News aggregator

Storm a Comin'

Mapping the Galicia Rift off Spain - Sun, 06/16/2013 - 21:06
For the last week, we have been enjoying relatively calm seas.  Swells rolled in from distant storms, but the local weather was quite enjoyable. Now the storm that pummeled the east coast of the US last week is headed our way. This storm is expected to give us winds up to ~36 knots and ~7-8 m (~21-24 ft) waves!  This is too rough for the more vulnerable components of our gear such as the airguns, which are dangling beneath floats behind the ship.  Additionally, our data quality suffers when the weather worsens. When the winds pick up to ~25 knots, we’ll pull in some of our gear, and then turn around to face the storm and ride it out.  In the meantime, we are preparing by strapping things down in the main lab and stowing loose items that might roll around and fall over once the ship really starts to roll.
Wish us luck!
Donna Shillington
17th June
Map of forecast wave heights posted in the main lab. The big bulls-eye is right over our field area...

Hello, sunshine

Mapping the Galicia Rift off Spain - Thu, 06/13/2013 - 04:31

We have been at sea for nearly two weeks, and during this time we have seen many things… the hints of exciting geologic structures under the seafloor in our data, waves, whales, gear going off the stern. But we have seen very little of the sun, until today.  Most days have been overcast and grey. Now that all the equipment is deployed, there is nothing requiring us to be outside except for the occasional XBT launch, so it’s easy for a day or two to go by without going outside at all. It is even possible to be totally unaware of the weather for long stretches of time since the main lab, where we spend most of our time, is windowless and below the water line. Instead of windows, we have monitors showing what is happening out on various decks from a series of cameras around the ship.  Today they showed bright sunshine reflecting off the water behind the ship.  After spending a few minutes out in the sun on the deck, my unaccustomed eyes are still seeing spots…. Back to the lab!
Bern and James are on watch, so they can only watch the sun on TV from the lab.
 Donna Shillington
13th June

Miracle workers of the Langseth overcome the curse of the Costa da Morte

Mapping the Galicia Rift off Spain - Mon, 06/10/2013 - 14:28
After days of uneventful and productive data acquisition, a pall fell over the R/V Langseth. Early Sunday morning, one of the streamers began to report communication errors and soon failed to communicate at all.  A series of tests over the ensuing hours revealed that the problem was not on the ship but in the equipment out in the water.  Recovering and repairing seismic gear is not a quick task. To access this streamer, we had to undo many of the steps required to put it out to begin with: recover the port paravane, shift Streamer 3 starboard and out of the way, and then reel in part of Streamer 4. After hours of troubleshooting, the technical staff of the Langseth brought Streamer 4 back to life.  All of the equipment on the Langseth is… not new, and this certainly applies to the seismic streamers. The technical staff on the ship are pros at keeping this equipment alive (and many cases bringing it back from the dead). Twelve hours after the problems with Streamer 4 began, it was back in the water, and we were ready to start collecting data again. 
But no sooner had one problem been solved, another appeared. This time the trouble arose from the failure of a piece of equipment on the ship that is at the heart of our acquisition system – the real time navigation unit (or RTNU, for those in the know). This component gathers satellite and other navigational information from the seismic equipment and delivers it to the navigation software on the ship so that we can determine the positions of all of our equipment in the water, and where and when we need to be shooting.  Once again, the dedicated technical staff of the Langseth came to the rescue.  Painstaking checking and double-checking of each component in the RTNU began last night and continued into the early hours of the morning. In the wee hours, it’s easy to get a little superstitious.  Did all these problems arise because Tim Reston and I each accidentally drew in lines on our chart indicating that we’d completed lines in our 3D box before we actually had? Or was it the curse of Costa da Morte (Coast of Death)? This part of the Galician coast is known for its shipwrecks and nicknamed accordingly. Of course, the real culprit was the non-newness of the gear in question. Once again, the Langseth’s miracle workers saved the day by assembling the working parts of various old RTNU’s into one working unit.  Thanks to their efforts, we are up and running again….

RTNU carnage on a table in the main lab.
Donna Shillington
10th June

Poseidon Visits (and Seismic Oceanography)

Mapping the Galicia Rift off Spain - Mon, 06/10/2013 - 13:41
One of the secondary activities on the cruise has been the deployment of XBTs off the stern. XBTs are a standard oceanographic tool designed to measure the variation of water temperature with depth, providing information on mixing processes within the water column. As temperature is one of two primary controls on velocity of sound in water (the other being salinity), it is also of interest in the processing of our bathymetric data.

Poseidon's Zodiak on the way over to exchange supplies.
A few years ago, it was realised that seismic provides a method of directly observing the mixing processes, as the different water layers have sufficiently different seismic velocity and salinity for reflections to be generated at their boundaries: we have already seen reflections in the water column of our data, probably from boundaries between North Atlantic water and warmer, more saline Mediterranean water. However there have been relatively few studies of these processes using traditional oceanographic and seismic techniques, a deficiency being rectified by the deployment of XBTs at regular intervals during our cruise.

A successful exchange on medium-high seas!!
In addition to deploying ocean bottom seismometers to record our seismic shots, the German research vessel F.S. Poseidon has been carrying out oceanographic measurements, mainly using CTD casts (conductivity-temperature-depth), which provide more information than XBTs. As a result they had several XBTs left over. These they transferred to us this morning: Poseidon came within about 1 km of the Langseth and sent the XBTs over in a small boat. A real bumpy ride!

Goodbye, until we meet in Vigo!Tim Reston
University of Birmingham

Poseidon: OBS deployment update

Mapping the Galicia Rift off Spain - Sat, 06/08/2013 - 08:13
On 5th of June, Poseidon deployed her last three OBH instruments. The crew then spent the next two days doing CTD ("conductivity, temperature, depth") measurements of the water column. They typically recovered good measurements of conductivity and temperature for depths down to 1000 m. These measurements can be used to monitor mixing of different water bodies (such as warmer Mediterranean waters with the cold Atlantic) and to calculate variations in velocity within the water column to compare with seismic reflections we observe within the water column. Rough seas for the last 1.5 days have made the CTD measurements challenging.

Today the Poseidon is recovering eight OBH to download the data they recorded and redeploy them elsewhere within the 3-D box. It will be exciting to see the first OBH data! We won't see the rest of the data until the remaining OBS and OBH are recovered in August and September.

Despite being in the same area, here on the Langseth the science party hasn't seen the Poseidon since our first day passing them on the way out to sea from Vigo. However, this may be because we are all busy below deck in the main lab (with no windows) processing data!

Marianne Karplus
8th June


Underway and beginning to collect data

Mapping the Galicia Rift off Spain - Sat, 06/08/2013 - 00:43
For the last couple of days, we have been slowly (very slowly) steaming along at 4 knots (~4.6 miles an hour) towing all of the gear behind the ship and collecting seismic data. A lot of data! Each of the four seismic streamers behind the ship records returning sounds waves on 468 channels. Every time one of our air gun arrays fires, we collect 60 Mb of data.  Repeat that every 16 seconds for a few days, and it adds up.  Even though we have only been at it for a few days, we have already generated 405 Gb of raw seismic data, and that does not include all of the other types of marine geophysical data that we collect (bathymetry, magnetics, etc). Nonetheless, there are many reminders that we still have a long ways to go.  For example, a large map on a table in the main lab shows all 56 profiles that we plan to acquire during this cruise in our target area for 3D imaging (black horizontal lines in the image below). As we complete them, we draw a green line along the profile on the map. Four down, fifty-two to go! 

Donna Shillington
8th June

Map in the main lab showing planned profiles. The ones we've already completed are in green
*Follow our progress on the "Survey Area" page as we update the sail lines every ~4 days.

The Source

Mapping the Galicia Rift off Spain - Thu, 06/06/2013 - 07:07
Our fourth (and final) gun array was deployed last night!! This means that all of the hard work that the crew has performed (with our help, of course) will begin to pay off as the data streams in while we traverse east along the western most extension.


Marine reflection seismology involves actively generating soundwaves (rather than waiting for earthquakes as in many other types of seismology). The ideal seismic source is as close to a “spike” as possible. Sound waves from the source travel into the Earth, where they reflect off sedimentary layers as well as hard-rock surfaces. The returning reflections are recorded by over a thousand hydrophones (underwater microphones that gauge pressure changes created by the reflected seismic waves) in the streamers that we have been deploying for the last four days.



The source consists of a series of air guns of varying sizes, which are hung at a depth of 9m (~30 feet) below large inflatable tubes. The tubes are 60m (~200 feet) long and each has 9 active air guns (10 with one to spare). In our case there are two sets of air guns being towed 150m (~500 feet) behind the ship, that alternately fire. To create a strong source that is as spike-like as possible, the guns are carefully arranged and fire almost simultaneously. The air is released from the chamber of the air gun, creating a 3300 cubic inch bubble pulse, which collapses to create the sound waves.
Orientation of the streamer and gun arrays being towed by R/V Langseth.
The red circles indicate the location of the gun arrays.
We are making sound in the ocean, where many mammals use sound to communicate and hunt for food. In order to ensure we are operating responsibly and minimizing our impact on mammals, we have five Protected Species Observers (PSO’s) onboard who both watch and listen for (from the observation deck in Donna’s previous post) any marine mammal that comes close to the ship. If any are spotted or heard within a specified radius around the ship, we power down the guns until they leave the area.

James Gibson
Lamont-Doherty

Langseth: The paravanes are out!

Mapping the Galicia Rift off Spain - Tue, 06/04/2013 - 00:24
Most of the science team came out on deck this afternoon to watch the starboard-side paravane deployed in relatively calm waters under partly cloudy skies. The technical and engineering crew proceeded slowly and carefully through the deployment procedure, and after about a couple of hours the paravane and attached streamer were over 300 m off the starboard side of the Langseth.

The second paravane went in the water at 22:00 this evening, and streamer 2 is currently being uncoiled into the water behind the ship. Despite a few delays, we are making good progress!

Marianne Karplus
4th June





Role-Reversal (and Some Fun) at AGU

American Geophysical Union Fall Meeting - Tue, 12/18/2012 - 10:31

Francesco Fiondella is normally behind the scenes writing web stories, developing audio slideshows and videos for the International Research Institute for Climate and Society (IRI). But at this year’s annual American Geophysical Union (AGU), the tables were turned for a brief moment. He was video ambushed by climate scientist Andrew Robertson and forced to explain a poster he made with me and fellow IRI’er Brian Kahn about unconventional ways scientists can communicate with the public online. The poster covers our experiences with an “Ask Me Anything” session on the popular social news site, Reddit.com; creating a Storify to curate the online conversations that took place during our recent State of the Planet conference on Twitter and Facebook; and using Projeqt to create a visual story about the IRI’s work in drought-stricken West Africa.

Earlier that day, Fiondella had interviewed Robertson on his research on improving the prediction capability of water availability in the Himalayas to help water resource managers make better planning decisions. That interview inspired Robertson to see if he could give Fiondella “a taste of his own medicine.”

Video Ambush

Click here to view the embedded video.

 

Andrew Robertson Interview

Click here to view the embedded video.

A River Runs Through It: Predicting Floods in the Midwest

American Geophysical Union Fall Meeting - Fri, 12/07/2012 - 13:58

Andrew Robertson, Head of IRI’s Climate Group

By Elisabeth Gawthrop, Climate and Society ’13

Three of North America’s major rivers run through the Midwestern U.S. In the spring of 2011, major flooding in region caused an estimated $3 billion in damages and killed seven people. Although scientists cannot predict exact precipitation amounts for a given season, they can attempt to predict the odds that a given season will have below average, average, and above average precipitation. If forecasts show an increased likelihood for above average precipitation, the odds of flooding usually increase, too. The International Research Institute for Climate and Society’s Andrew Robertson studies how climate variability across multiple timescales, from daily to decades, affects these forecasts. Using the American Midwest as a case study, Robertson and his colleagues at the Lamont-Doherty Earth Observatory and Columbia Water Center analyzed the relationships between flooding events and weather and climate patterns on multiple timescales over the 20th century. Find out more about how Robertson and his colleagues are trying to improve flood prediction in the Q&A below and stop by his talk at AGU.

 

How do El Niño–Southern Oscillation (ENSO), Madden Julian Oscillation (MJO) and Pacific Decadal Oscillation (PDO) interact to make climate patterns more or less favorable for precipitation in the region?

We have analyzed recurrent daily atmospheric circulation patterns, attempting to link these daily patterns to patterns of longer time scales and covering wider regions and, separately, to extreme floods. We found some weak but statistically significant linkages between weather patterns associated with both floods and ENSO/MJO patterns. La Niña, the cool phase of ENSO, tends to cause a large-scale pattern that’s more conducive to creating the conditions that lead to floods the Midwest. We also found that an active MJO event tends to lead to cause an atmospheric “wave” that passes over the Midwest two weeks following the event. This wave is also conducive to floods. Even though we have a century of records, it’s too short to say much about relationships with the PDO, a phenomenon that shifts over a period of decades as opposed to the monthly and seasonal fluctuations of ENSO and MJO.

What is the skill of your results? Will forecasters be able to incorporate more of these longer time scale variabilities into seasonal forecasts?

The prospects for improved seasonal forecasts are limited because the ENSO linkage is weak. There are better prospects for eventually developing “seamless” forecasts in which forecast information is combined together and capitalizes on the MJO relationships. Particular combinations of ENSO and MJO could lead to better “forecasts of opportunity” in situations where both ENSO and MJO impacts are reinforcing each other.

Is there a human-induced climate change signal that could change these relationships in the future?

The century-long record of floods does not reveal an increasing trend toward more frequent extreme floods over the Midwest signature. Many of the flood events occurred in the early and midcentury, with fewer at the end of the twentieth century.

Why did you focus on precipitation from March through May in the Midwest in particular?

The spring season over the Midwest is a time of heightened flood risk, due to potential confluence of factors conducive to floods. Combinations of snow melt, high ground saturation, and strong interactions between Gulf of Mexico moisture and slow moving cyclones that can occur in the spring lead to increased likelihood of flooding events.

Want more news from the AGU Fall Meeting? Follow IRI on Twitter and like us on Facebook

Clues from Last Ice Age May Hint at Drying Ahead for Some Regions

American Geophysical Union Fall Meeting - Thu, 12/06/2012 - 20:16

Aaron Putnam samples a boulder from Tachanggay Tso moraine in Bhutan. (David Putnam)

In the spectacular collapse of ice sheets as the last ice age ended about 18,000 years ago scientists hope to find clues for what regions may grow drier from human caused global warming. In a talk Thursday at the American Geophysical Union’s annual meeting, Aaron Putnam, a postdoctoral scholar at Columbia University’s Lamont-Doherty Earth Observatory, painted a picture of earth’s dramatic transformation as seen in climate records extracted from ancient cave formations, ice cores, lake shorelines and glacial moraines.

Earth came out of the last ice age in two phases, triggered paradoxically by the cooling of waters in the North Atlantic Ocean, said Putnam. In phase one, the stratification of North Atlantic waters pushed Earth’s wind and rain belts south. The winds caused carbon dioxide to out-gas from the Southern Ocean, rapidly heating the Southern Hemisphere by 16,000 years ago. In phase two, with the evening of temperatures in the polar oceans, the wind and rain belts returned north. By 14,700 years ago, the Northern Hemisphere begins to rapidly warm, bringing the planet as a whole out of the ice age.

At the end of the last ice age, New Zealand glaciers terminated not far from this one pictured with Aaron Putnam in the foreground.

The first interval made normally dry regions wet, and wetter regions, dry, and then the situation reversed 2,000 years later, said Putnam. In the U.S., lake levels in the mid-latitudes swelled as the jet stream pushed south bringing more rain. Lake Lohantan in Nevada and Lake Estancia in New Mexico reached their highest levels about 16,000 years ago, research by Lamont’s Wally Broecker suggests. At the southern edge of the tropical rain belts, Lake Tauca in Bolivia reached its maximum extent at the same time. Meanwhile, the monsoon rains in Asia were failing, leaving evidence of drought in Hulu Cave near Nanjing, China, and Venezuela’s Cariaco Basin. Antarctic ice cores also show evidence of less vigorous vegetation growth in the northern forests. “These are massive changes that are happening,” said Putnam.

The rapid retreat of glaciers in New Zealand suggest that the Southern Hemisphere warmed quickly once the Southern Ocean started to release carbon dioxide.  Moraine dating by Putnam and his Lamont colleagues, Joerg Schaefer and Michael Kaplan, show that glaciers were biggest at 17,800 years ago. In just 2,000 years, the ice retreated close to where it is today and temperatures warmed 3 degrees Celsius, their research shows. (Another degree of warming would happen by the onset of the Holocene 12,000 years ago)

Today, with the North Atlantic now warming, Putnam and his colleagues expect the chain of events to reverse, with wind and rain belts shifting north. “We should anticipate that the dry lands and deserts of the Northern Hemisphere will become drier, which has implications for water resources,” he said. “Monsoons could pick up in South Asia and Venezuela.”

Further reading:

Aaron Putnam’s account of trekking through the Bhutan Himalaya in search of glacial moraines New York Times, November 2012

Study Adds New Clue to How Last Ice Age Ended

Answer to What Ended the Last Ice Age May Be Blowing in the Winds, Paper Says

 

The Meaning of Water

In Mongolia, water is energy. Photo: A. Hessl

What is the meaning of water? In my everyday life, water is a given.  Even this year, when at least one quarter of the US has been stricken by drought, water continues to flow from the tap and my family is unaffected by its scarcity.  I remember the California droughts of the 1970s, when my brother and I shared bathwater, I learned not to flush so much, and water was rationed.  Even still, our very sustenance, our wealth was not threatened by the lack of water.  In Mongolia, as in many other developing countries, people depend on water not just to slake their thirst but to sustain their livelihoods.  Mongolian herders must bring their animals to a water body daily.  In times of drought, most lakes dry up, leaving only a few “permanent” lakes available to dozens of herders and thousands (hundreds of thousands?) of animals.  Steppe lakes also serve as virtual “gas stations” for migratory birds and waterfowl – they are hotspots of diversity. Without water, animals perish, food disappears, and people and ecosystems suffer.  In a semi-arid region like the steppe, water allows people and ecosystems to transform solar energy into a mobile and flexible product via photosynthesis and primary consumption by livestock. In Mongolia, water is energy.

John sampling a large lake in Mongolia. Photo: A. Hessl

As part of our new project, we will be collaborating with Avery Cook-Shinneman (University of Washington) to use lake sediments to reconstruct the ecology of lakes and livestock during the Mongol Empire.  Lake sediments can provide a broad array of proxies for past ecosystems.  We plan to use some of these proxies to estimate past water quality and a relatively new proxy, Sporormiella, to assess the numbers of livestock present during the Mongol Empire.  This summer, my student John Burkhart and I visited a number of lakes near the Orkhon Valley, seat of the Mongol Empire, to recon possible sample sites.  In the process, we learned to appreciate the role of permanent lakes in Mongol herders’ livelihoods.

Before leaving for Mongolia, we had worked with Avery to identify more than a dozen lakes to recon.  We were going to collect water and surface sediment samples from each lake to assess their potential.  But upon our arrival in the Orkhon region, we quickly learned that those lakes no longer existed.  The decade-long drought that might be only ending in 2012 had left only a few permanent lakes; we noticed much standing water along the highway compared to 2010.  Though the large lakes we identified on Google Earth were starting to fill up again, the fact that they had dried up during a recent drought suggested they had dried up in the past, leaving only an intermittent record of past ecology.  We began visiting local herders homes (“gers”) to inquire about permanent lakes.

A Mongolian ger (the so-called yurt). PHoto: A. Hessl

We had used this approach before to look for old trees but Mongolians are no better than Americans at identifying old trees.  They always point you to the biggest, most beautiful tree and claim it’s the oldest – when in fact the scraggliest, ugliest tree is usually much older (Editor’s note: Beauty is in the eye of the beholder).  But in the case of lakes, these Mongolian herders were true scholars.  Ask any old herder about where to find permanent lakes, and they will tell you in detail the characteristics of all lakes in their region – when they thaw, when they freeze, what kind of plants grow around it and in it, and how likely it is to dry up.  I should not have been surprised – their life and livelihood depends on their knowledge and careful management of these lakes.

A moist landscape of life in Mongolia. Photo: A. Hessl

This kind of ecological knowledge is not new.  Mongolians have cultivated knowledge of lakes for millennia.  The first permanent lake we visited was less than 5km away from an Uyghur fortress dating to the 8th century.

Ruins of an 8th century Uyghur Empire fortress. Photo: A. Hessl


Categories: TRL

Oceans of Ancient Wood and Coming Full Circle

We have just made it back to Ulaanbaatar after 11 days of in-country travel and field work. While being a bit field worn from working on a lava field for 6 days, we are simultaneously thrilled and in good spirits. It is a bit too early to say, but it seems that Summer 2012 in Mongolia was a success*. It certainly felt like a success to me on the day we came full circle from 2010.

Amy, John, and Sanaa were a day ahead of us and, with John being down with a case of Chinggis’ revenge, Amy and Sanaa spent a full day on the lava field revisiting and re-visioning how we would sample over the following week. The hopeful goal was to collect enough wood to push the chronology near 2000 years in length while having enough samples over the last 1000 years to be able to say something with statistical significance. Sanaa and Amy intensely studied where to find wood and what pieces might be from an earlier era. They accomplished this while collecting 24 cross-sections of deadwood. It was an impressive and hugely helpful first day.

It was necessary to study the characteristics of the deadwood and its geographic distribution across the lava field because, honestly, our first discovery is pretty much the definition of, “a blind hog will find an acorn every once in a while“. During Amy’s and Sanaa’s first day of discovery in 2012, Sanaa came up with the term ‘ocean’ for the large, open areas of lava that are virtually devoid of trees. Because the ocean as a whole can be considered a kind of desert, we found that term ‘ocean’ was correct: this part of the lava field truly resembled a desert. Thus, over the course of our fieldwork, the first verse and drifting characteristics of A Horse with No Name came to mind. The heat was hot. There were plants and birds and rocks and things. Oh yeah, there were a few rocks.

A 360 pan of a large ‘ocean’ of lava. Can you spot Amy and Kevin? Photo: N. Pederson

Together we learned that it was on the margins of these oceans that we could find what appeared to be ancient wood. It wasn’t until the penultimate day, however, that we had any sense of what we had accomplished.

Being 5 days in and having collected ~150 pieces of deadwood, we were all a bit burnt, literally and figuratively. Though we had sunscreen and hats, it wasn’t quite enough. We all looked a bit beety. We were also running on fumes. Constantly hiking on jumbled and sharp pieces of lava jars the body and mind. So, on Day 5 we set out for a low-pressure ‘cleanup’ of the lava field. Almost anything we collected that day would be bonus material.

We decided to head towards some of the sample locations from 2010 to see if we could find some of the oldest pieces. Many of the oldest pine cross-sections from 2010 were not GPS’ed due to time, energy, and the afterthought nature of that collection. So, on Day 5 in 2012 we wandering an area we mostly missed in 2012 while at the same time trying to recollect the hazy afternoon in 2010.

About 45 minutes to an hour in, we had our first success. We re-discovered ‘The Logo Tree’. While the day on the lava field in 2010 is still very hazy in my mind (due to my state of being in day 3 of undiagnosed and untreated tonsillitis), the sharpest memory of that day is The Logo Tree.

The Logo Tree, a dead and likely ancient Siberian pine. Photo: N. Pederson

In 2010 The Logo Tree symbolized the potential for this site. We had spotted some Siberian pine trees, a species I did not see during my first brief visit to this site in 1999 with Gordon Jacoby, Baatarbileg Nachin, and Oyunsanaa (Sanaa) Byambasuren. This tree, though dead, captures many of the characteristics of old trees (charismatic megaflora) while also having the weathered, ‘stressed’ form of trees living on the edge of survival. These trees are often the ones tree-ring scientists use to reconstruct past climate. The Logo Tree screamed, “I, and many other pines like me, are ancient. You might better pay attention. This area could be filled with xylemite.”

So, it was with great joy that on Day 5 of 2012 The Logo Tree was re-discovered. Many picture were taken. Champagne corks were unleashed (in the form of taking the top off our water bottles and taking a swig of water). It certainly lifted me to a higher energy state.

We then spent much of the next few hours scouting for more samples from 2010 and passing through what can be considered a pine graveyard, an area filled with much deadwood and ancient, stunted pine trees.

Three generations of trees in the ‘pine graveyard’: deadwood, ancient, but stunted living trees, and tall, spritely young trees. Photo: N. Pederson

A specific goal on Day 5 was to locate the oldest piece from 2010, a sample dating to the middle portion of the first millennium of the Common Era. Having not yet found it as the day was drawing to a close, we decided to narrowly focus on finding that piece. We wandered. We scratched our heads. We saw a horse with no name. And then…and then, we hit an area with signs of our past chainsaw work.

Could it be? Might that be The One?

Yes, it had to be. See, that sample, The Eldest of 2010, sits near my desk. It is within arm’s reach in case of impromptu lab tours. I know that sample. The Elder is a bit oval with a characteristic hole that makes it easier to carry or hold up with two fingers. This seemed to be it.

The joy and shock of this confirmation, of coming full circle, was that this log didn’t look as old or as weathered as many of the pieces we had collected over the prior 4.75 days. It didn’t look exceptional. It nearby cousin, cut 2/3rds of the up a dead stem, was equally unimpressive. Yet, The Elder’s cousin dates to the late-1200s.

Sanaa, Amy, and Neil with The Elder, Day 5, 2012. Photo: B. Nachin

This particular re-discovery floated us for the remainder of the day and trip back to Ulaanbaatar. We cannot yet say with any certainty, but it seems we really hit our research goal. In fact, we are now concerned that we might have some pieces so old that they will not date – they might actually predate any long chronology we might build from this site. But, if this is a problem, we wish this kind of problem to all of our colleagues.

Now, to some scenes from the field:

Hi ho, hi ho, it’s off to work we go. Photo: N. Pederson

Neil and Amy, ocean walking. Photo: K. Anchukaitis

Amy sawing a piece of dead wood on the edge of a sea of lava. Photo: N. Pederson

Sample KHO415. Photo: K. Anchukaitis

John taking a plunge cut from a snag. In addition to taking samples from logs, we took some samples from standing dead trees. Photo: N. Pederson

Some snags took on a colorful beauty. Photo: N. Pederson

Some of the ancient-looking pines were quite short compared to their compatriots. For example, Amy is ~1.6 m tall. The 400? 500+? yr old pine to the left of Amy might be a little over twice her height. Photo: N. Pederson

Despite being low in productivity, the lava field holds much life. Can you spot the wolf scat? Photo: N. Pederson

Kevin says, “You’re still here? It’s over. Go home. Go.”** Photo: N. Pederson

*No living trees were harmed in the creation of this post

** respect


Categories: TRL

What Would Chinggis Do?

Saturday dawned a beautiful morning the air was crisp and cool, all of Mongolia had just gotten up at 4 in the morning to watch the opening ceremonies of the London Olympics, and traffic was light.  It seemed an auspicious beginning for our 2012 field work.  The opening ceremonies for our fieldwork had never run so smoothly: Baatar had arranged for our favorite driver, Chukha, to meet us at our hotel at 9am to get an early start.  It would be a solid 6-8 hour drive to the first lake we wished to sample Oygi Nuur, 9am did not seem too early. Drs. Baatar and Sanaa plus an undergraduate student, Balja, packed Chukha’s Russian military van at an astounding 7am (does Chukha really get up that early?) allowing us to leave Ulaanbaatar less than 36 hours after we arrived.  It was truly unprecedented.

Chinggis seated at the front of the Mongolian Parliament. Photo: N. Pederson

We made several stops on our way out of town, additional groceries, toothpaste, fuel, bar oil for chainsaws and a fruitless search for distilled water (why would we think we could get that here?) but we were still headed out of the smog bubble that is UB before noon.  It was a bit later than I had hoped, but still remarkable given our previous trips when it had taken several days to resist the gravitational force of the city.  As we left UB and the smog behind, we began to see small signs of the countryside: a few gers (circular felt tents), small herds of sheep for sale, and a couple of trucks loaded with wool.  John, my new PhD student, even saw his first Mongolian horses.  We could literally taste the Mongolian countryside.

Tsagaan takhi in northern Mongolia. Photo: N. Pederson

But as we drove up the last rise out of the Tuul River valley, the van sputtered, then stalled.  Things seemed routine Chukha was under the van in no time complaining of a loose battery connection.  In 15 minutes we were back on the road. At the next rise, the van stalled again, and this time Chukha looked truly distraught.  The rest of us piled out of the van, had a picnic lunch, and watched Mongolia clouds.  Chukha emerged from under the van looking like his best dog had just died.  He couldn’t eat, didn’t want to talk.  His van had literally blown a gasket.

On our way back to UB, after a beer and a couple shots with Chukha, we did our best to keep our chins up.  After all, what would Chinggis do?  We would try again tomorrow.  Until then, here’s looking forward to dinner.


Categories: TRL

Chasing Ghengis Khan

People have been looking for 800 years. Looking for Chinggis Khaan, né Ghengis Khan. From the people searching for his birthplace to the people searching for his last resting place. After more than 800 years since his rise from the mountains of Mongolia, Chinggis lives on as a charismatic and almost mythical person. He seemingly rose from obscurity, quelled feuds between tribes, and created the largest land empire in world history. If you read beyond what you likely learned in high school or college, you will see his leadership skills were progressive and exceptional. You will learn that Chinggis has an influence on our world nearly 800 years after his death. From paper money to the pony express, from war strategy to the structure of the human genome, his life has touched generations of humans over the centuries.

The new Chinggis Khaan statue, Photo: U. Aria

When you begin working in Mongolia it is absolutely essential that you learn the importance of the man. Soviet communism attempted to quell his spirit and his importance in Mongolian culture. Mongolians were not allowed last names so everyone could be equal, so no one could trace their family history to the royal family. This, of course, did not work. In a culture that has songs and stories dating back centuries, if you, a native Mongolian, meet a stranger in the woods on the other side of the country and drink tea, break bread, and just lounge, you will soon break into a song that you and the stranger know from the depth of your soul. You will sing, smile, and enjoy a wonderful afternoon with this once distant, now close cousin. That kind of cultural bind does not break under any kind of political pressure. Perhaps it only made it stronger? See, in the late-1990s, soon after the fall of communism, Chinggis essentially rose from the ashes. He was everywhere in Mongolia – TV commercials for cell phones or a brand of vodka. And once you, as an outsider, spend considerable time in Mongolia, especially during Naadam and especially in the open Gobi steppe with people who still live as their ancestors did centuries ago, you understand the importance of the man and you will also begin to chase Chinggis. And, it is with this new project that our group of geographers, paleoclimatologists, ecologists, historians, and ecosystem modelers begin our pursuit of Chinggis Khaan.

Unlike other chasers who came before us, our search for Chinggis is not directly a pursuit of him as an individual. We understand he was an incredible leader who was the life force for the great Mongol Empire. Our pursuit is more contextual. We seek to understand the environmental conditions before, during, and after the rise of the Mongol Empire. In many ways, the success of the Mongol Empire is a historical enigma.  At its peak during the 13th century, the empire controlled areas from the Hungarian grasslands to southern Asia and Persia. Powered by domesticated livestock, the Mongol Empire grew at the expense of farmers in Eastern Europe, Persia, and China.  Two commonly asked questions of this empire are “What environmental factors contributed to the rise of the Mongols?, and “What factors influenced the disintegration of the empire by 1300 CE?  . For a long time (centuries?),  it was thought that drought partly drove the Mongols on their conquest in Eurasia. Luckily enough for us, a serendipitous collection of a few pieces of deadwood and old Siberian pine trees suggests essentially the opposite. Our collection of an annual record of drought, currently dating to the mid-600s CE, suggests that the early-1200s were unusually wet. Of course, these findings are very, very, very preliminary – we only have two trees through this time period.

Old trees and older lava. Photo: N. Pederson

So, with funding from the Lamont Climate Center, National Geographic Society, West Virginia University, and the Dynamics of Coupled Natural and Human Systems program of the National Science Foundation, we are headed back to Mongolia for a fourth straight year to scour the study site that yielded a 1,300 year record for more old, dead wood. With a combined crew from the National University of Mongolia, West Virginia University, and the Tree Ring Laboratory of Lamont-Doherty Observatory, Columbia University and the Earth Institute, we will spend 10 days in the field seeking, documenting, and collecting wooden gold, xylemite if you will.

Terkhiin Tsagaan Nuur, the Great White Lake of Mongolia. Photo: N. Pederson

Part of our crew will also spend about three days at upper tree line on a mountain in the western Khangai Uul (uul is Mongolian for mountain) updating and expanding the collection that suggested that it was warmer during the rise of the Mongol Empire. We are so excited. We have a great crew, will be spending our time mostly in one place, and will have some of the finest scenery in Mongolia in our eyes everyday.

Solongotyin Davaa, Mongolia. Photo: N. Pederson

Frankly, we are also excited about our larger project. We honestly do not know what the end results will be. The idea that wet conditions aided the expansion of the Mongol Empire is simply a hypothesis built upon ecosystem ecology, human ecology, and our preliminary results. See, energy is critical for human and natural systems to function, yet few studies have examined the role of energy in the success and failure of past societies. Increased rainfall on the Great Gobi Steppe should allow the grassland to capture more solar energy. Greater grass production logically would have allowed the Mongol Empire to capture, transform, and allocate this energy through their sheep, horses, yak, etc. In turn, this should have allowed greater energy from which Chinggis could develop a larger and more complex social, economic, and political system.

A lone takhi in the northwestern edge of the Gobi, Uuvs Aimag, Mongolia. Photo: N. Pederson

Feeding tree ring based climate history into an ecological model, we plan to investigate how past climate influenced grassland productivity, herbivores, and, thus, energy flow through the Mongol ecosystem. These data will be compared to historical records on the empire and sediment records from lakes that can estimate herbivore density.

Much has been made about the demise of cultures as a result of a downturn in climate or degradation of their environment. Our estimates of energy availability and environmental quality allows us to investigate whether the contraction of the empire was related to drought, cold, declining grassland productivity, or poor water quality associated with rapid urbanization and climate change.Thus, as part of our larger project, we will test the hypothesis that the arc of the Mongol Empire was influenced by the energy available to nomadic pastoralists for building a mobile military and governmental force sufficient to conquer and govern a significant portion of Asia and Eastern Europe.

The diverse Mongolian landscape. Photo: N. Pederson

We leave in less than two weeks.  As happens each year around this time, memories of past trips are revived and we begin seeping back into the Monglish culture that develop on these trips. We look forward to re-uniting with colleagues like Baatarbileg Nachin and his students like Bayaraa. A highlight this year will be working alongside a Mongolian postdoc, Sanaa, who Neil met as an undergrad in 1998. It will be an honor and pleasure to work with Sanaa again. Mongol phrases and words are bubbling up from the depths of our grey matter. Mongolian music is spinning nearly full-time in one household; a soundtrack for this year’s fieldwork is coming into shape.

We hope to catch a set of Altan Urag, a rising rock band in Mongolia. To us, they represent some of the cultural struggle in Mongolia today: “How to we maintain the qualities we are so proud of during the height of our empire, as new or external culture moves into our land?” and “As commercialization in the post-communism era (including a ‘gold-rush’ in the mining industry that created one of the fastest growing economies in the world) pushes and pulls us, how do we maintain who we are?” Altan Urag and young Mongolian artists are reaching back in their history for symbols and sounds that make them distinctly Mongolian. At the same time, these artists keep their eyes and ears open to the new possibilities of their larger world. Similar to how Chinggis melded European and Chinese technology to forge his great empire, many of today’s young Mongolians blend their history with external elements to create a new Mongolia. We cheer these efforts on. We are big fans.


Categories: TRL

Lamont-Doherty Earth Observatory: Milestones in Climate Science

The 2015 Paris Climate Summit - Thu, 06/14/2012 - 14:41

(Note: This feature first appeared in 2012; it was updated November 2015 for the Paris Climate Summit.)

Much of the modern understanding of climate has been shaped by pioneering studies done at Columbia University’s Lamont-Doherty Earth Observatory. Starting in the 1950s and extending through today, researchers in oceanography, atmospheric physics, geochemistry and other disciplines have shown how natural climate cycles work; how carbon dioxide is now influencing earth’s temperature; the hidden roles that oceans play in regulating climate; and, most recently, how ongoing rapid climate change is affecting nature and human societies. Here is a timeline of studies that have changed the way the world looks at climate.

Climates of the distant past are often studied using cores taken from ocean bottoms; Lamont scientists have been the leaders in collecting and studying these, and the institution holds the world’s largest repository. Above, deputy director J. Lamar Worzel and director Maurice Ewing on the research vessel Glomar Challenger, 1968.

1956: A theory of ice ages Maurice Ewing and William Donn, Science   Maurice “Doc” Ewing, one of the world’s most influential oceanographers and Lamont’s first director, teamed with geologist Donn to propose that ice ages are driven by self-perpetuating natural cycles of freezing and thawing of the Arctic Ocean. This paper and two followups were seized upon in popular literature of the time to suggest that a new ice age would arrive soon. Although scientists’ views shifted radically as more evidence came in, this initiated Lamont’s tradition of studying large-scale climate swings.

1960: Natural radiocarbon in the Atlantic Ocean Wallace Broecker et al., Journal of Geophysical Research   Wallace Broecker, one of the founders of modern climate science, showed how isotopes of carbon produced by natural and human processes could be used to map ocean currents that we now know form a series of global-scale loops. This led to an overarching model of the “Great Ocean Conveyor Belt” and the idea that changes in the conveyor may bring sudden, powerful shifts in the global climate.

1966: Paleomagnetic study of Antarctic deep-sea cores Neil Opdyke et al., Science   By systematically examining Antarctic seabed sediments, Opdyke and colleagues showed that periodic shifts in earth’s magnetic polarity could be used to accurately date sediment layers back beyond 2 million years—and thus climate shifts from those ancient times. Previously, the limit was only 25,000 years. This set the stage to test theories of climate change in deep time.

Wallace Broecker, who joined Lamont 60 years ago, is considered one of the founders of modern climate science. He has made some of the most important discoveries about oceanography and climate, and continues his work today.

1973: Are we on the brink of a pronounced global warming? Wallace Broecker, Science   This is the paper generally credited with coining the phrase “global warming” in scientific literature. The planet at that time was emerging from a decades-long natural cooling cycle, which Broecker postulated had been masking an ongoing warming effect caused by rising industrial carbon-dioxide emissions. Broecker predicted that as the cooling cycle bottomed out, global temperatures would rise swiftly. He was right.

1976: The surface of the ice-age Earth CLIMAP, Science   CLIMAP, an international project in the 1970s-80s, reconstructed the world’s sea-surface temperatures, and thus overall climate, during the last glaciation. The main evidence was deep-sea cores—many taken by Lamont scientists and held in the Lamont Deep-Sea Core Repository, the world’s largest. It was the first comprehensive look at earth’s temperature for a time markedly different from our own.

1976: Variations in earth’s orbit—pacemaker of ice ages James Hays, John Imbrie, Nicholas Shackleton,  Science   In the 1920s, Serb mathematician Milutin Milankovic proposed that earth’s ice ages coincide with cyclic changes in the eccentricity, axis orientation and wobble of the earth as it orbits the sun. The idea was long debated. This paper finally proved to most scientists’ satisfaction that Milankovic cycles are real. Lamont’s James Hays worked with two other giants of modern science: Brown University’s John Imbrie and Cambridge’s Nicholas Shackleton.

1978: The Marine oxygen isotope record in Pleistocene coral, Barbados, West Indies Richard G. Fairbanks et al., Quaternary Research   This paper documented the magnitude and rapidity of sea-level rises when ice sheets and glaciers melted at the ends of several previous ice ages. Other Lamont researchers have followed with many more studies to the present quantifying past changes in sea level. These studies are key to understanding how current melting of ice may affect us in the near future.

1986:  Experimental Forecasts of El Niño Mark Cane, Stephen Zebiak et al., Nature   El Niño is earth’s most powerful natural climate cycle, shifting precipitation and temperature patterns, to affect crops, disease outbreaks and natural hazards globally. Its physics and variable timing were long cloaked in mystery. Cane and Zebiak were the first to construct a model that explained how it worked, and could successfully predict an El Niño. This and related work led to forecasts that are now used worldwide to plan for crop planting, public-health initiatives and emergency relief efforts.

1986: Inter-Ocean Exchange of Thermocline Water Arnold Gordon, Journal of Geophysical Research In conjunction with earlier oceanographic work, laid out how differences in the temperature and salt levels in different layers drive the exchange of water between oceans, and, ultimately, affect climate over vast distances.  Gordon and colleagues continue to work on questions of large-scale ocean circulation in Indonesia, the Southern Ocean and elsewhere.

1989: The role of ocean-atmosphere reorganizations in glacial cycles Wallace Broecker and George Denton, Geochimica Cosmochimica Acta   This study explored the role of freshwater inflow into the northern North Atlantic, via melting ice, in governing the oceanic “conveyor belt,” and its possible association with disruptions of currents that could cause sudden, large-scale climate changes. Followed by many other papers including 1992’s Evidence for Massive Discharges of Icebergs into the North Atlantic Ocean During the Last Glacial Period (Gerard Bond et al., Nature).

With glaciers now melting worldwide, understanding their dynamics past and present is key to projecting the future. Lamont scientists study ice trends all over the world. Here, a researcher on an expedition to core the waning glacier atop Indonesia’s Puncak Jaya, earth’s highest peak between the Andes and the Himalayas.

1995: Temperature histories from tree rings and corals Edward Cook, Climate Dynamics Cook, now head of Lamont’s Tree Ring Lab, showed how tree rings dating back as far as 1,000 years correlated with both modern instrumental records and marine corals to show anomalous warming during the 20th century in many parts of the world. Working from places ranging from Tasmania and South America to Mongolia, North America and Scandinavia, lab scientists have since published many more papers on how tree rings illuminate regional and global climate histories. These include a monumental drought atlas of Asia, published in 2010.

1995: Plio-Pleistocene African climate Peter de Menocal, Science This connected the evolution of humans with a shift toward more arid conditions in the east African climate after 2.8 million years ago. The change resulted in the development of open savannahs where newly upright human hunters are thought to have thrived. It was one of the early papers suggesting climate’s basic effects upon humans. Many uncertainties persist about early human evolution, but many scientists continue investigations of the evolution-climate link.

2000: Climate change and the collapse of the Akkadian Empire: evidence from the deep-sea Heidi Cullen, Peter de Menocal et al. Geology   The sophisticated Akkadians ruled the Middle East  until 4,200 years ago, when their empire suddenly collapsed. Heidi Cullen (who later became a popular TV personality covering climate) linked it with an abrupt 300-year drought, using layers of dust found in seabed deposits. This helped nourish the emerging awareness of how environmental change may affect societies. Later related Lamont papers include a 2010 study exploring the collapse of southeast Asia’s Angkor culture, and other Asian societies, also apparently due to drought.

2002: Global sea-air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects Taro Takahashi  et al., Deep-Sea Research Part II   Based on some 940,000 measurements taken over four decades, Taro Takahashi and colleagues mapped for the first time on a global scale the exchange of carbon dioxide between the atmosphere and oceans—a flux that plays a key role regulating climate. This was followed by papers including 2009’s Reconstruction of the history of anthropogenic CO2 concentrations in the ocean (Samar Khatiwala et al., Nature), which indicated that since 2000, the world’s oceans may have begun losing their ability to absorb rising human emissions of carbon.

2004: Long-Term Aridity Changes in the Western United States Edward Cook et al., Science   Tree rings showed that an ongoing drought in the U.S. Southwest paled in comparison to one during an unusually warm period about 1,000 years ago. It suggested that the region is vulnerable to disastrous drying due to global warming. An influential 2007 paper followed, led by climate modeler Richard Seager: Model Projections of an imminent transition to a more arid climate in southwestern North America,” Science.  This added evidence that the region will dry significantly in the 21st century–a transition now probably already underway.

2008: In Situ Carbonation of Peridotite for CO2 Storage Peter Kelemen, Juerg Matter, Proceedings of the National Academy of Sciences   With the recognition of the problems caused by rising carbon dioxide, Lamont scientists in several disciplines have been among the first to look into possible ways to capture and store emissions. This paper documents efforts to use natural chemical reactions within deep-earth rocks in Oman to “freeze” emissions into underground reservoirs. Projects by other researchers are looking into piping emissions into the seabed off the U.S. Northeast, or using rocks common on the U.S. mainland.

Tree rings contain exquisitely detailed records about past climates. Members of the Tree Ring Lab travel to many remote places to collect and study samples. Here, researchers work at the edge of the northern Alaska tundra.

2011: Civil conflicts are associated with the global climate Solomon Hsiang et al., Nature   In the first study of its kind, Hsiang and his colleagues linked periodic increases in civil conflicts to the arrival of El Niño. The study found that the characteristic hotter, often dryer weather in certain areas doubled the risk of warfare across some 90 tropical countries, and accounted for a fifth of worldwide conflicts in the past 50 years. There is now speculation (though no proof) from studies done at Lamont and elsewhere that El Niño cycles themselves could be intensified by rising global temperatures in the future.

2012: The geological record of ocean acidification Bärbel Hönisch et al., Science Lead author Bärbel Hönisch and her colleagues showed that the world’s oceans are turning acidic at a rate unprecedented over at least the last 300 million years, apparently due to reactions with human emissions of CO2. This could affect marine ecosystems, and may already be having effects in regions such as the U.S. Pacific Northwest.

2015: Climate Change in the Fertile Crescent and implications of the recent Syrian drought  Colin P. Kelley et al., Proceedings of the National Academy of Sciences   This study asserts that a record 2006-2010 drought in Syria was stoked by climate change–and that the drought in turn helped propel Syria and surrounding nations into the vast war that has evolved into one of the worst disasters of modern times.  It made worldwide headlines, and has become one of the most highly cited pieces of research linking ongoing climate trends with drastic consequences for humanity.

2015: Contribution of anthropogenic warming to California drought during 2012-2014  A. Park Williams et al., Geophysical Research Letters   With record-breaking drought devastating California starting in 2012, many scientists began looking at whether global warming was playing a role. Bioclimatologist A. Park Williams and his colleagues showed that while natural factors probably caused the lack of rainfall, global warming played a measurable role in the drought by drying out soils further. The study was instantly seized by politicians and others as hard evidence that climate change is already affecting agriculture, economy and environment in the United States.

RELATED VIDEO: THE LAMONT DEEP-SEA CORE REPOSITORY’S CONTINUING ROLE IN CLIMATE STUDIES

Click here to view the embedded video.

 

COP21_ad2

Transitions: Climate, Fire, and Forests in Mongolia

The silence you may have heard since our last post was the sound of microscope lights flickering, measuring stages gliding, brains grinding, numbers crunching, and poi dogs pondering. We wrapped up all planned field work last summer for our research grant on climate, fire, and forest history in Mongolia. We have transitioned from the field-intensive portion of the grant to the data and publication phase of the scientific process. We have presented research in various meetings and settings and have earnestly begun to put our findings to our peers to begin the publication process. We are also transitioning to a new vein of research in Mongolia that gets to the title of this blog. It has been a long time coming.

First, Dr. Amy Hessl was inspired by the forest in transition on Solongotyin Davaa. This is the famous forest where global warming was first reported in Mongolia. High elevation forests are rare to burn. So, the thought that a landscape with wood that has been on the forest floor for more than 100o years became an important part of Amy’s summary on “Pathways for climate change effects on fire: Models, data, and uncertainties“.

The 2010, post-fire landscape of Solongotyin Davaa from Figure 1 in Hessl’s “Pathways for climate change effects on fire: Models, data, and uncertainties”

Next, Amy led a slew of us in a publication summarizing our initial findings of fire history from the northern edge of the Gobi Steppe to Mongolia’s border with Russia near Sükhbaatar City. With the glaring exception on Bogd Uul, this paper, “Reconstructing fire history in central Mongolia from tree-rings“, gives a quick glimpse into the fairly persistent fire regime across central Mongolia over the last 280-450 years.

Four centuries of fire history in central Mongolia: initial results

NPR recently finished a series of reports on the environmental and cultural transitions currently happening in Mongolia as a result of climate change and the massive mining boom underway. The post that caught our attention was the one on “Mongolia’s Dilemma: Who Gets The Water?” Water has been a focus or the Mongolian-American Tree-Ring Project (MATRIP) since the beginning (see MATRIP’s major publications on this subject here, here (get the streamflow data here), here, here). So, we are happy to announce that this rich vein of research has continued with the fire history research grant by first filling an important gap in the MATRIP network and then having several manuscripts on this subject in revision or review.

One paper that we are quite excited about is an analysis of drought variability across Mongolia’s ‘Breadbasket’. We were taken aback in throughout the last three field seasons by the large-scale revitalization of Mongolia’s agricultural sector. It was surprising to see center-pivot irrigation and large tracts of fields in northern Mongolia. This cultural change is intended to transition Mongolia towards agricultural independence for its growing population. Our analysis highlights important differences in drought variation for the eastern and western portions of the breadbasket region. Stay tuned!

Finally, we are headed back to Mongolia this summer to begin pilot work on new research currently funded by the Lamont Climate Center, The National Geographic Society, and West Virginia University. As hinted in our last post, we will begin field work to determine if there was a warmer and wetter climate during the rise of Chinggis Khaan’s Mongol Empire.

Really –  stay tuned!


Categories: TRL

More Rain & More Horses Leads to a Stronger Chinggis? It is a thought!

Bayrbaatar & Amy the day before our fateful discovery

Amy Hessl is featured on National Geographic radio about our team’s discovery of ancient deadwood that suggests the rise of Chinggis Khaan was associated with increased rainfall. Listen to learn more.

an ancient Siberian pine


Categories: TRL

the devil shivered in his sleeping bag

By Neil Pederson

As discussed in the previous post, the first half of the field season would be the scientific highlight of the 2011 field season. While we had highlights later on, in terms of finding new stuff, that was it. We knew that would be a highlight because we had a fairly good idea of what was coming next. To our delight, we would be heading back to the small mountain village called Bugant. This is a delight because the family we stay with on trips to the northwestern Khentii Moutains are exemplary in terms of Mongolian generosity.

We knew that we would immediately not only be served fresh tea and plenty of candies and snacks upon our arrival, we also knew that no matter what time ae arrived we would be served a meal. We arrived at about 9 pm and, sure enough, by 9:45 we were fully into our meal.

As always, it was a fun and spirited meal. All the extended family came to visit with us and each other:

We looked forward to the next day’s field work because we were going to one of the most interesting forests we’ve seen in Mongolia – it was an intact, old-growth forest….

the OG forest at high elevation in the northwestern Khentii Mountains

However, not all scientific fieldwork is full of exploration and discovery like those fueled by sawdust and mosquito wings. Sometimes, quite often actually, scientific research is monotonous. Even in the field. The work ahead, while in beautiful places, was akin to making the doughnuts. We had to go back to areas we had sampled before, install plots and just core whatever trees fall in those plots. There would be no bird-dogging or seeking out great old trees. What fell in our plots, randomly-located so that they best represented the average forest, ended up being our study trees. Ah, we are not complaining. It is just not as thrilling as the hunt. It feels almost industrial – industrial ecology.

We were a bit leery of this forest as well. When we last sampled in 2009, it turned out to be a cold and wet visit. 2011 turned out to be very much the same. In fact, it turned out to be wetter and colder. It definitely had us shivering in our sleeping bags.

We had expected to complete our work in the first day at the site pictured above. But, after a couple passing showers that were fairly heavy for Mongolia, the temperatures dropped quickly and, well, we started getting cold. We were prepared for this, but somehow this day got to us. We really started shivering and making mistakes. When you start making mistakes when you are cold and wet, that is a good sign to call things off. Not much good can come from continuing. What one can expect is potentially bad data, more mistakes and more mistakes that could become dangerous. So, we called it a day and went fishing.

OK, Baljaa went fishing. Specifically, he went wood fishing. It is a method commonly used to gather firewood in areas with little wood. As you can see, Baljaa, despite being a Mongolian cowboy with more than a hundred horses [he’s a good catch, ladies!], struck out. Time to call in the pro:

As you can see, Baatarbileg is still the master!

What did we cook with this wood? Our clothes, of course:

cooking clothes

Actually, the fire and wonderful soup for dinner warmed us up. I do not think the devil actually shivered in his sleeping bag.

The next day turned out to be sunny and we finished off this site. We did get one new discovery: a Mongolian lizard. It got so used to being held, or perhaps it was so hungry from the previous cool, wet day, it itself ‘fished’ for food while being held:

 

The next day found us heading back to the ‘cement patio’ site. This is a favorite site for us as we had a wonderful Mongolian cookout in 2009. What we had forgotten was how far back we had driven into the Khentii Mountains to find this site.

Talk about monotonous [and desperate…like the beginning of 2011, we were desperate in 2009 to find a goldmine site], we drove 20 km on the road below just to find this site. You can hear below how we had forgotten how far back we drove in 2009.

 

We hit the slopes as soon as we re-discovered the cement patio; it took about 3 hrs of driving to get to this spot. I had not been up this slope yet as I sampled a different slope in 2009. When Amy said it was steep, I really didn’t know what she meant. As you can see, the slope was nearly a 40% slope:

the footing was tough

 

While in the midst of conducting this industrial ecology, the sky decided to open up again. However, the storm didn’t seem as serious as the prior day and we hunkered down for about 20 minutes. Sure enough, the storm passed as we completed most of our work at this site.

The views from this site are pretty spectacular.

Bugant forest landscape

Indeed, it is such a special forest that we will have a special post regarding the state and potential future of this part of the Khentii Mountains.

We headed down the mountain back to the patio and found an incredible patch of berries. There were two types of currants and one type of blueberry. It was delicious. In fact, as it was Chuka’s birthday (our other driver in 2009 and 2011), we gathered as much fruit as possible and re-created our 2009 cook out night to celebrate Chuka. It was a fantastic night until yet another thunderstorm crashed the party and sent us scurrying for the tents. All in all, it was a pretty great night.

There is not too much to report for now about this site. It is definitely another old-growth site that Amy has already written about. We saw some amazing specimens for the main conifer species in Bugant and hiked some cool ridges. We saw wolf and bear scat. We were lucky to spend time in that exceptional Mongolian Wilderness. Here are a couple more pictures.

the gang, Bayaraa, Amy and Baljaa, in a wonderful birch forest

 

Baljaa, proud of his effort and work (as he should be) and happy to be in the Khentii Wilderness

 

more of that Bugant birch forest - note the wonderful Nars (Scots pine) to the right

 


Categories: TRL

Celebrating the end of the Antarctic field season

Using Rocks to Decode Antarctic Climate - Thu, 02/17/2011 - 22:18

We decide today is the last day for our camp, and we pack up and drive back to our base camp, the Central Transantarctic Mountain camp (CTAM). A sadness in a way, because it was our cozy home for a week. We ate, slept, and joked around here night after night. Also, we realize that packing up camp represents the end of the field season, except for one more day. For the last day of work we will fly by helicopter to the Achernar area from the CTAM camp.

Moraines at the Lewis Ice Tongue, the location of the last rock surface sampled during the field season

The last day at Mount Achernar. We use the helicopter to go near the southernmost part of the area, near the Lewis ice tongue, which comes off the East Antarctic ice sheet. After a long day, we collect our last samples, and wait for the helo to pick us up – the end of the field work for this season. We realize we had a very successful field season. Not one day of work was lost at either Mt Howe or Mt Achernar (a very rare experience for Antarctica). We think about how we accomplished our goals in terms of getting to both remote sites and collecting samples.

Spontaneous dance performance celebrating the end of the highly sucessful field season

Back at CTAM camp, we scramble to get all our stuff packed up ready to be shipped back to McMurdo. They are closing the CTAM camp for scientific work in a week because they need to take everything down by the middle of February. The middle of February represents the end of the field work for everyone in Antarctica. It starts to get too cold, and the sun starts setting in some areas farther north. People start to go home then and McMurdo gets ready for the winter.

The 'Antarctica's Secrets' team (Mike Roberts, Mike Kaplan, Nicole Bader, Kathy Licht, Tim Flood) getting ready to fly back to McMurdo station

We all fly back to McMurdo. A bed and running toilets (!) for the first time since we left for our camping trips. Also, the dorms have dark curtains that go over the windows. So, darkness, a bed, and a toilet – who would have known life can get so good!

Mike Kaplan (Lamont)

The Twin Otter, ready to fly the team back to McMurdo

Pages

 

Subscribe to Lamont-Doherty Earth Observatory aggregator