Allen

The lands of Africa’s Horn,
Great Valleys sliced by a Rift,
By drought and famine are torn …
What drives such a large rainfall shift?
Detectives of lake muck and goo,
Through models and efforts terrific,
Put forth a paleo-clue
From the Indian, not the Pacific.

__________________________

Further reading:

Multidecadal variability in East African hydroclimate controlled by the Indian Ocean, Tierney et al. Nature 2013

This is one in a series of poems based on science news, written by Katherine Allen, a researcher in geochemistry and paleoclimate at the Lamont-Doherty Earth Observatory. “Lake Goo Clue” first appeared on Allen’s website on Jan. 18, 2013.

Safety Concerns Overshadow Indian Point Nuclear Power - (Rockland, N.Y.) Journal News

Featured News - Wed, 06/04/2014 - 11:00
A 2008 study led by Lamont geophysicist Lynn Sykes found that a fault near Indian Point could produce a relatively large earthquake.

By 2100, Our Oceans Will Be Twice as Acidic as in Preindustrial Times - Motherboard

Featured News - Tue, 06/03/2014 - 11:00
A new study on ocean acidification during the Paleocene-Eocene Thermal Maximum, coauthored by Lamont geochemist Baerbel Hoenisch, discussed.

How Will Climate Change Affect the Sahara? - Wall Street Journal

Featured News - Mon, 06/02/2014 - 11:00
Lamont scientist Peter deMenocal's evidence for a rapid climate shift that created the Sahara Desert discussed.

Some Do Not Like It Hot

Geopoetry - Fri, 05/30/2014 - 13:35
 Sun et al. 2012, Science

Image: Sun et al. 2012, Science

The Great Dying, The Big One — The Permo-Triassic!
(In a time machine, not sure if that’s where I’d aim …)
As extinctions go, this one’s a blockbuster classic,
When most of Earth’s species dropped out of the game.
Conodont fossils reveal massive changes
In sea surface temperatures (and CO2?).
Terrestrial critters reduced their lat ranges;
Low-oxygen regions in deep ocean grew.
Peat swamps disappeared (a great gap in coal),
And at the equator, most fish would fry.
At times like these, seems wise to head for the pole!
In a hot-steamy world … adapt, move, or die.

_________________________________________

Further reading:

Lethally Hot Temperatures During the Early Triassic Greenhouse, Yadong Sun et al., Science, 2012

Life in the Early Triassic Ocean, David J. Bottjer, Science, 2012

This is one in a series of poems based on science news, written by Katherine Allen, a researcher in geochemistry and paleoclimate at the Lamont-Doherty Earth Observatory. “Some Do Not Like It Hot” first appeared on Allen’s website on Oct. 19, 2012.

The Antarctic Melt: Under the Sea - New Yorker

Featured News - Fri, 05/30/2014 - 11:00
Lamont geochemist Peter Kelemen's ideas for permanently storing away carbon dioxide discussed.

'Global Warming' Scarier Than 'Climate Change,' Surveys Find - LiveScience

Featured News - Tue, 05/27/2014 - 11:00
Americans are more concerned about global warming than climate change, even though the terms are often used interchangeably; Lamont's Wally Broecker, credited with coining the term 'global warming,' cited.

Clock Is Ticking in West Antarctic

Melting Glaciers-Tracking Their Path - Fri, 05/23/2014 - 11:54
Pine Island Glacier, Antarctica

The leading edge of the floating ice tongue of the Pine Island Glacier, Antarctica. Photo: M. Wolovick

Reports that a portion of the West Antarctic Ice Sheet has begun to irretrievably collapse, threatening a 4-foot rise in sea levels over the next couple of centuries, surged through the news media last week. But many are asking if even this dramatic news will alter the policy conversation over what to do about climate change.

Glaciers like the ones that were the focus of two new studies move at, well, a glacial pace. Researchers are used to contemplating changes that happen over many thousands of years.

This time, however, we’re talking hundreds of years, perhaps — something that can be understood in comparison to recent history, a timescale of several human generations. In that time, the papers’ authors suggest, melting ice could raise sea levels enough to inundate or at least threaten the shorelines where tens of millions of people live.

“The high-resolution records that we’re getting and the high-resolution models we’re able to make now are sort of moving the questions a little bit closer into human, understandable time frames,” said Kirsty Tinto, a researcher from Lamont-Doherty Earth Observatory who has spent a decade studying the Antarctic.

“We’re still not saying things are going to happen this year or next year. But it’s easier to grasp [a couple of hundred years] than the time scales we’re used to looking at.”

The authors of two papers published last week looked at a set of glaciers that slide down into the Amundsen Sea from a huge ice sheet in West Antarctica, which researchers for years have suspected may be nearing an “unstable” state that would lead to its collapse. The West Antarctic Ice Sheet is mostly grounded on land that is below sea level (the much larger ice sheet covering East Antarctica sits mostly on land above sea level).

Advances in radar and other scanning technologies have allowed researchers to build a detailed picture of the topography underlying these glaciers, and to better understand the dynamics of how the ice behaves. Where the forward, bottom edge of the ice meets the land is called the grounding line. Friction between the ice and the land holds back the glacier, slowing its progress to the ocean. Beyond that line, however, the ice floats on the sea surface, where it is exposed to warmer ocean water that melts and thins these shelves of ice. As the ice shelves thin and lose mass, they have less ability to hold back the glacier.

What researchers are finding now is that some of these enormous glaciers have become unhinged from the land – ice has melted back from earlier grounding lines and into deeper basins, losing its anchor on the bottom, exposing more ice to the warmer ocean water and accelerating the melting.

In their paper published in Geophysical Research Letters, Eric Rignot and colleagues from the University of California, Irvine, and NASA’s Jet Propulsion Laboratory in Pasadena, Calif., described the “rapid retreat” of several major glaciers over the past two decades, including the Pine Island, Thwaites, Haynes, Smith and Kohler glaciers.

“We find no major bed obstacle upstream of the 2011 grounding lines that would prevent further retreat of the grounding lines farther south,” they write. “We conclude that this sector of West Antarctica is undergoing a marine ice sheet instability that will significantly contribute to sea level rise in decades to come.”

The region studied holds enough ice to raise sea levels by about 4 feet (Pine Island Glacier alone covers about 62,000 square miles, larger than Florida). If the whole West Antarctic Ice Sheet were to melt, it could raise the oceans about 16 feet.

 Eric Rignot

The glaciers studied by Rignot’s research team. Red indicates areas where flow speeds have increased over the past 40 years. The darker the color, the greater the increase. The increases in flow speeds extend hundreds of miles inland. Image: Eric Rignot

In the second paper, Ian Joughlin and colleagues from the University of Washington used models to investigate whether the Thwaites and Haynes glaciers, which together are a major contributor to sea level change, were indeed on their way to collapsing. “The simulations indicate that early-stage collapse has begun,” they said. How long that would take varies with different simulations – from 200 to 900 years.

“All of our simulations show it will retreat at less than a millimeter of sea level rise per year for a couple of hundred years, and then, boom, it just starts to really go,” Joughin said in a news release from the University of Washington.

Many scientists who’ve been studying the region were already braced for the storm.

“It’s gone over the tipping point, and there’s no coming back,” said Jim Cochran, another Lamont researcher with experience in the Antarctic. “This … confirms what we’ve been thinking for quite a while.”

Cochran is principal lead investigator for Columbia University in Ice Bridge, the NASA-directed program that sends scientists to Antarctica and Greenland to study ice sheets, ice shelves and sea ice using airborne surveys. Much of the data used in the new papers came from the Ice Bridge project.

Tinto, also an Ice Bridge veteran, agreed. “I thought it was pretty exciting, because we’ve all been working on this area for a long time, and that potential for the West Antarctic Ice Sheet to behave in this way, we’ve been aware of it for a long time,” she said. “[It] made me want to get in there and look at the rest of the area, what else is going on.”

And there are still many questions about what’s going on: How fast the ocean that swirls around Antarctica is warming, how those ocean currents shift, and to what extent that is influenced by global warming.

“I have a problem with the widespread implication (in the popular press) that the West Antarctic collapse can be attributed to anthropogenic climate change,” said Mike Wolovik, a graduate researcher at Lamont-Doherty who studies ice sheet dynamics. “The marine ice sheet instability is an inherent part of ice sheet dynamics that doesn’t require any human forcing to operate. When the papers say that collapse is underway, and likely to last for several hundred years, that’s a reasonable and plausible conclusion.”

But, he said, the link between CO2 levels and the loss of ice in West Antarctica “is pretty tenuous.” The upwelling of warmer waters that melt the ice has been tied to stronger westerly winds around Antarctica, which have been linked to a stronger air pressure difference between the polar latitudes and the mid-latitudes, which have in turn been linked to global warming.

“I’m not an atmospheric scientist, so I can’t evaluate the strength of all of those linkages,” Wolovik said. “However, it’s a lot of linkages.” And that leaves a lot of room for uncertainty about what’s actually causing the collapse of the glaciers, he said.

Researchers have been discussing the theory of how marine ice sheets become unstable for many years, said Stan Jacobs, an oceanographer at Lamont-Doherty who has studied ocean currents and their impact on ice shelves for several decades.

“Some of us are a bit wary of indications that substantial new ground has been broken” by the two new papers, Jacobs said. While ocean temperatures seem to be the main cause of the West Antarctic ice retreat, there’s a lot of variability in how heat is transported around the ocean in the region, and it’s unclear what’s driving that, he said. And, he’s skeptical that modeling the system at this point can accurately predict the timing of the ice’s retreat.

But, he added, “this is one more message indicating that a substantial sea level rise from continued melting of the West Antarctic Ice Sheet could occur in the foreseeable future. In the absence of serious near-term greenhouse gas mitigation efforts, such as an escalating tax on carbon, they may well be right.”

“It starts bringing it a little closer to home,” said Tinto. “It’s a significant amount of change, but something we can start planning for. Hopefully [this will] make people stop procrastinating and start planning for it.”

Cochran agreed: The papers’ message is “that … over the next couple hundred years, there’s going to be a significant rise in sea level, and at this point we can’t stop it.” But, he added, “it doesn’t say give up on trying to cut emissions. … [Just] don’t buy land in Florida.”

____________________________________________

For further details on what’s going on in West Antarctica, check out these resources:

The two papers in question:

Widespread, rapid grounding line retreat of Pine Island, Thwaites, Smith and Kohler glaciers, West Antarctica from 1992 to 2011, E. Rignot, J. Mouginot, M. Morlighem, H. Seroussi, B. Scheuchl, Geophysical Research Letters (2014)

Marine Ice Sheet Collapse Potentially Underway for the Thwaites Glacier Basin, West Antarctica, Ian Joughin, Benjamin E. Smith, Brooke Medley, Science (2014)

Unexpected Sisters

Geopoetry - Fri, 05/23/2014 - 08:42
 BBC Photo Library.

An artist’s rendering of the extinct Elephant bird (Aepyornis maximus), which lived in Madagascar. Aepyornis stood over 3 meters tall. Image source: BBC Photo Library.

 

An ancient island’s trove of treasure: Madagascan fauna
Tenrec, fossa, lemur, hippo, dugong, bat, iguana.
A giant bird – O, wondrous beast! – a half a ton, and tall,
Laid foot-long eggs, had beefy legs, and did not fly at all.
Another ratite, far away within the South Pacific,
The kiwi! Shy, with furry feathers, appetite terrific.
Among the old-jawed birds, you wouldn’t guess that they’re close kin,
But DNA reveals a link from deep, deep down within.
If the kiwi’s closest kin is not its moa neighbor,
Drawing up the family tree might seem a puzzling labor.
The simplest answer blows the mind – it seems that they all flew
With wings they spread across the globe, and filled in niches new.
Dinos gone (darn asteroid) left lots of open spaces,
Birds came in, diversified, flew on an as-need basis.
From this, it seems that flightlessness evolved six separate times!
The song of life, though improvised, with patterns clear it chimes.

 

______________________________________________________

Further reading:

Ancient DNA reveals elephant birds and kiwi are sister taxa and clarifies ratite bird evolution, Mitchell et al., 2014, Science.

Little kiwi, huge extinct elephant bird were birds of a feather, Reuters

The Surprising Closest Relative of the Huge Elephant Birds, National Geographic

This is one in a series of poems based on science news, written by Katherine Allen, a researcher in geochemistry and paleoclimate at the Lamont-Doherty Earth Observatory.

Flood-Resistant Neighborhood Would Be 80 Years in the Making - WNYC

Featured News - Thu, 05/22/2014 - 11:00
A new neighborhood built on landfill in the East River would withstand a 100-year flood; But is that enough? Lamont's Klaus Jacob weighs in.

Yakima Herald Republic - What Lies Beneath Mount St. Helens?

Featured News - Tue, 05/20/2014 - 11:00
Features an upcoming project with Lamont's Geoffrey Abers to understand how Washington’s most active volcano works.

Desert Blocked Spread of Early Dinosaurs - National Geographic

Featured News - Tue, 05/20/2014 - 11:00
An immense desert kept dinosaurs from spreading into what is now North America for millions of years, suggests a study led by Lamont's Dennis Kent in the journal Proceedings of the National Academy of Sciences.

In Taking Crimea, Putin Gains a Sea of Fuel Reserves - New York Times

Featured News - Sun, 05/18/2014 - 11:00
Lamont-Doherty marine geologist William Ryan, who has studied the Black Sea region extensively, comments on the oil resources within Russia's newly claimed maritime zone around Crimea.

Rockland Scientist Now Geology Heavyweight - (Rockland, N.Y.) Journal News

Featured News - Sun, 05/18/2014 - 11:00
Profile of Lamont-Doherty climate scientist Maureen Raymo, winner of the 2014 Wollaston Medal.

Weak Underbelly

Geopoetry - Fri, 05/16/2014 - 10:44
 New York Times.

A view of the West Antarctic Ice Sheet (Landsat). Source: New York Times.

 

Antarctica’s uncertain fuse,
A “weak underbelly,” said Hughes.
Pine Island and Thwaites,
Thrown open, the gates?
As humans, what path should we choose?

The East’s held strong millions of years,
Despite cries of wolf from some peers.
West into the sea,
Up one foot, or three?
Uncertainty some meet with sneers.

Below salty waves, ice is grounded …
In this case, we see fears are founded.
In our defense,
Some centuries hence,
I hope they’ll say reason resounded.

 

__________________________________________

Further reading:

Scientists Warn of Rising Oceans From Polar Melt, Justin Gillis and Kenneth Chang, New York Times.

Marine Ice Sheet Collapse Potentially Underway for the Thwaites Glacier Basin, West Antarctica, Joughin et al., 2014, Science.

Widespread, rapid grounding line retreat of Pine Island, Thwaites, Smith and Kohler glaciers, West Antarctica from 1992 to 2011, Rignot et al., 2014, PNAS.

This is one in a series of poems based on science news, written by Katherine Allen, a researcher in geochemistry and paleoclimate at the Lamont-Doherty Earth Observatory.

Droughts May Slash US Maize Gains - Climate News Network

Featured News - Wed, 05/14/2014 - 08:19
Dramatic climate events can change forest composition, says a recent study led by Lamont's Neil Pederson.

'Missing' Mud in Hudson River Holds Climate Change Clue - (Rockland, N.Y.) Journal News

Featured News - Mon, 05/12/2014 - 11:00
Lamont's Tim Kenna and Frank Nitsche go looking for more than a million tons of sediment washed into the Hudson River during Hurricane Irene.
Syndicate content