News aggregator

Navigating the South Pacific Using DNA

Wide Ocean, Tiny Creatures - Tue, 03/10/2015 - 14:14

I’ve never been good at navigating. When I come out of the subway I invariably turn the wrong direction, even though I already have my nose buried in Google Maps, and then walk around the block to save face.

The navigation strategy for this cruise, however, is one that is particularly tailored to my strengths: we’re using DNA to guide our trek through the South Pacific.

Each day, water is sampled from the surface ocean down to around 40 meters, and a team of graduate students from Stockholm University extracts the DNA from the microbes within these samples. Then they use a technique called quantitative polymerase chain reaction, or qPCR, which enables them quantify the number of copies of particular genes within a sample. This technique requires pipetting miniscule volumes of liquid into microscopic tubes with razor sharp precision—a challenging feat on land, and one that makes me seasick just thinking about on a moving ship. This qPCR technique is being used to look for hotspots of a particular, newly discovered group of unicellular nitrogen-fixing bacteria called UCYN.

Unlike Trichodesmium, which I can identify in a water sample just by looking, the UCYN group is mysterious and elusive. First off, they’re tiny and unicellular, so even under the microscope they can’t be distinguished from other bacteria. To make matters more complicated, many are thought to live in symbiotic association with larger eurkaryotic microbes. The physiology of these organisms is interesting as well: they’re cyanobacteria, but some are thought to be missing half of the photosynthetic machinery. In short: these critters are weird, but they have a potentially overlooked but critically important role in the marine nitrogen cycle.

 avoid the impending tropical cyclone.

Chief Scientist Dr. Thierry Moutin explains our cruise trajectory for
the next week. New mission: avoid the impending tropical cyclone.

For our next long duration stop, we’re on the hunt for a region with particularly high abundance of these organisms. It seems like each station we visit has more and more UCYN bacteria present. Unfortunately, we’ve yet to stop for another extended period because we’re trying to outrun a tropical cyclone.

The outskirts of this are storm catching up to us, and each day the waves seem to be getting stronger and stronger. I’m thankful that I just have to look at the UCYN qPCR data and not generate it myself. I’ve been thinking more and more about the Dramamine stashed in my desk, but that being said, the temperature is still way above freezing and I don’t think I’d trade it for the end of winter in New York City.

From 20 degrees south, 179 degrees east in the South Pacific, Kyle.

Follow @kylefrischkorn and the @DyhrmanLab on Twitter for more frequent updates from the OUTPACE cruise.

 

A Swirling Stew of Trichodesmium

Wide Ocean, Tiny Creatures - Mon, 03/09/2015 - 10:43
A large population of Trichodesmium, known as a bloom, seen from the side of the R/V L'Atalante.

A large population of Trichodesmium, known as a bloom, seen from the side of the R/V L’Atalante.

Greetings from the center of that eddy I mentioned in my last post! We’ve been here for five days so far, but tomorrow we are finally moving on. As far as eddies go, this is a tiny one, only 15 kilometers, but larger eddies can be 100 to 200 kilometers in diameter. The eddy we’re in is anticyclonic, which means it has a warm water core and rotates counterclockwise, albeit imperceptibly from my point of view on the deck of L’Atalante. Here in the center, the water seems smooth as a pond.

The physical oceanographers on board were excited about studying the turbulence throughout the water column here in the eddy center. I share in their excitement because studies have shown that Trichodesmium abundance is correlated with anticyclonic eddies.

Cruising toward the eddy, I pictured a swirling stew of Trichodesmium, an ephemeral phenomenon that would dissipate, sweeping away clues about how these transient physical features influence microbial physiology and biogeochemistry. We found a ton of Tricho out here, but it wasn’t necessarily soupy until today. At some point between this morning when Andi and I went out with the net tow and this afternoon, the surface water around us became dense with mats of Trichodesmium.

As the ship maneuvered to maintain position, the bow sliced through the mats, sending tendrils of green curling away in our wake. I watched the green swirl with the blue water and pondered what all that Tricho was doing up at the surface. It’s inhospitable for any organism floating out there in the direct sunlight. I can attest to this: the five minutes I stood on the deck taking pictures of the Trichodesmium were enough to give me a sunburn.

I’ve heard that floating mats of Trichodesmium is the sign of a crashed bloom. So, what changed suddenly changed? Some limiting nutrient could have been depleted to critically low levels, or a virus could have decimated the Trichodesmium population around us. Or the physics of the eddy could have forced the colonies to the surface. Whatever happened, it likely altered the physiology of the Trichodesmium, and consequently the environment.

Colonies of Trichodesmium (also known as"puffs") collected from the South Pacific

Colonies of Trichodesmium (also known as “puffs”) collected from the South Pacific.

Retreating back into the shade, I realized that our time in the eddy could encompass a narrative of a Trichodesmium bloom. Each day I’ve taken in situ samples of Trichodesmium, meticulously cleaned the colonies of any stowaway microbes. Back in the Dyhrman Lab at Lamont-Doherty Earth Observatory, I will extract the RNA from these samples and look at how gene expression of Trichodesmium changed over the course of our stay in this eddy. Hopefully this will help get a step me closer towards answering the questions above.

Now, however, with the day’s experiments finished, samples safely stored and bottles washed, I’m looking forward to a mini break from 24/7 science as we steam to the next station. As I was frantically running up to the incubators to harvest the last experiment, I noticed the crew building something on the front deck of the ship. Later, I enquired about this mystery project: it’s a hot tub.

Au revoir from 19 degrees south, 164 degrees east!

Follow @kylefrischkorn and the @DyhrmanLab on Twitter for more frequent updates from the OUTPACE cruise.

Trichodesmium is Everywhere!

Wide Ocean, Tiny Creatures - Thu, 03/05/2015 - 20:26

We have completed the first two stations of the OUTPACE cruise and we are steaming to Station 3. By noon tomorrow we should be in the center of an eddy that our colleagues back on dry land have used satellite data to identify. Apparently they are detecting very high chlorophyll in the center of the eddy, which should make for good sampling.

Trichodesmium is everywhere out here. I just looked out of the porthole next to the desk in my cabin, and a giant bloom was floating by on the surface of the waves. Filaments of the cyanobacterium Trichodesmium clump together and form little colonies about the size of an eyelash. When we’re on station, Andreas and I fish for colonies using a special net that we tow up and down through the water column to concentrate thousands of liters of water’s worth of biomass. It’s grueling work—I have blisters on my hands and my biceps are sore…but it makes me feel like I’m earning the five-course French meals served on this ship.

Once we’ve fished for colonies, Andi and I individually pluck out Trichodesmium colonies from amidst the other organisms that were concentrated during the tow and rinse them twice in sterile filtered seawater to remove all but the closely associated symbiotic microbes that colonize Trichodesmium. This is grueling work too, but for a very different reason than towing a net. Imagine using a tiny pipette to grab things the size of eyelashes out of water while rocking side to side on a moving ship in 90 degree Fahrenheit weather. Come visit me in the lab at Lamont and I’ll let you try and pick some Tricho—it’s hard even when the ground isn’t moving beneath you.

Sunset over the South Pacific ocean at the end of Station One.

Sunset over the South Pacific ocean at the end of Station 1.

So far, we’ve set up experiments to look at how nutrient uptake changes when we add different microbial communication molecules to the Trichodesmium colonies we’ve plucked, and of course we’ve taken samples so I can look at the molecular underpinnings of these physiological changes. The first two stations have been pretty successful. The ship is stable enough that I haven’t had to take any Dramamine, and really, the food is incredible. I woke up to sample at 5 a.m. yesterday, buoyed by the smell of freshly baked croissants.

Now that we’ve got our sea legs, I think we’re ready for the big kahuna, so bring on whatever’s happening in that eddy!

Follow @kylefrischkorn and the @DyhrmanLab on Twitter for more frequent updates from the OUTPACE cruise.

OUTPACE Cruise: Setting Sail

Wide Ocean, Tiny Creatures - Tue, 03/03/2015 - 11:28

The OUTPACE 2015 cruise has set sail on February 20! We left port in Nouméa at 8:30 a.m. last Friday morning. I lost sight of land around 10 a.m. or so, and I won’t see it again until we return to port in Papeete, Tahiti on April 3.

Filling dewar flasks with liquid nitrogen at a nickel mine in Noumea in preparation for the OUTPACE research cruise.

Filling dewar flasks with liquid nitrogen at a nickel mine in Noumea in preparation for the OUTPACE research cruise.

Preparations before departure were so hectic that I didn’t even take a moment to appreciate the last time my feet left dry land as I climbed the gangway onto the ship. I spent the majority of my last two days in New Caledonia in a nickel mine north of Nouméa with a man from Vanuatu named Lulu. One of the byproducts of nickel mining is liquid nitrogen, the ultra-cold substance used to make ice cream, slow down the Terminator, and most importantly, preserve our samples until we can analyze them back at our labs on land. There are around 30 scientists on board, and with the exception of the physical oceanographers, everyone needs liquid nitrogen. I am very thankful for Lulu, he was my escort between ship and mine as I filled dewar flask after dewar flask of liquid nitrogen, he was my translator when I thanked the miners for their time, and he very kindly obliged when I suggested that perhaps he could drive slower because the dewars are fragile and his truck had no seat belts.

Having a stockpile of liquid nitrogen is especially critical for the samples I am planning to take during the OUTPACE cruise. I mentioned before that we are interested in how communication between Trichodesmium and other bacteria influences physiology and biogeochemistry. In the Dyhrman Lab at Lamont-Doherty Earth Observatory, we go about answering these questions in part by looking at what genes these microbes turn on or off under different conditions. To do this, we sequence the RNA, or the messenger molecules that act as the intermediary between the genome and the proteins that do the work in an organism. This data provides us with a snapshot in time of every single thing the cell was doing. The unique challenge is that RNA turns over incredibly rapidly. Shortly after fishing a Trichodesmium colony out of the ocean, their RNA profile could change from representing their in situ physiology to representing the response to sudden changes in temperature, light levels or the other stresses that accompany getting jostled around in a pipette by a graduate student trying to maintain balance on a moving boat. From ocean to liquid nitrogen, I have around five minutes before the samples are ruined.

It’ll be a day and a half until I take the first sample of the cruise, however. We’re currently steaming northwest from the southernmost point of New Caledonia to our first sampling station. For now we are rehashing plans, looking at satellite data to figure out where the eddies are and the patterns in sea surface chlorophyll, and finally ensuring every single thing in the lab is secured now that there is the pitch and roll of a cruising ship.

Follow @kylefrischkorn and the @DyhrmanLab on Twitter for more frequent updates from the OUTPACE cruise

Bonjour de Nouméa!

Wide Ocean, Tiny Creatures - Wed, 02/18/2015 - 10:46

Scientists from research institutions around the world are participating in a research expedition aboard the R/V L ‘Atalante to study how microorganisms in the South Pacific Ocean influence the carbon cycle. Lamont-Doherty Earth Observatory graduate student Kyle Frischkorn is among them; his goal is to assess how the microorganism Trichodesmium, and other microbes, interact and the resulting physiological and biogeochemical impacts these processes have on marine ecosystems. This is the first in a series of posts in which Kyle shares what it’s like to do research at sea.

The research vessel L'Atalante in port in New Caledonia.

The research vessel L’Atalante in port in New Caledonia.

I am reporting from the shores of New Caledonia. I am just about as far away from my home in New York City as one can get—literally and metaphorically: New Caledonia is an island in the southern hemisphere, in the subtropical South Pacific, east of Australia. I am in the capital city, Nouméa, where palm trees lines streets that move at a leisurely, island pace. It’s also about 80 degrees Fahrenheit warmer than New York City right now, which is perhaps the most jarring difference of all.

Few have heard of New Caledonia, a French “special collectivity”. I hadn’t either, until I had to get a plane ticket here. During World War II this island served as the South Pacific headquarters of the US military. This was strategically important for the Allied forces during WWII, it had good infrastructure and developed roads. Additionally, the hospitality of the New Caledonians and the tropical amenities offered much needed respite for the soldiers. This is a snippet of what I learned at the Musée de la Seconde Guerre Mondiale, just one stop on my two-day exploration of the city before embarking on 45 days of non-stop science.

As luck would have it, on my way to the museum I rode the bus one stop too far—an easy mistake to make, the street signs are miniscule and in French, also the buses blast catchy, island-y remixes of American Top 40 songs so I was reluctant to disembark. After I stepped off the bus, I got my bearings and by chance found myself face to face with the research vessel L’Atalante, my home for the next 2 months.

Scientists from research institutions around the world are partaking in this expedition, the broad, overarching goal of which is to study how microorganisms in the South Pacific Ocean influence the carbon cycle. My specific project focuses on one particular microorganisms, a cyanobacterium called Trichodesmium. This microbe is important in the low nutrient, oligotrophic ocean because of their ability to take in and fix carbon dioxide through photosynthesis, and because they have the relatively rare ability to transform atmospheric nitrogen into a form that is a utilizable nutrient for other organisms in the ocean. These abilities make Trichodesmium colonies oases of biological activity in a desert-like ocean. My colleague Andreas Krupke, a post-doctoral researcher in the Van Mooy Lab at Woods Hole Oceanographic Institution, and I will be conducting a series of experiments on this transect from Nouméa, New Caledonia to Papeete, Tahiti to assess how other microbes and Trichodesmium interact and the resulting physiological and biogeochemical impacts these processes have.

Before we can get started on the science, however, the first mission is to unpack all of the gear I shipped from Lamont and re-assemble the Dyhrman Lab on L’Atalante. It’ll function just like our lab back on dry land, but all the equipment is literally tied, drilled or bungee corded to the benchtop… stay tuned!

AGU 2014: Key Events from The Earth Institute

American Geophysical Union Fall Meeting - Wed, 12/03/2014 - 12:03

Scientists at Columbia University’s Earth Institute will present important talks at the Dec. 15-19 meeting of the American Geophysical Union, the world’s largest gathering of earth and space scientists. Here is a journalists’ guide in rough chronological order. Unless otherwise noted, presenters are at our Lamont-Doherty Earth Observatory. Formal abstracts of all presentations are on the AGU meeting program.  Reporters may contact scientists directly, or call press officers: Kevin Krajick, kkrajick@ei.columbia.edu 917-361-7766 or Kim Martineau, kmartine@ldeo.columbia.edu 646-717-0134. 

 

corals-linsleyWill Rapid Global Warming Resume Soon?
Braddock Linsley blinsley@ldeo.columbia.edu
Global temperatures rose quickly until about 15 years ago, and have since largely plateaued. Now, coral records from the south Pacific Ocean suggest the so-called “hiatus” may soon end. Researchers hypothesize that water in the Pacific has slowed atmospheric warming by storing excess heat generated by CO2 emissions. But when the most recent phase of the 20-some-year Pacific Decadal Oscillation comes to an end, some of this stored heat may end up back in the air. Geochemical analysis of more than 220 years of coral growth rings from the islands of Fiji, Tonga and Rarotonga adds new support to projections that the PDO will switch states within 5-10 years, triggering a new phase of rapid warming.
Monday, Dec. 15, 8 a.m.-12:20 p.m.  Moscone South Posters. A11B-3017
Related: Global Heat Hiding Out in the Oceans

Frontiers of Geophysics Lecture: Jeffrey D. Sachs
Jeffrey Sachs, director of The Earth Institute, is an economist, senior United Nations advisor and best-selling author. In this headliner talk, he will speak on “The Earth Sciences in the Age of Sustainable Development.” Among other initiatives, he will discuss the Deep Decarbonization Pathways Project, a new interdisciplinary effort by scientists from the top 15 carbon-emitting nations to map specific ways each country can reorganize energy systems to limit future warming to 2 degrees C. Journalists wishing to meet with Sachs may contact press officers.
Mon. Dec. 15, 12:30-1:30 p.m., Gateway Ballroom, Moscone South
Sachs’s Earth Institute home page 
Deep Decarbonization Pathways Project

Battling Epidemics With Remote Sensing
Andrew Kruczkiewicz andrewk@iri.columbia.edu, Pietro Ceccato pceccato@iri.columbia.edu (Intl. Research Institute for Climate and Society)
Remote sensing is playing a key role in showing how shifts in weather drive outbreaks of deadly diseases, and how to counteract them. Kruczkiewicz will discuss how remote sensing has linked outbreaks of leishmaniasis in Sudan and South Sudan to dryer than normal conditions during the transmission months of April-July. Imagery suggests that cracks in dried-up soil—the breeding habitat of leishmaniasis-carrying sandflies—proliferate during these months, leading to outbreaks later. Ceccato will discuss programs of The Earth Institute, City University of New York and NASA to develop practical remote-sensing tools aimed at helping African nations predict and prepare for outbreaks of leishmaniasis, as well as malaria, trypanosomiasis and schistosomiasis.
Mon. Dec. 15, 5:15-5:30 p.m., 3020 Moscone West. H14A-05
Fri. Dec. 19, 11:20-11:35 a.m., 3001 Moscone West. GC52A-05
IRI’s work on climate and health
All IRI talks at AGU

Arsenic: A Mass Poisoning In Progress
Alexander van Geen avangeen@ldeo.columbia.edu
It could be the largest mass poisoning in history: the 1990s discovery that newly drilled wells meant to provide clean water across southeast Asia were instead poisoning 130 million people with natural arsenic. OLYMPUS DIGITAL CAMERAInternational efforts have since gone into studying the geology and hydrology of the problem, drilling wells into safer aquifers, and getting people to use them. But as van Geen reveals, many people are still exposed, for reasons that have as much to do with politics and public education as geologic conditions. Van Geen and colleagues are leaders in studying and remediating all aspects of the problem. They are now working in the United States as well, where new health studies are showing that wells laced with arsenic are affecting people in the eastern U.S. and Canada.
Tues. Dec. 16, 9:30-9:45 a.m., 2005 Moscone West. U21A-06 (Invited)
Related: Do Arsenic Concentrations in Groundwater Change Over Time? Therese Chan, Tues. Dec. 16, 1:40-6 p.m., Moscone West Posters. H23E-0921.
Columbia’s arsenic research program
Van Geen’s work in southeast Asia

Low Ground, High Risk Seismic and Flooding Threats in Bangladesh
Christopher Small small@ldeo.columbia.edu, Leonardo Seeber nano@ldeo.columbia.edu
A five-year program has brought into focus the potential for Bangladesh, the world’s most densely populated nation, to suffer catastrophic earthquakes, tsunamis and river-course changes—possibly all at once. Seeber and Small will discuss definitive signs of previous big quakes and at least one great tsunami; hidden features under the Ganges-Brahmaputra delta that may drive these disasters; and rapidly moving urbanization that is making the risks ever greater. The evidence rests on satellite imagery, GPS measurements, seismology and sedimentology. Posters on Thursday will delve into the details of apparent past events that could now be repeated with much greater loss of life and property.
Chris Small: Tues. Dec. 16, 8:15-8:30 a.m. U21A-02 (Invited). Leonardo Seeber: Tues. Dec. 16, 9:15-9:30 a.m. U21A-05 (Invited). 2005 Moscone West. Posters: Paleoseismic Records of Earthquakes Along the Southeastern Coast of Bangladesh., T43B-4712; Evidence for Tsunami Generated by the 1762 Great Arkan Earthquake,T43B-4732. Thurs. Dec. 18, 1:40-6 p.m., Moscone South.
Short film on the project

Warmer Climate Threatens Airplane Takeoffs
Ethan Coffel ec2959@columbia.edu Radley Horton rh142@columbia.edu  (Center for Climate Systems Research)
Climate plays an important, underappreciated role in how much weight aircraft can safely carry at takeoff. Hot weather can reduce lift, forcing airlines to offload cargo and passengers, eating into their bottom line. In what may be the first study to look at the changing economics of flying in a warmer climate, researchers estimate that airlines flying out of four airports—Phoenix, Denver, New York’s LaGuardia and Washington D.C.’s Reagan—will see 50 percent to 200 percent more weight-restricted days in spring and summer by 2050-2070. Worldwide, airports at higher elevations and with short runways and limited room to expand will feel the impacts most. Future airplanes may have to be designed to compensate for reduced lift in the weather of the future.
Tuesday, Dec. 16, 5:30 p.m.-5:45 p.m. Marriott Marquis Salon 13-15 PA24A-07

Lamont-Doherty Earth Observatory/Environmental Sciences Party
More info: Kevin Krajick kkrajick@ei.columbia.edu
Traditionally on Tuesday night at AGU, Lamont-Doherty Earth Observatory and Columbia’s Department of Earth and Environmental Sciences gather staff scientists and the many alumni who have since gone on to other institutions worldwide. It is a great opportunity to make acquaintances, hear informally about the latest ideas and work, and have fun. All journalists covering AGU are welcome.
Tues. Dec. 16, 6:30 p.m.-8:30 p.m. (or beyond), San Francisco Marriott Union Square, 480 Sutter Street, Union Square Ballroom

philly skylineMapping Defenses Against Urban Heat Waves
Alex de Sherbinin adesherbinin@gmail.com (Center for International Earth Science Information Network)
Already vulnerable to heat waves, city dwellers face greater risks as the planet warms. In Philadelphia, where this is already evident, geographers have combined multiple data sets to pinpoint where higher temperatures, less vegetation and a concentration of poor or elderly puts people most at risk. The map is aimed at helping the city plant trees and vegetation where needed (including on rooftops), help social workers respond, and provide other defenses. In 1980-2013, the average number of heat-wave days per year here grew from 4 to 12, largely because streets and buildings trap heat, and there are fewer trees.
Friday, Dec. 19, 8 a.m.-12:20 p.m., Moscone West Posters. GC51B-0417

 Using Submarines to Chart Arctic Ocean Conditions
Raymond Sambrotto sambrotto@ldeo.columbia.edu
Since the 1990s, U.S. Navy subs cruising under Arctic Ocean ice have produced seminal data not available by other means, including measurements of thinning sea ice. The program, dubbed SCICEX, was recently expanded to sample water temperature, chemistry and biology. Sambrotto presents the latest data from the remote western Arctic, gathered in spring 2014. Among other things, it establishes the levels of nutrients under the ice available for biological productivity the following summer, when melting takes place—critical to understanding how ongoing dramatic changes in ice cover may affect Arctic ecology.
Fri. Dec. 19, 8 a.m.-12:20 p.m., Moscone West Poster Hall. OS51C-0989
SCICEX website

Water Systems of the Future
Upmanu Lall ula2@columbia.edu (Columbia Water Center)
Lall, director of the Columbia Water Center, examines currently overlooked opportunities to redesign water systems to meet rising demand and declining supply. He envisions a new world in which water is treated exquisitely, like a crop of expensive vegetables, for consumption. This would include sophisticated systems to harvest rainwater; new technologies to recycle wastewater; and sensors and smart grids to monitor and manage usage in communities and buildings. He will discuss the technological, financial and social barriers that need to be overcome, and ways to accomplish that. Other talks from the Water Center during the week will cover studies of flooding in rivers from the Hudson to the Danube; newly launched satellite tools to survey global surface moisture; and the operation of China’s Three Gorges Dam.
Fri. Dec. 19, 10:35-10:50 a.m., 2009 Moscone West.
All Columbia Water Center talks

 # # # # #

The Earth Institute, Columbia University, mobilizes the sciences, education and public policy to achieve a sustainable earth. Researchers at our following centers are presenting at AGU:

 Lamont-Doherty Earth Observatory is one of the world’s leading research centers. It seeks fundamental knowledge about the origin, evolution and future of the natural world. More than 300 research scientists study the planet from its deepest interior to the outer reaches of its atmosphere, on every continent and in every ocean.

 The International Research Institute for Climate and Society aims to enhance society’s ability to manage the impact of seasonal climate fluctuations. From environmental monitoring and forecasting to risk management tools in water resources, public health, agriculture and food security, IRI and its partners focus on opportunities to build capacity for bringing climate information into regional planning and decision-making.

Goddard Institute for Space Studies, an affiliate of The Earth Institute, is a NASA-based climate research center that models and monitors earth systems, to predict atmospheric and climate changes. It also plays an important teaching role, conducting science education programs at universities, schools and other organizations.

 The Center for Climate Systems Research was established to enhance interdisciplinary earth and climate research both at Columbia and the Goddard Institute for Space Studies

The Center for International Earth Science Information Network (CIESIN) works at the intersection of social, natural and information sciences. It specializes in spatial data integration, and interdisciplinary research related to human interactions in the environment, providing data that informs decision-makers worldwide.  .

The Columbia Water Center tackles the issue of freshwater scarcity through innovations in technology, public policy and private action. Combining scientific research with policy, it aims to design reliable, sustainable models of water management  on local, regional and global levels.

Why are Past Surface Temperatures and CO2 Concentrations Important?

The Climate Epoch - Wed, 11/26/2014 - 14:36

This blog is an outgrowth of my own research examining the past temperature of Earth’s surface and the relationship of temperature to the Earth’s carbon system. I became interested in the scientific aspects of this work as a geology undergraduate, staring at regular layers of rocks in the countryside of central Italy, back and forth, dark and light. These layers were related to past oscillations of the climate, warmer and cooler, related to long-term changes in the incoming solar radiation entering our planet from the sun. Such changes are small, but positive and negative feedbacks in the Earth system interact to translate the small changes into the radically layered rocks we see in outcrops. This was the start of a journey of discovery that continues to this day and is the foundation of my research at the Lamont-Doherty Earth Observatory.

Oscillating limestone rock layers, Italian Alps

Oscillating limestone rock layers, Italian Alps. Photo: Kelsey Dyez

How does the carbon dioxide (CO2) content of the atmosphere influence climate? This question was first seriously considered in the mid- to late-1800s, amid an accelerating, newfound interest in the natural sciences on the European continent. Specifically, the Victorians were fascinated by looking backward in time, at periodic extreme cold spells, also known as ice ages, when glaciers as tall as skyscrapers covered vast areas of land that today are free from ice.

The discourse about past climates began with this approach, through a discussion about how the driving forces in the Earth system might have caused our globe to periodically enter and exit the ice ages. Many factors, including emissions from volcanoes, the rearrangement of continents, the evolution of plants and vegetation, solar sun-spot cycles, and even asteroid impacts can and do impact the average surface temperature of the planet.

Yet time and again scientists returned to the role that greenhouse gases, and specifically carbon dioxide (CO2), play in the climate system. CO2 molecules in the atmosphere absorb heat (infrared radiation) coming from the Earth’s surface and then re-radiate some of that heat back to the surface to generate a warming effect. How is this related to the glacial ice age cycles of the past?

 CO2 molecules in the atmosphere absorb heat coming from Earth's surface and re-radiate some of that heat back to the surface to generate a warming effect

Simplified greenhouse effect: CO2 molecules in the atmosphere absorb heat coming from Earth’s surface and re-radiate some of that heat back to the surface to generate a warming effect.

One way to think about this problem is to imagine the Earth system as a huge, naturally occurring experiment (though the sample size by most experimental standards is low). Sometimes the Earth has been warmer than today, even ice-free at the poles. When the ice melts, sea level rises, continents spring back after being depressed by the weight of the ice, and plants that need warmer weather expand their habitat pole-ward. The Earth has also been cooler than today, most recently at the last glacial maximum (~20 thousand years ago) when more ice was locked up in the polar ice sheets rather than in the ocean, making for lower sea level, which exposed more of what is today the ocean floor.

Today the framework of thought has turned around, so that instead of looking back through time to understand the climate of the past, we also try to learn lessons from the past to further our understanding of the climate of the future. By burning fossil fuels for heating, electricity, transportation and other purposes, humans add CO2 to the atmosphere. Yet, by comparing ways in which the Earth’s temperature, CO2 concentration, sea level and ice sheets have changed in the past, we are able to learn valuable lessons about the climate system of today and tomorrow. You can share in this adventure here.

NYC emitted 54 million tons of CO2 in 2010

New York City emitted over 54 million tons of CO2 in the year 2010. To imagine this number, every sphere here represents 1 ton of CO2 at the average surface temperature and pressure. Image: Carbon Visuals/Flickr

One last word of caution: At the turn of the last century, people also began to wonder if land-use and manufacturing—human-induced variability—could play a role in climate. Because this issue has become highly politicized, I won’t get into all the back-and-forth arguments here. That forum has other locations online. However, for a modern history of this fascinating topic, check out the American Institute of Physics (which can be found at http://www.aip.org/history/climate/co2.htm); and for more on the science, check out what the EPA has to say (http://www.epa.gov/climatechange/ghgemissions/gases/co2.html). Both purport an objective analysis of both the history and basic science involved.

Demob!

The ENAM Seismic Experiment - Wed, 10/22/2014 - 12:11

After five days in North Carolina we have recovered all of the 80 stations. The stations have been recording for one month along two profiles. Now we are downloading the data at the instrument center at the East Carolina University in Greenville.  The last step is getting the equipment ready for shipping back to PASSCAL in New Mexico.


Beatrice (Bix), Dan and Ana working onsite at the first station recovered. Bix and Ana are checking the parameters of the Reftek with the CLIE, and Dan is saving the GPS waypoint of the recovery site.



Yanjun working on one of the stations recovered on the north line. He is performing a check with the CLIE to see the number of events recorded, the data stored on the disks and stopping the acquisition. He also checks all 3 channels on the L28 sensor. Once the acquisition has been stopped, the sensor can be pulled and the station is taken back to the instrument center.



A few of the Refteks at the instrument center. The upward cap indicates that the data have been downloaded.



Yanjun labeling Reftek flash cards that contain recordings from the past month.



Flash cards labeled with Reftek serial numbers. This is the product of our hard labor!

Being a scientist rocks!

The ENAM Seismic Experiment - Wed, 10/22/2014 - 11:57

We experienced wonderful weather during the past week working in North Carolina. The scenic countryside is filled with tobacco fields, cotton fields, and other crops. One lucky recovery team started the first day on Kitty Hawk Beach demobilizing site 101.


Beach near the easternmost station on the north line of the onshore profiles




One of the many cotton fields in the eastern North Carolina coastal plain

Langseth limericks

The ENAM Seismic Experiment - Fri, 10/17/2014 - 02:19
As we approach the end of the cruise, I think this calls for a round of salty Langseth limericks.  It helps if you imagine a round of hearty “Aye, matey!”  and “Arr!” and such between each verse.

There once was the Langseth, a ship

Over wave and trough did she skip.

Many instruments aboard

To always record

Depth, gravity, mag – every blip.

There once was the Langseth, a vessel

Where in their bunks scientists nestled.

‘Til called to their shifts

Their heads they must lift

For with errors and logs they must wrestle.

There once was the Langseth, a boat

On her airguns the crew they would dote.

Oft while in a turn

Guns were brought up astern

To ensure best acoustical note.

There once was the Langseth, seacraft.

Where we launched XBTs down a shaft.

With each probe descent

To the lab data went

So that temperature-depth could be graphed.

There once was the Langseth, a fine tub!

Where the galley crew made us good grub.

But when seas ran high

Up in knots stomachs tied

And to keep the food down, there’s the rub.

There once was the Langseth, fair barge.

To collect seismic data her charge.

Streamer 8-km long

And four gun strings strong

She’s the fleet’s seismic dreadnaught at large!

-Tanya Blacic, aboard the R/V Marcus. G. Langseth

Last Day of the Cruise!

The ENAM Seismic Experiment - Fri, 10/10/2014 - 11:58

October 10th, 2014
1158

Three days ago, at approximately 2130, we recovered our final OBS and started our 36-hour transit back to Narragansett, RI. We began docking procedures at Senesco Marine LLC at around 1300 yesterday and were all tied up by 1400. After the lines were clear, both watches performed some preliminary breakdown of the OBS equipment to help stage it for demobilization this morning. It was impressive how fluidly we took and executed directions after a month of working together. It was clear that the trip had bonded us as a team. After everything was done, the group headed out to enjoy our first night on land, which, as anyone whose been on a ship for an extended period will tell you, is just an incredible feeling. One of the eeriest moments, however, was all of a sudden being surrounded by people besides those you’ve been on the trip with. Also, the “dock rock” is an interesting experience.

This morning, after a wonderful, final breakfast made by our steward, Mike Duffy, we packed up the final gear and the crew began lifting it off the boat, staging it on the pier. All that’s left now is to clean up my stateroom, pack up all my stuff, and head on home. This cruise has been both a great scientific and personal learning experience and I am happy to have worked with these crewmembers, techs, researchers, and students. The lab seems so empty now, as I write this post, and there’s a part of me that is sad that this adventure is ending regardless of how excited I am to get back to life on land.

Anyways, time for me to go. For those who are interested in the data we’ve collected on this cruise, look out for information concerning workshops on data access and processing in the near future.

Signing off,
Dylan Meyer aboard the R/V Endeavor

Figure 1. Evening recovery of the last OBS, there was much rejoicing!
Figure 2. A crewmember, Charlie Bean, tossing a leading line with a monkey fist to the dock.

Figure 3. The WHOI OBS van and SIO OBSs staged on the pier to be loaded onto trucks.

Figure 4. The WHOI OBS van being loaded onto a truck for transit back to Woods Hole.

Figure 5. The, now empty, lab deck of the R/V Endeavor.

Scripps OBS GoPro

The ENAM Seismic Experiment - Sat, 10/04/2014 - 05:16
I had this idea to attach our GoPro cameras to a Scripps OBS that was being deployed on the shelf nearer the coast.  These underwater housings are rated to 100 feet and we deployed them on three different sites at that depth, recording some of the coolest OBS video I have ever seen.  The stills captured from the video are pretty cool too, but one of the unexpectedly groovy features of the video is the audio.  You can hear the acoustic responses, ship noise in the shallow, ocean background biology, and current noise on the seafloor.


Time series of deployment and recovery. Photo Credit: Ernie Aaron.~Ernie
R/V Endeavor

Riding big swells and crossing the Gulf Stream

The ENAM Seismic Experiment - Fri, 10/03/2014 - 15:01

On calm days, you could almost forget that you are in the middle of the ocean.  Its sunny and calm outside, and everything is stable inside.  People get lax and leave cups and other items on table tops unsecured and unattended.  And then some big swells come, and we all remember why chairs are tied to tables, furniture is nailed down to the deck and we use bungie cords and sticky pads to keep computers and other gear in place. Today we are experiencing swells up to 5 m high, in which the ship has rolled up to 25 degrees.  Unsecured items (including people in chairs!) are rolling all over the lab.
Meanwhile, we are also crossing the Gulf Steam, which poses it own challenges to our gear. Fishermen are particularly concentrated here, and today we deviated 10 km off of our profile to avoid fishermen and their gear.  The currents are also pushing our seismic streamer around.  In the ideal case, the streamer extends straight behind the vessel and quietly rides 9 meters below the water surface.  The currents today have pushed it to the side by 70 degrees from the ideal track, and the swells generate noise on the hydrophones.  However, even though conditions may not be ideal, it is essential that we collect data here for our science goals. We think that there are thick accumulations of frozen magmas beneath the Earth’s surface here that formed when the supercontinent of Pangea broke apart to form the Atlantic Ocean.  So we shall push ahead!
Annotated screen capture from our navigation system showing the ship, the streamer, our intended profile and our deviation.
 Donna Shillington from the R/V Langseth

Working hard

The ENAM Seismic Experiment - Tue, 09/30/2014 - 16:07
September 30, 2014

It takes a team of people to get the OBS in the water and back out again. To illustrate the process of deploying a WHOI or SIO OBS, Gary Linkevich has created a time lapse video. The first part of the video captures two WHOI OBS deployments with Peter, Dave, Dylan, Gary, and Kate. The WHOI OBS are the peanut shaped yellow capsules that appear in the background next to the railing. After the WHOI OBS is in the water, we capture an SIO OBS deployment with Mark, Dylan, Gary and Kate. The SIO OBS are the rectangles with a yellow top and white base. Right after we deploy the SIO OBS, we start putting together a new one for deployment. The assembly process involves an instrument test and then attachment of the metal weight, floatation devices, light, and radio together. The deployment of this SIO OBS happened during the midnight crew shift which includes Ernie, Pamela, Afshin and Jenny. Once they pick her up and put her in, they start the assembly process all over again!



Thanks Gary for putting together this time lapse!

See you Later,

Kate Volk aboard the R/V Endeavor

Running the R/V Endeavor

The ENAM Seismic Experiment - Tue, 09/30/2014 - 15:27
September 30, 2014
1527

One of our assistant engineer, Kurt Rethorn, gave us a tour of the engine room. Here's what we learned:

Kurt is an awesome tour guide!

The Engine
The R/V Endeavor is equipped with a two-stroke (providing more power strokes per engine rpm), diesel engine consisting of 16, 350-cubic inch, cylinders with a maximum output of 3050 horsepower. Also, this bad boy is outfitted with a turbo charger which uses the exhaust to increase pressure in the cylinders and improve the power output from the combustion stroke. The engine is kept lubricated by 500 gallons of motor oil, which is changed when the ship is in port based on the number of engine hours. We burn around 1,000 gallons of fuel a day while on station (between the generators and the main engine) and even more when we are in transit between sites. We left port with around 54,000 gallons of fuel stored beneath the berthing decks, but she can hold up to 56,000 gallons of fuel total (the additional space is left to allow for the expansion of fuel due to temperature changes). A fun fact about the R/V Endeavor is that the propeller only spins one direction, meaning that there is no reverse gear. In order to drive the ship in reverse, the pitch of the propeller blades is switched such that the flow of water is reversed. There is also a powerful bow thruster that can be engaged if necessary.

Kurt starting off the tour (Photo credit: Kate Volk)
The engine with the exhaust manifold above and access to each of the piston heads underneath the latched doors (Photo credit: Kate Volk)Fuel gauges. Fuel is consumed from both tanks at a relatively similar rate in order to keep the boat properly balanced (Photo credit: Kate Volk)
The Generators
The R/V Endeavor has four generators. Three below the water line and one above (for emergencies only). The generators produce all our electricity directly (i.e. they do not charge any batteries). In a power failure, an emergency generator will kick on in less than a minute.

These are two of the generators, aligned along the centerline of the ship (Photo credit: Kate Volk)
 Water
We use about 1000 gallons of water a day between showering, cooking, cleaning, and drinking and the ship can only hold approximately 8600 gallons of fresh water. Therefore, we must produce fresh water throughout the cruise and we have two methods of achieving that. We have a reverse osmosis machine, which takes up salt water and pushes it through a long, blue semi-permeable membrane at 800 psi. The high pressure in the membrane causes the salt to drop out of solution producing fresh water. The second way we have of producing water is an evaporator. This brings in salt water under a vacuum at 711 mmHg (13.75 psi). The water is heated up and the condensation is collected, now free of salt. The reverse osmosis machine  and evaporator can produce around 50 and 80 gallons of water per hour, respectively, so that we can theoretically make 3200 gallons of water everyday. However, the evaporative method is dependent upon the engine heat to turn the water into vapor, which means that it runs at a lower efficiency when the engine is cooler. 

Reverse Osmosis machine. You can see the blue membranes that separates the salt and water (Photo credit: Kate Volk)

Water quality (Photo credit: Kate Volk)Sea water temperatures in the Gulf Stream are pretty warm (Photo credit: Kate Volk)

See you later, 

Dylan Meyer and Kate Volk aboard the R/V Endeavor

First Look at OBS Data!

The ENAM Seismic Experiment - Tue, 09/30/2014 - 14:48

September 30th, 2014:
1437

We have our first look at data!! Ernie Aaron merged some of the raw data from the Scripps OBSs with navigation files from the R/V Marcus Langseth such that we can start seeing the seismic waves recorded in the in ENAM project.  In Figure 1, the hydrophone record of OBS 209, which was recovered on Sept. 21st, is shown as a function of space and time. To be clear, this is original seismic data. There are still post-processing methods and inversions to apply to the data back on shore that will help extract the seismic velocity structure down to upper mantle boundary along Line 2 or any of the other seismic lines. Until then, however, here is what we learned thus far.

To remind all, the experimental setup for this study is as follows. We on the R/V Endeavorplaced OBSs on the seafloor at a spacing of approximately 15 km along Line 2. The R/V Langseth then cruised along Line 2 from ESE to WNW with airgun shots spaced every 200 meters. The OBSs were then recovered and the hydrophone and geophone data were downloaded.

Figure 1. Traces recorded from OBS 209 (bottom) with various arrivals identified by color. The dashed line shows the multiple of Slope D. Cartoon (top) shows representative raypaths of seismic waves that produced the arrivals indicated in the trace records (Figure Credit: Kate Volk).
The acoustic signal was then segmented into separate traces using the GPS-coordinated time of each shot. Ten seconds of each trace were then plotted, by shot number (Figure 1). In this data panel we see the direct wave from the R/V Langseth shots to the instrument (Figure 1; Slope B), seismic reflections and refractions from the Earth below (Figure 1; Slopes A, C, and D), and a later multiple of these seismic refractions (Figure 1; dashed magenta line), after they bounced between the seafloor and sea surface.  

The direct wave travels directly from the seismic source to the OBS, helping us identify the location of the OBS on the seismic line. Using the time it took for the direct arrival to reach the OBS at this location and the acoustic velocity of water (1500 m/s), we can estimate the depth to the OBS. In the case of OBS 209, the R/V Langseth traveled over the device around shot 2200 and it was deployed in approximately 3000 meters of water (Figure 1).

The general slope of the seismic refractions in the space-time diagram gives an indication of the speed at which these seismic waves travelled at large depth.  The data in Figure 1 have been plotted such that waves traveling with a seismic velocity of 7000 m/s, such as those turning near the crust-mantle boundary, will appear as flat events. Slower seismic waves will dip towards larger time away from the OBS, while faster waves will slope towards smaller travel times.  

The OBSs show seismic arrivals that are recorded over a very wide range of source-receiver distances. The seismic waves recorded close to the instrument (< 10 km), are the direct wave from the airguns through the water column to the instrument (Figure 1; Time 2). As you move farther from the instrument (longer offset from source to OBS), the seismic waves move through deeper materials with faster acoustic velocities and those waves reach the instrument before the direct waves (Figure 1; Times 1 and 3). At longer offsets, the primary response comes from seismic waves that travel along deep materials with very fast seismic velocities (Figure 1; Time 4). When combining all the traces together, the slope between similar acoustic responses in traces can be used to infer the seismic velocity of the seismic wave, which can be used to infer the properties of the Earth.

For example, between 60 – 80 km and 100 – 120 km, we identify acoustic responses that are relatively flat (Figure 1; Slope D), indicating that the sound wave is moving through material with an acoustic velocity of 7000 m/s. This is important because it confirms that we are imaging down to the crust-mantle boundary, which will allow us to get a well-constrained seismic velocity profile throughout the crust beneath the margin of the US East Coast.

Until next time,
Dylan Meyer aboard the R/V Endeavor

XBT (a short story)

The ENAM Seismic Experiment - Tue, 09/30/2014 - 00:53
            “Twenty shots until the next XBT.”
            It was nearing time to launch the next expendable bathythermograph probe, or XBT.  The software was readied and two scientists headed out of the lab, radio in hand.  They donned lifejackets that had once been bright orange but were now closer to a dull rust color from long and dirty use on the deck and selected a T-5 probe from the box.
            Out on the deck they were alone, perched partway up the stack of levels in the stern of the ship, the gun deck below them and the paravane deck above.  It seemed that the others working the graveyard shift were all inside, perhaps wrestling with some mechanical puzzle or else simply keeping watch to make sure all was well, sipping strong coffee, playing cards to pass the time.  The scientists snapped the probe into the gun-shaped launcher.  They removed the plastic end cap from the black cylinder that housed the probe and its spool of fine copper wire.
            “We’re in position.”
            There was a pause, then the radio crackled back, “Launch probe.”
            In a moment the probe was sliding down the long tube that extended out and downward from the starboard side.  With a small splash it plunged from the end of the tube into the inky deep.  Now to wait while it made its journey towards the bottom, more than 4000 meters below.  Despite the very late (or very early, depending on your point of view) hour, it was warm.  The air was muggy – not exactly a welcome change from the air-conditioned lab, although the tinge of diesel fumes was less out here in the relative open.  There was little wind and the seas were calm.  Standing on the moving island of light that was the ship the sea quickly disappeared into the surrounding void.  What surface that could be seen appeared to rise disturbingly close up alongside them, like a churning wall of water.  It was only visible at all by the few swirls of foam formed by the ship’s passage and a reflection here and there off the constantly moving face of the black oily-looking water.  They waited for the go ahead to terminate the probe.
            Down in the lab, there was a strange blip on the screen showing the multibeam bathymetry data, but no one noticed as they were too busy entering in location data for the XBT or scrutinizing the movement of the streamer birds that regulated the depth of the hydrophone streamer.  There were, after all, 36 other monitor screens to watch.
            Outside there was a louder than usual splash.  The two scientists peered into the gloom.
            “Dolphin?” one wondered out loud.
            “While we’re shooting?  I hope not,” the other replied, “We’ll end up having to interrupt the line.”
            Was there something just under the water surface?  A pale sinuous shape at the very edge of the ship’s halo of light?  No, it must be a trick of the light and the weird perspective engendered by the lack of any sense of distance.  Perhaps more coffee was in order when they got back inside.
            The radio crackled again, “Terminate probe.”
            The scientists broke the wire that was still spooling out to the probe that was now falling behind them.  “Probe terminated,” they reported.  They were just turning to leave when it emerged.
            At first it looked like a whale back, though pale milky green in color rather than the expected grey.  As it lifted free from the surface it became clear that it was much longer than an orca or even a grey whale, more like an ancient marble column turned soft and rubbery.  It tapered as more of its length was exposed until the tip broke free of the clinging water.  One side of the enormous snake-like shape was covered with round suckers the size of dinner plates in a poisonous green color.  The cyclopean tentacle towered out of the water, waving gently with a sickening sort of grace ten meters or more above the uppermost deck.  Here and there along its length were clots of a coppery tangled substance, almost like seaweed wrapped around it.  “The XBT wire,” one of the scientists realized from the midst of her fascinated horror.
            The tentacle hovered for another movement before swooping down with surprising swiftness.  The two scientists were neatly plucked from the ship in the blink of an eye.  With a clatter, the radio fell to the deck.  They were held above the water for a long moment, crushed together so tightly they couldn’t speak and could barely draw breath.  Then, slowly, the tentacle disappeared beneath the smoothly rolling waves.

            Two hundred and sixty-seven shots until the next XBT.


-by Tanya Blacic aboard the R/V Langseth (with a wink to H. P. Lovecraft)

Life at Sea

The ENAM Seismic Experiment - Sat, 09/27/2014 - 22:34
September 27, 2014

Our small ship is in a state of endless motion with pitch, roll, yaw, and heave. We continuously experience a feeling of fluctuating gravity at sea, as one minute we are several pounds heavier and the next we are several pounds less. We’re tossed about endlessly like riders at the fair. It’s a feeling that can turn the stomach of the saltiest of sailors, but more often disturbs the newbies the most. At sea there is also no such thing as silence. Out here the engines are always running, hydraulic pumps are always droning, and ships operations occur around the clock. From my bunk I can feel us lurch forward and lean into a turn to starboard, or port, and then they reverse the pitch of the propeller as if applying an emergency brake to slow the ships forward motion. This reverse pitch causes a shudder in the hull that shakes us like a cheap hotel vibrating bed and it chatters every moveable thing. From my bunk I can also hear the acoustic pings emanating from the hull-mounted transducers. Speaking to me in code, they tell me if OBS operations are going well.  Based on the ping styles I can also discern the acoustic techniques used by WHOI and Scripps, so that I know which instrument type is being talked to. All of this information creates a movie in my mind that plays out until I fall asleep. Life on a ship is a constant immersion in all that is going on and for 30-days there will be no escape.

-Ernie Aaron

And then there was data…..

The ENAM Seismic Experiment - Fri, 09/26/2014 - 21:10

It’s been a week since we deployed all of our gear and started steaming along our lines, so now we have amassed a lot of data!  Although we can only steam at very low speeds while towing the equipment (~4.5 nautical miles an hour or  ~5 mph), each time we fire the air gun array, the 636 channels on the seismic streamer listen for returning sound waves for 18 seconds and record a total ~25 Mb of data. Repeat that every 30 seconds for 7 days, and it begins to add up!  We now have 400 Gb of seismic data alone, not including all of the other types of data we collect while underway (bathymetry, magnetics, gravity).  We are a data-collecting machine.  

Matt, Jenna and Derek sit  back and watch the data roll in from the Main Lab
Not only are we collecting data, we are also doing some preliminary data analysis to get a first look at the geology hidden below the ocean, which is always exciting.

Kara and Matt are entranced by velocity analysis
Although we are only a week in, our data collection has already taken us through water depths as shallow as 20 m and as deep as 6000 m.  At the edge of the continental shelf, water depths change rapidly from ~500 to ~3000 m over just 20 km – a slope of 10%.  For perspective, that’s very similar in elevation change and slope to the course for the Pikes Peak marathon.

Perspective view of seafloor depth from MGDS across the continental slope overlain by a higher resolution swath of bathymetric data that we acquired along our transect, which is also shown projected onto the seafloor.
We have also traveled over widely variable geology – from 35-km-thick continental crust to ~7-km-thick oceanic crust, and from sediment thicknesses of 5 m to over 7 km.   Our data are also revealing cool structures in the sediments and crust – faults, sediment waves, and more.  Below is a picture of a salt diapir that we imaged at the edge of the continental margin.  The salt was probably first deposited at least 150 millions years ago in a flat layer, but as more sediments were deposited on top of it, it got squeezed up and out into dramatic diapirs.

Preliminary image of a salt diapir in seismic reflection data near the base of the continental slope. The y-axis shows the time it takes for a sound wave to travel down in the earth and back again. This images shows about ~5 km down into the earth below the seafloor. Donna Shillington aboard the R/V Langseth

First day of land deployment - showing kids how cool seismology is - by Kara Jones

The ENAM Seismic Experiment - Fri, 09/26/2014 - 16:32

(Originally posted on September 12)

Today was the first day of the onshore deployment of the RT130s through southern Virginia and North Carolina. My partner, Yanjun Hao, and I, were just one of five teams working to deploy instruments along the two survey lines. We deployed the first two instruments at West Harnett Middle School and South Hartnett Elementary School, both outside of Lillington, NC. In both case, the fifth and sixth graders were very interested in learning about what we were doing and eager to participate. I explained to them the basic concept of P and S-waves and then asked the children to jump so that we could test that each of the channels on the sensors was working correctly. They very much enjoyed getting to see on the clié exactly what the signal they generated looked like. At both schools, I was surprised how much the children, and the teachers, knew about earthquake seismology and the intelligent questions they asked. A teacher asked whether they would detect the explosives detonated at nearby Fort Bragg, and a sixth grader named Gauge blew me away when he asked if the sensors would be able to record the sound waves generated by the planes or nearby explosions! In total, we probably spoke to 100 kids about the project today. It was a very encouraging to see how excited and interested they all were in the science. When we first arrived and explained that we would be installing a seismometer, a 5th grade teacher looked at us with wide eyed and asked "Are you seismologists?!" I nodded yes and she was so excited she started jumping up and down. Despite some rain and GPS trouble later in the day, the excitement that the elementary and middle schoolers showed about seismology was enough to make it a great start to the deployment.

At South Hartnett Elementary School in Anderson Creek, NC. I am showing one fifth grade class what the seismic signal they just generated looks like on the clié.

Pages

 

Subscribe to Lamont-Doherty Earth Observatory aggregator