News aggregator

Internet's Primary Link Maintenance

IT Announcements - Wed, 02/22/2012 - 10:09

CUIT Network Operations will be performing maintenance on Lamont's primary link to the downtown Columbia campus (our link to the internet) 5-6 PM this Thursday, February 23.

read more

LDEO mail outage

IT Announcements - Sun, 02/19/2012 - 04:53

 Most outgoing mail was turned off from Sunday, ~12:30 AM until ~3:31 AM because a compromised account was being used to send spam.

Celebrating the end of the Antarctic field season

Using Rocks to Decode Antarctic Climate - Thu, 02/17/2011 - 22:18

We decide today is the last day for our camp, and we pack up and drive back to our base camp, the Central Transantarctic Mountain camp (CTAM). A sadness in a way, because it was our cozy home for a week. We ate, slept, and joked around here night after night. Also, we realize that packing up camp represents the end of the field season, except for one more day. For the last day of work we will fly by helicopter to the Achernar area from the CTAM camp.

Moraines at the Lewis Ice Tongue, the location of the last rock surface sampled during the field season

The last day at Mount Achernar. We use the helicopter to go near the southernmost part of the area, near the Lewis ice tongue, which comes off the East Antarctic ice sheet. After a long day, we collect our last samples, and wait for the helo to pick us up – the end of the field work for this season. We realize we had a very successful field season. Not one day of work was lost at either Mt Howe or Mt Achernar (a very rare experience for Antarctica). We think about how we accomplished our goals in terms of getting to both remote sites and collecting samples.

Spontaneous dance performance celebrating the end of the highly sucessful field season

Back at CTAM camp, we scramble to get all our stuff packed up ready to be shipped back to McMurdo. They are closing the CTAM camp for scientific work in a week because they need to take everything down by the middle of February. The middle of February represents the end of the field work for everyone in Antarctica. It starts to get too cold, and the sun starts setting in some areas farther north. People start to go home then and McMurdo gets ready for the winter.

The 'Antarctica's Secrets' team (Mike Roberts, Mike Kaplan, Nicole Bader, Kathy Licht, Tim Flood) getting ready to fly back to McMurdo station

We all fly back to McMurdo. A bed and running toilets (!) for the first time since we left for our camping trips. Also, the dorms have dark curtains that go over the windows. So, darkness, a bed, and a toilet – who would have known life can get so good!

Mike Kaplan (Lamont)

The Twin Otter, ready to fly the team back to McMurdo

Glacial deposits: A clue to reconstructing the history of the Antarctic ice sheet

Using Rocks to Decode Antarctic Climate - Thu, 02/10/2011 - 11:44

We set out on the snowmobiles with all the sleds to Mount Achernar with all our stuff. After about three hours we reach the site (crossing the flagged crevasse zone with no problem). We are joined by a fifth team member, Tim Flood, a Professor at St. Norbert College in Wisconsin. Tim has expertise in petrology or rock composition. So, we will have one additional person for the Achernar part of the trip.

Kathy Licht, Tim Flood and Nicole Bader exploring glacial deposits near Mt Achernar

At first we only find ‘blue ice’ to set up camp. Blue ice gets its name mainly because – in contrast to the typical situation of having a layer of snow on top of the ice sheet – there is only ice. The snow layer that normally covers the top of the ice sheet is blown away where the winds blow pretty fast and consistently. This means there is no good place for camp right in the Achernar area because all the blue ice is a sign of strong winds. We decide to back up a few miles to where the snow starts again and camp a little but away from Mount Achernar. This means we will have a ‘daily commute’ to get to where we want to work, but at least we have a nice place to live for the week. It is less windy where we decide to set up camp and a nice layer of snow in which to pitch the tents and walk around. Blue ice is very difficult to walk on – it is just what it sounds like – walking on ice!

Setting up just another field camp at Mt Achernar

We set up camp. Unlike at Mount Howe, here each person will have their own tent. In addition, we set up the bathroom tent and a huge kitchen tent, named the ‘Arctic oven.’ The arctic oven will act as a kitchen and dining area. It is about 25 feet long, enough to be comfortable. And, when we have two stoves going inside, the temperature gets up to a comfortable 60 degrees or even higher (hence, its name); comfortable enough to start peeling off all our jackets while eating. Two little speakers that Tim picked up in an airport, attached to ipods, means we even have a stereo system in the arctic oven cook tent.

The first day we drive out to where we want to work. It takes about an hour and a half each way by snowmobile. This is quite a bit of time. In addition, the glacier deposits we want to study are much larger in area compared to at our first site at Mount Howe. It is not practical for us to drive everywhere and get to all the places by walking. We realize we will need to utilize the helicopter from nearby CTAM. So, the next week or so we alternate: a “snowmobile day” when we commute by snowmobile from camp to the field site and “helo days”. On the helo days, the helicopter flies out to our camp (a short flight by helicopter from the CTAM camp) picks us up, takes us exactly where we want to go around Mount Achernar, and then at the end of the day, comes back out to bring us back to our camp. All these trips only take the helicopter folks about 75 minutes in total each day, given how fast they go.

Collecting samples from the top of boulders that got left back by the retreating glaciers. At home in the lab at Lamont, we will use a method called 'Surface Exposure Dating' to figure out when the ice sheet left these boulders behind when it retreated.

We spend the next 8 days or so doing the same sort of work as at our first site Mount Howe. We map the glacier deposits (how red or oxidized are they – how do their elevations changes? How do the deposits themselves change in terms of shape and composition and other characteristics?). Mike K and Mike R (with occasional assistance from others) collect samples for the surface exposure dating, so they can eventually figure out how old all the deposits are. Kathy, Nicole and Tim study the composition and types of glacier rocks and sediments left behind.

Similar to our finding at Mt Howe, we find pronounced changes in the glacier moraine deposits around Mt Achernar. This indicates there are likely deposits of different ages, left behind at different times by the ice sheet when it was bigger. All the team members continue to collect samples that will be analyzed later in the lab.

Running water in Antarctica at Mt Achernar

Mike K, Kathy, Mike R, Nicole and Tim

How to cross a crevasse zone on the Antarctic ice sheet

Using Rocks to Decode Antarctic Climate - Sun, 02/06/2011 - 21:32

We are back at the CTAM (Central Trans Antarctic Mountain) camp.

Gas station in Antarctica

Over the last several days we take stock in that we accomplished the first major goal of our trip. That is, to study the glacier deposits at Mount Howe, the southernmost rock outcrop on Earth. We found (what we think are) deposits left behind by the ice sheet when it was bigger, at several different time periods in recent Earth’s history. We can tell in a preliminary way, before we have carried out the laboratory work back home, that the glacier deposits must be of different ages because they are different ‘colors’ – red for more oxidized (rusted). They also show other signs of varying in age such as the weathering of the rocks and landforms, which increases away from the ice sheet (=older). This means that there will be a record of the glacier leaving behind different types of rocks over a period of time, likely well before the last ice age. It was an important goal to find such deposits for our sampling.

Using snowmobiles to move to the next field camp site at Mt Archernar

We quickly regroup our stuff over the next few days at the CTAM camp and start to get ready for the next major camp move, to Mount Achernar. For this stage of our trip, which is only about 25 kilometers from the CTAM camp, we are hoping to get there by snowmobile. We will use 4 snowmobiles pulling 6 sleds (two snowmobiles will pull two sleds each). This will allow us to move our entire camp, set it up for more than a week near the site, work, and then come back to CTAM after 8 days or so. However, there is a small problem. There is a crevasse shear zone in the ice sheet between the CTAM camp and Mount Achernar. So, we must figure out where to cross the crevasse zone. We do this two ways. First, we take a helicopter trip from CTAM for an hour (they are quick) to scope out or reconnaissance the area (a “reconn”). On the helicopter, we think we figure out where we might be able to cross the crevasse zone. The helicopter trip also allows us to see the whole area of Mt Achernar and where we want to camp. Camp ideally has to be on a snow patch so we can stake the tents down and in a spot not too windy.

Kathy Licht from Indiana University-Purdue University, Indianapolis on a reconnaissance helicopter flight to check out the best way to get to Mt Archernar

The second way we figure out how to cross the crevasse zone is to go to it, by snowmobile on just a day trip from CTAM (another “reconn”). Mike R (Roberts), our mountain guide, shows us how to link the snowmobiles by ropes, in case one falls into a crevasse. We also put on climbing harnesses and rope ourselves to a second set of ropes between the snowmobiles. This is so that if we fall in, we can either climb out or be pulled out by others.

Checking out the crevasse zone and finding a way to get safely to Mt Archernar

We get to the crevasse zone which starts at about 15 miles from the CTAM camp. The first few crevasses seem quite bad – each about 2 to 5 feet cross. Although they all seem to have natural ‘snow bridges’ that cross the top of the crevasse, which we can drive across, we need to be confident that they will not collapse due to the weight of the machine. Mike R slowly investigates each crevasse we cross to see how strong the overlying snow bridges are and how wide each crevasse is. After about an hour, we start thinking maybe there are just too many crevasses (every few hundred feet we are finding another one) and it would take too long to figure out how to get across the entire crevasse zone. Mike R suggests we park and get off the snowmobiles, link up with ropes and slowly walk for a while to see how much longer the bad crevasses continue. This seems easier at the moment then stopping and starting the snowmobiles every time we reach another crevasse. To our surprise, the crevasses quickly get smaller and disappear just as we start walking! We did it ! We found a reasonable and quick way to get across the crevasse zone which is less than a 1 mile wide at its bad part. We put flags next to each one so that we can easily see where they are when we come back through on the way to Mount Achernar site to do our work.

Mike Kaplan, Kathy Licht, Nicole Bader and Mike Roberts

Moraines and spaghetti in the Transantarctic Mountains

Using Rocks to Decode Antarctic Climate - Mon, 01/31/2011 - 23:30

The first day of geologic work at our Mt Howe field camp. We start walking on the moraines (piles of debris left by a glacier, just like around NY, Indiana, Wisconsin, where we are from) and we have to put on crampons. These are spikes that go on the bottom of our boots. This is because the moraines are really hummocky to walk on and right under just a few inches of dirt is ice, making us slip and slide and do more leg splits than we can remember!

Taking a sample from a huge boulder on a moraine that got left behind by a glacier

But, we quickly identify roughly where we think the ice was during the last ice age. We can do this because the deposits are ‘grey’ in color as they do not have time to oxidize (like rust on a car). The stuff left behind by older ice ages is red in color – because it has had time to oxidize. We start collecting our first samples. Kathy and Nicole collect material to figure out the type and chemistry of the glacier deposits left behind, which will help tell them which way the ice must have been moving in the past and what kind of rocks it brought up from below. Mike K and Mike R start measuring the elevations of all the glacial deposits and more important start collecting samples from the tops of large boulders. These samples will help us figure out the time at which they were left behind. Once back home, we will use a method called cosmogenic surface exposure dating. We will use our lab facilities at Lamont-Doherty Earth Obsservatory to date the rocks, using the cosmogenic nuclides Beryllium-10 as well as Helium-3.

Over the next 6 days or so, both teams just systematically collect samples from each set of ridges or moraines that the ice sheet left behind in the past. The idea is that each distinct moraine ridge represents a different time period or glacial period when the ice sheet was bigger. The weather holds up well, an important fact when you are only a couple hundred miles from the South Pole. The temperature remains about -10 to 0 during the day. Anytime the wind picks up thought, the wind chills causes it to get colder fast. Often exposed skin has to be covered quickly. Only a few days are cloudy, otherwise the sun adds a little bit more warmth. Fortunately, the tents are warmer, especially when we run the coleman stoves. So, eating dinner is way more comfortable than being outside.

Mike K., Mike R., Kathy and Nicole

After a long day sampling glacial deposits at -10 degrees it is time for dinner in one of the tents at Mt Howe field camp

Setting up camp 184 miles from the South Pole

Using Rocks to Decode Antarctic Climate - Fri, 01/28/2011 - 15:12

We fly from McMurdo to our first base camp, named CTAM, which stands for Central Transantarctic Mountains. This camp is set up by the US National Science Foundation every 5 to 10 years, with input from scientists on the cutting edge research that can be done in the region where it is set up. An idea for having the camp is to make central Antarctica more accessible every once in awhile to scientists who want to carry out research in remote parts of the continent, such as our team. Otherwise, many of these areas are too hard to get to from the larger more permanent bases and camps such as McMurdo.

Tent city at the Central Transantarctic Mountain Camp

Here we will gather all our things, organize our gear for the final time, and then go to our remote ‘deep’ field sites to work. This is the third largest camp on the Antarctic continent this season, and is helping various science teams carry out research, such as in biology and on fossils, geology, and on the ice sheet (for example, how it flows). The camp allows teams such as ours to reach by helicopter and twin otter plane more remote locations this year in central Antarctica, which is normally very difficult.

First, Kathy and Mike R fly to the first of our major camps, at Mount Howe. The next day, Mike K and Nicole fly.

Loading gear (including a snow mobile!) into the Twin Otter to fly to the Mt Howe Camp

We use a twin otter plane to take all of our gear, including a snow mobile, and only two people can go at a time. The trip takes about two hours each way. This is the first time Mike K and Nicole really get to see Antarctica. The flight is one of those unique experiences of a lifetime as we fly over the mountains high enough to poke through the Antarctic ice sheet. Upon arriving, camp is set up (fortunately Mike and Kathy get much of this done the first day), including two three Scott tents and a mountain tent. One Scott tent is our bathroom – one of the most important tents to go up! Mike K’s tent will act as a dining room and kitchen.

Flying across the Transantarctic Mountains - a unique experience of a lifetime

Using a GPS, we figure out the South Pole is only 184 miles from our camp. Less than 3 hours if we are driving on an interstate in the US.

Mike, Kathy and Nicole

Setting up the camp at the Mt Howe field site

Survival training in Antarctica – aka Happy Camper

Using Rocks to Decode Antarctic Climate - Thu, 01/20/2011 - 22:48

We survived Happy Camper survival school! This is essential training for anyone who goes into the field on the coldest most remote continent on Earth. Kathy took hers 4 years ago. We learn to build snow trenches for survival and all things related to camping in the cold, although we still appreciate that it is warmer here than back home (in the 30s, dry and sunny). Also, everyone goes through snowmobile basic repair and use, rock climbing 101, and crevasse rescue training.

Happy Camper - required two day/one night class where one camps outside, learns about all the camping equipment, and shows he or she can deal with the elements, before being sent out into the unknown

Tomorrow is the last day before flying out to the remote CTAM (central Transantarctic Mountains) camp that we will use a base for getting to Mt Howe and Mt Achernar. Mike Roberts, our mountaineering guide, uses the last day to give one more crevasse-rescue training course.

Mike Kaplan from Lamont practicing rock climbing, in preparation of the field trip to the Transantarctic Mountains

We learned how to stop a fall down a steep slope, set up rescue systems and traversed around an ice fall to learn to recognize and avoid crevasses. Upon our return, we found out that our flight will be delayed a day. Very typical for Antarctica!

Mike and Nicole

Antarctic Impressions

Using Rocks to Decode Antarctic Climate - Mon, 01/03/2011 - 15:47

It’s great to be back on this amazing continent.  I certainly never tire of the beauty of this place.  Well, I wouldn’t call McMurdo a beautiful place, but it is buzzing with activity and provides great support for the scientists.  Things are much the same here as 4 years ago when I was last on the ice.  Dozens of science groups work out of McMurdo station, which acts as a hub of activity for a wide range of scientists, including geologists, biologists, glaciologists and atmospheric scientists.

McMurdo Station is the largest Antarctic station and the logistic hub of US-lead Antarctic research

Many groups, like ours, utilize McMurdo as a place to organize field gear for camping trips to distant sites on the continent to collect samples.  Others groups stay in McMurdo to conduct experiments on samples collected nearby.  All the science groups have small offices and some work on high tech equipment here in the Crary Lab.  This is an amazing resource, particularly in terms of support staff who really work hard to help us out.

An exciting new addition to the local scenery is the small group of windmills erected to generate power for this energy hungry place.  My understanding is that this effort was led by the New Zealanders, whose base (Scott Base) in only about a mile away.   Luckily, the international cooperation between the NZ and US Antarctic programs means that McMurdo is benefitting from this great ‘green’ experiment in power generation.

Mt. Erebus (77°32'S, 167°10'E), Ross Island, Antarctica is the world's southernmost active volcano

McMurdo station rests on the South West tip of Ross Island, which is dominated by the active volcano, Mt. Erebus.   As a current resident of the rather flat state of Indiana, I take pleasure in temporarily living on the flanks of a volcano rising more than 12,000 ft above sea level, with its nearly perpetual puff of smoke at the summit.

Kathy Licht, IUPUI

A beautiful day in Antarctica

Using Rocks to Decode Antarctic Climate - Tue, 12/28/2010 - 08:04

We left Christchurch in the rain – the last we will see for awhile! After a 5 hour flight on a US air force plane, we land on the McMurdo Ice Shelf.

Nicole Bader and Mike Roberts, the mountaineering guide of our team, on the plane from New Zealand to Antarctica

We get off the plane in Antarctica – and – it is beautiful – in the 30s (Fahrenheit) sunny and dry. When it is this dry and sunny, it is light jacket weather. Some people are working around in short sleeves and fleeces. Just like the weather in New York (as family tells me on email the next day), and significantly warmer than the weather in Wisconsin (where Nicole came from). This is Mike Kaplan and Nicole’s first time here, but Mike Roberts and Kathy have been here before.

Mike Kaplan and Nicole Bader arriving in sunny Antarctica

The planes land on snow, which is groomed with a special compacting machine so that a normal plane can land and take off on the snow.

The next 10 days are for packing, coordinating, and most important, taking safety classes of all types, including the most important – happy camper. Nicole and Mike need to do a two day/1 night class where we camp outside, learn about all the camping equipment, and show we can deal with the elements, before they send us out into the unknown. We also need snow mobile school, helicopter safety school, environmental safety and awareness, crevasse training, and on and on…With all the gear and packing to put together, including food, this will take well over a week before we can even think of leaving McMurdo and heading out to the next stage and field work.

Most of our time is getting our gear together, making wood ‘rock boxes’ (see photo) for storing our geologic samples after we collect them, choosing our tents, food, and other things we are taking. We need to make sure we have two of many things, such as stoves, for safety. Just planning our food for when we are working takes all afternoon and half the evening.

Mike Kaplan putting together a wood 'rock box' to transport collected rocks back to Lamont

Mike K and Nicole are also starting to learn their way around McMurdo Sound, which is a really interesting place. It is like a small town with a library, general store, three gyms, a coffee shop and wine bar. We all room in dormitories like we are students again. Of course, Kathy and Mike R are old hats here. McMurdo is the base for the United States Antarctic Program (USAP). During out time here, we can see planes and helicopters coming and going, as they take supplies and scientists to various places, including the South Pole. We all eat in one big cafeteria for everyone, buffet style. Fortunately, for Mike K, they are two ice cream machines, in case one breaks down!

Kathy and Mike

Gearing up in New Zealand

Using Rocks to Decode Antarctic Climate - Sat, 12/25/2010 - 14:07

After months of waiting, we leave Los Angeles on a non stop 12 hour flight to New Zealand. We ‘are’ Mike Kaplan at Lamont Doherty, Kathy Licht a professor at Indiana University-Purdue University Indianapolis, and Nicole Bader a student from St. Norbert College in Wisconsin. Nicole is finishing her undergraduate at St. Norbert but will be doing her Master’s thesis research with Kathy starting in the fall. Her project will focus on what we do in Antarctica.


Nicole Bader trying on extreme cold weather clothing for the camping trip to Antarctica at the Clothing Distribution Center in Christchurch, New Zealand

It is hot and humid when we landed in Auckland. We went through customs and had the customary 15 minute walk to the domestic terminal. We noticed the heat and humidity not just because we just came from the ‘winter’ in the United States, but we are soon to go to the coldest part of the planet.

We stayed in Christchurch a day. This is to get our gear at the CDC (clothing distribution center). All the extreme cold weather clothing is issued here. We try things on, ask for more (and more!) clothing, and pack everything for our trip. We wait, and walk around Christchurch, including their beautiful Botanical Gardens, have a great Thai meal – knowing thesis will be the last of such sights and greenery (and hay fever!) we will see for a month. We also meet Mike Roberts here, a New Zealander originally, who is our mountaineering guide and new companion. He will be an integral part of our field season and our team and we are happy to meet him finally.

Mike, Kathy and Nicole

At AGU, Earth Institute’s Columbia Water Center Adds to the Abundance of Scientific Riches

AGU 2010 - Wed, 12/22/2010 - 12:32

The annual American Geophysical Union (AGU) meeting is an all-you-can-eat buffet of the most current scientific knowledge available on the planet.  Name your pleasure: space, climate change, geomagnetism, nonlinear geophysics, volcanology, biogeosciences, etc.  You have to be careful to indulge in moderation over the five-day event, or risk unseemly bloating.

The Columbia Water Center contributed its own tasty dishes to the feast, mostly under the hydrology section of the menu. (but enough of the food analogies)

Several CWC scientists and affiliated researchers gave talks at this year’s event, December 13 – 17, in San Francisco, and several more had posters representing their work on display.  The CWC contribution drew heavily on our research projects in India, but also explored other water issues.  Detailed slideshows and posters, along with videos (some filmed in dark presentation rooms) are available on a web page devoted to CWC at AGU 2010.

Upmanu Lall started the week with a presentation called ‘Why is it Flooding Everywhere this Year?  Coincidence or a Predictable Climate Phenomenon, and How Can We Respond?’  Without going into the technical material here, Lall concluded that a project on understanding and predicting global flood and drought patterns could facilitate flood risk management and climate change adaptation activities.  These would benefit local, state and national planners, and also corporations and financial industries such as insurance.

Diagram on Managing Climate Risk from Upmanu Lall's presentation.

Shama Perveen and Naresh Devineni are working on a project to develop an in-depth assessment of the growing water shortages in India, as discussed in an earlier post by Perveen.  At AGU she spoke about ‘Quantifying the Dimensions of Water Crisis in India: Spatial Water Deficits and Storage Requirements’.  Preveen showed a series of diagrams that demonstrated the rapidly falling Indian groundwater levels, population pressure and agricultural demands.  Devineni followed up with a look at the water storage capacity in different parts of India, relating them to crop water requirements.  This work will help Indian policy makers decide which crops can be grown in each geographic region to maximize food production while minimizing water use.

PhD student Ram Fishman addressed ‘How Low Can It Go? – Scenarios for the Future of Water Tables and Groundwater Irrigated Agriculture in India’, which looked at the relationship between energy use, water use and agricultural production, and their combined effect on the water table.  He also presented a poster, ‘Does Irrigation Buffer Agriculture from Climatic Variability – Evidence from India’, which further elaborates on this research.

Ram Fishman explains his poster to other interested researchers.

Tobias Siegfried offered five posters, which ranged from water stress and conflict in Central Asia to groundwater sustainability in India, to climate change impacts in the western US.

Chandra Krishnamurthy, Christina Karamperidou and visiting professor Francesco Cioffi also used posters to explain their research projects, and IRI’s Paul Block gave a presentation on ‘Statistical Dynamical Climate Predictions to Guide Water Resources in Ethiopia’.

Lall then finished up the week with two more presentations.  One, ‘Will Hydrologists Learn from the World Around Them?’, was a critique of climate research that doesn’t adequately address the issues of bias in modeling.

In the other, ‘Exploring Oceanic Source Regions and Moisture Transport of Extreme Floods over Large Basins in the Contiguous United States’, Lall talked about the statistical analysis of atmospheric moisture circulation patterns, which may be able to help predict large flooding events in specific geographical regions.

An illustration of atmospheric moisture transport trends from the presentation by Upmanu Lall.

As a group, the work presented was a significant contribution to the AGU meeting, which gave all the researchers the opportunity to interact with scientists in related fields, and keep increasing our collective knowledge and understanding of critical global climate and water issues.

Next year’s AGU feast may be even more lavish….

Columbia Water Center AGU 2010 resources page here.

Follow Columbia Water Center on Facebook and Twitter

Antarctica’s Secrets

Using Rocks to Decode Antarctic Climate - Sun, 12/19/2010 - 00:53

A major factor in predicting future climate change and its impact on the planet is the response of the Earth’s ice sheets to warming temperatures. Understanding the historical context and dynamics of Antarctica’s massive ice sheets is critical for modeling future changes that have the potential to impact the globe, including significant contributions to sea level rise.

Satellite image of the study region at the edge of the Transantarctic mountains. Click to enlarge the image.

Michael Kaplan and Gisela Winckler, two climate scientists from Columbia University’s Lamont-Doherty Earth Observatory, along with Kathy Licht and Jeff Swope from Indiana University-Purdue University Indianapolis, have recently started a new project, funded by the National Science Foundation, to study the timing and extent of advances of the East Antarctic ice sheet in the past. Integrating field work, geochemical analyses and cutting-edge isotope-based dating tools will allow the scientists to develop a record of fluctuations in the East Antarctic ice sheet and to identify past changes in both ice sheet flow direction and bedrock composition.

On December 13th, Kathy Licht and Mike Kaplan, along with Tim Flood and undergraduate Nicole Bader, both from St. Norbert College, left for their exciting trip to the East Antarctic plateau to collect samples to address these research objectives. Their route will take them via Christchurch, New Zealand, to the Antarctic station McMurdo and on to the East Antarctic ice sheet. It will take them about two weeks to get to the field site.

Aerial photograph of Mt. Howe taken from the window of a Twin Otter. Photo by K. Licht.

Accompanied by mountaineer Mike Roberts, they will work from two remote field camps at the edge of the Transantarctic Mountains. The satellite image shows the study region with the major outlet glaciers from East Antarctica crossing the Transantarctic Mountains and flowing northeastward into the Ross Ice Shelf and West Antarctic Ice Sheet. The sites noted in purple will be the location of the two small field camps where the group will be collecting samples. The blue star shows the location of a large field camp, which will be the jumping off point for transport to the smaller camps.  The green and yellow dots show the locations of samples collected during two previous expeditions to the region. Over the course of a month, the team will sample boulders and glacial sediments that have accumulated on the ice sheet surface over thousands of years.

Kathy and Mike will report from their adventurous trip on this blog while I will facilitate communication with the field camp and answer questions about the laboratory side of the project.

If you have any questions or comments, please feel free to ask. I will field questions and send them over to Antarctica from where Kathy and Mike will, whenever possible, send back answers.

Stay tuned for exciting dispatches from Antarctica.

The Last Arctic Sea Ice Refuge

AGU 2010 - Fri, 12/17/2010 - 12:24

If climate change proceeds apace, summer sea ice in the Arctic is projected to nearly disappear by the end of this century. But a group of researchers predicts that ice will continue to collect in one small area, perhaps providing a last-ditch stand for ringed seals, polar bears and other creatures that cannot live without it. The findings were presented yesterday at a heavily attended press conference put on by the American Geophysical Union by polar oceanographers Stephanie Pfirman and Robert Newton of Lamont-Doherty Earth Observatory, along with colleagues from Alaska and Canada.

Ice currently piles up most heavily in a narrow band (red, yellow) along the northern edge of the Canadian Archipelago and northern Greenland, and is expected to persist into the future as other areas (blue, green) disappear in summer.  (Fowler/Maslanik, 2010)

Ice currently piles up most heavily in a narrow band (red, yellow) along the northern edge of the Canadian Archipelago and northern Greenland, and is expected to persist into the future as other areas (blue, green) disappear in summer. (Fowler/Maslanik, 2010)

Studies of ice formation patterns, water currents, winds and the arrangement of arctic land masses has led the scientists to project that even as summer sea ice nearly disappears from the northern ocean by about 2050, floes will continue to pile up and persist along the northern flanks of the Canadian Archipelago and Greenland. This region is currently clogged with heavy ice, some of it drifting in from as far away as Siberia.

“We wanted to look at the tail end–what will happen after the arctic moves to largely ice-free state?” said Pfirman. “Where will the [last] ice be located? If it collects in one area, it could maintain a sea-ice ecosystem for decades.”  Brendan Kelly, a polar biologist with the National Oceanic and Atmospheric Administration in Juneau, Alaska, explored the ecological implications, but cited potential problems, including declines in the snow cover needed by seals, and the genetic dangers of having declining populations of rare creatures crammed into shrinking areas. Bruno Tremblay, a climatologist and oceanographer at McGill University, in Montreal, ran an animation showing the shrinkage of warm-season sea ice in the recent past, and a projection into the future . The scientists said that sea ice will continue to cover the ocean in the winter for the foreseeable future–but that arctic creatures need the ice during warmer seasons as well to breed and eat.

Newton said that if there is to be a remnant area, the “first step” is to identify where it might be. With this information, a wide community of governments and native peoples would  then at least have information available to consider whether or how to manage such a place in the face of shipping,  oil exploration, tourism and other activities that are expected to increase as the arctic becomes more accessible. “We’re hoping to provoke this conversation,” said Newton.

Watch the press conference

Read the news reports in:


Discovery News

The Christian Science Monitor

Associated Press

USA Today

The Caribbean’s Growing Disaster Hotspots

AGU 2010 - Thu, 12/16/2010 - 23:07

The 125 million people of the Caribbean/Gulf of Mexico region are highly exposed to hurricanes, floods and landslides–and it is not only because of bad weather. Increasing numbers of the poor are crowding into confined areas that are most prone to destruction–low-lying flood plains, too-steep hillsides, and the like. Robert Chen, director of the Center for International Earth Science Information Network (CIESIN), will describe this alarming trend in an AGU talk on Friday, the last day of the meeting.

Gulf of Mexico/Caribbean number of extreme climate hotspots, by administrative unit. Blues are low number; greens moderate; yellow to red show progressively more. (Courtesy CIESIN)

Gulf of Mexico/Caribbean number of extreme climate hotspots, by administrative unit. Blues are low number; greens moderate; yellow to red show progressively more. (Courtesy CIESIN)

CIESIN specializes in creating maps that show humans’ interaction with the natural environment. Ones for this region show deadly combinations of poverty and physical vulnerability to weather. (Blues signal low numbers; greens moderate; yellow to red, progressively more.) Hotspots are clustered across Cuba, Haiti, the Dominican Republic and Jamaica. Along the coast of Latin America are wide swaths of danger spanning Colombia, Costa Rica, Nicaragua, Honduras, Guatemala and Mexico. Not surprisingly,  low-lying parts of Texas, Louisiana and southern Florida also stand out.

Many scientists believe climate change will worsen extremes of weather. The CIESIN research suggest that even if this never happens, as the population of dangerous areas grows, these hotspots will continue to get more dangerous.

See CIESIN-generated maps of worldwide vulnerability to changing climate.

Is New York City Ready for Drought?

AGU 2010 - Wed, 12/15/2010 - 12:21

The oldest living tree that Neil Pederson sampled as part of his drought reconstruction stands to his left: A chestnut oak from northern NJ, it was 428 years old when sampled in 2003. The inner ring date on that sample is 1576.

All day long a flood of thousands scientists and students ebbs and flows across San Francisco’s 4th Street and Howard Avenue, coursing between the cavernous Moscone West and Moscone South convention buildings. The AGU is like a supercomputer of earth science, with human currents of data swapping information, heading from one talk to another, processing what they’ve heard, who they’ve met, what’s coming next.

What’s coming next in New York City, sooner or later, is a long dry spell, according to research by Lamont-Doherty’s Neil Pederson. The city has seen repeated shortages of water over the past 20 years — even though the climate has been relatively wet over the past few decades, and despite a decline in overall water use. Pederson says the water system emergencies of recent years suggest that “maybe the system is not in tune with the climate.”

Ultimately, he said in a talk today at AGU, New York City “is not prepared for the next significant drought.”

A chronology of drought in the New York region shows more severe events dating back to the 1500s, and a general decline in severity over the past century or more. (Source: N. Pederson)

Pederson and his colleagues looked at 12 species of trees along the Hudson River Valley and, combined with research by Ed Cook, director of Lamont’s Lamont’s Tree Ring Lab, and others, constructed a record of rain and drought going back into the 1500s. There are still a few trees around who’ve seen four or more centuries pass, Pederson said, including on in the Hudson Valley dating to the early 1500s. Additional records researched by Cook come from the beams cut for now-historic homes built in the 18th century, Pederson added.

The use of 12 species has expanded the accuracy of the chronology, Pederson believes, though it’s hard to gauge by how much just yet. He found that the region has suffered severe droughts in every century through the 1800s. But except for a short period in the 1960s, the dry periods over the past 120 years have been relatively minor. Is the New York City region due for another paleo-scale drought?

Honoring a Pioneer in Planetary Evolution

AGU 2010 - Wed, 12/15/2010 - 09:34

Experimental petrologist David Walker has been a leader in understanding the evolution of the moon and Earth.

David Walker, a professor of geochemistry at Lamont-Doherty Earth Observatory, will be honored tonight by colleagues at the American Geophysical Union for decades of groundbreaking work to understand the early formation of the moon and Earth. Walker will receive the AGU’s Harry H. Hess Medal, awarded for “outstanding achievements in research of the constitution and evolution of Earth and other planets.”

Walker began his career as a student at Harvard University in the late 1960s and early 1970s, as samples of the moon were being returned by the Apollo space missions. Walker was into experimental petrology, a field in which lab scientists try to re-create and understand the conditions under which natural rocks form. With the aid of the moon samples, Walker helped helped piece together much of the story of lunar history accepted today. “Much of what we now take for granted about the formation of the lunar crust and mantle came out of the Harvard experimental petrology lab in the 1970s, clearly with Dave Walker’s intellectual stamp on it,” said Carl B. Agee, a planetary geologist at the University of New Mexico who wrote the citation for the award.

After coming to Lamont a few years later, Walker began working on questions about Earth, including its early separation into chemically distinct layers, and the genesis of magmas that flow out at mid-ocean ridges to form the seafloors. He is currently working on experimental studies to elucidate the formation of earth’s core, and its interaction with the overlying mantle.

Walker also played a key role in developing devices that could duplicate the extreme high-pressure conditions found deep within planets, simplifying designs so that any decent machine shop could turn out the equipment cheaply. “Walker-type” anvils, used to compress experimental solutions to these extreme pressures, are now standard in labs across the world.

Along the way, Walker also has found time to become a popular teacher who has helped students explore topics as diverse as alternative energy sources; radioactive waste, and mineralogy.  Agee wrote that Walker “is a true leader in experimental petrology, in both designing and improving experimental equipment, and pioneering new ideas of the evolution of the Earth, Moon and planets.”

India’s Water Is Running Out

AGU 2010 - Tue, 12/14/2010 - 14:12

India is running “the largest water-mining project in the world”–and it cannot be sustained much longer, Columbia Water Center researcher Shama Perveen told an audience on Monday. That is mainly because farmers, who depend heavily on irrigation water drawn from underground aquifers, are using far more water than rainfall can replenish. Perveen’s talk, “Quantifying the Dimensions of Water Crisis in India,” contained a series of daunting statistics:

Satellite imagery shows dropping groundwater tables across much of northern India. (GRACE/Tiwari et al., 2009)

Satellite imagery shows dropping groundwater tables across much of northern India. (GRACE/Tiwari et al., 2009)

–India’s northern breadbasket region, home to 600 million people, lost about 60 cubic kilometers of water from its groundwater aquifers in 2002-2008.

–Farmers who used to pump water from five or 10 feet below the surface are now sometimes drilling down 200 or 300 feet.

–Unlike the United States and Australia, which have dams that can store up to 6,000 cubic meters of water for each person, India has a dismal storage capacity of 200 cubic meters per capita.

Perveen says that building dams will not suffice, because of the extreme imbalance between rains and usage; in some regions, dams would have to hold five years’ worth of rainfall just to keep up. In the future, India will have to make irrigation far more efficient, and switch from water-intensive crops like rice, she said.

Read about the Columbia Water Center’s research in India and elsewhere.

The Right Tools to Talk Climate

AGU 2010 - Tue, 12/14/2010 - 13:38


Navigating the ocean of AGU requires patience. For a newcomer, parsing the inch-thick spiral-bound notebook of presentations, with pages of maps of the enormous Moscone Center, is a bit like finding your way around a city in a foreign language (at least there’s a nice crossword puzzle on Page 31).

You need the right tools to understand what’s going on, and to get where you need to go. Columbia researchers have been looking for the right tools to navigate another complicated place: The gap between what climate science tells us, and how a lot of the public hears that information, and what policymakers are prepared to do about it. They’re giving a couple of talks on the subject at AGU.

On Wednesday, Mary-Elena Carr will join colleagues from the Columbia Climate Center Lamont-Doherty to talk about “Climate Information and Misinformation: Getting the Message Out.” With researchers from Deutsche Bank Climate Change Advisors, they looked at three ways to address climate change skepticism: blogging about it, talking to people in discussion groups, and writing a report.

“As scientists, I think we sometimes come at it in a very naïve way,” Carr says. If you just give people the facts, they should be able to figure it out. That didn’t work when they blogged: Pushing the climate hot button led down a rabbit hole of contention and suspicion. The discussion group left participants hungry for more information.

The conclusion: That using a single report – like one Carr prepared for Deutsche Bank in 2009 – is the best way to address the skeptics. Ultimately, Carr says, you need a variety of sources talking about climate change, including political and religious leaders – and people the audience can identify with.

On Thursday, Sabine Marx of the Center for Research on Environmental Decisions will speak on “The Psychology of Climate Change Communication.” She has studied how different groups of people think about climate, and how to use that information to talk about the science.

“For most people abstract information does not translate into powerful vivid images that would trigger action,” Marx wrote. “Furthermore, we have found that people’s interpretation of scientific uncertainty can get in the way of using forecasts and projections. Other barriers include public risk perceptions and attitudes, cultural values, and myopia, as well as the importance that people place on self-interest/economic goals vs. collective interest/social goals.”

But, Marx says, there are ways to overcome these barriers. For instance, you can start with a good story.

Deep Ocean Heat Is Melting Antarctic Ice

AGU 2010 - Tue, 12/14/2010 - 13:23

Like dirt swept under the carpet, some of the human-made heat produced over the last century has been getting soaked up by the world’s oceans, and sinking into deep waters. Now, it is coming back to haunt the surface, in a very sensitive place: western Antarctica, where vast ice sheets meet the ocean. The result appears to be that ice is rapidly being eaten from the bottom, says Douglas Martinson, a polar scientist at Lamont-Doherty Earth Observatory, who presented the findings Monday at the fall meeting of the American Geophysical Union.

Warm waters carried by the Antarctic Circumpolar Current are brushing the ice front in the western part of the continent, in the area of the Bellingshausen Sea.

Warm waters carried by the Antarctic Circumpolar Current are brushing the ice front in the western part of the continent, in the area of the Bellingshausen Sea. (Click to enlarge. Courtesy Douglas Martinson, Lamont-Doherty Earth Observatory)

Martinson said that heat stored in deep waters far from Antarctica is being pushed southward and becoming entrained in the Antarctic Circumpolar Current, a vast, wind-driven water mass that constantly circles the frozen continent. The evidence comes from 18 years of Antarctic voyages Martinson has made to measure water temperature, salinity and other qualities at different depths. He called the increases in ocean heat in the past few decades “jaw dropping.” Temperatures have risen only a few degrees above the melting point–but that is all it takes to cut at the ice front. “This is like a huge freight of hot coals–fresh, hot water being delivered right to the the front door,” he said.

This raises the specter of sea-level rise driven by melting in this region–but there is a larger implication, said Martinson. Even if all sources of human-produced carbon dioxide in the air were cut off, the built-up heat will remain in the ocean for many years to come. “Pretend your brains out that the politicians did something to stop global warming tomorrow.  Even if they did, we will still have decades and decades of upwelling of that warmed water eating ice,” he said.

Read a Discovery News article about Martinson’s talk.



Subscribe to Lamont-Doherty Earth Observatory aggregator