News aggregator

Photo Essay: Sculpting Tropical Peaks

Sculpting Tropical Peaks - Tue, 09/30/2014 - 08:21
 " data-cycle-speed="750" data-cycle-center-horz="true" data-cycle-caption="#gslideshow_captions" data-cycle-caption-template="{{alt}}" >
When glaciers retreated from Mount Chirripó at the end of the last ice age some 12,000 years ago, they left behind rocks and debris that formed a natural dam, allowing meltwater to collect and form a lake. This glacial lake at Valle de los Lagos sits at 11,000 feet, just below Chirripó’s summit. 
With a hammer, chisel and bandanna to protect his face from shattering rock, Cunningham chipped away at a boulder left by a receding glacier. Beryllium isotopes in the rock can reveal when the ice withdrew, exposing the rock’s surface to cosmogenic rays from space. (Michael Kaplan)
Two pounds of rock fragments chiseled from the surface of each boulder yields 30 grams of quartz in the lab from which millions of beryllium-10 atoms will be extracted.
Knowing when glaciers last retreated from Chirripó can help scientists pinpoint when the low-sloping “cirque” valleys just below Chirripó’s summit formed, and ultimately, how glacial landscapes erode generally. Cunningham and Kaplan sampled remnants of a large landslide in the above cirque valley to find out when the rocks came crashing down.
They stumbled on some landslides by chance. Others were identified earlier with the help of their Lamont colleague Colin Stark, an expert  in using earthquake data and satellite images to discover landslides in remote places. Picking through dense shrubs, Kaplan climbed a pile of rubble to hammer away more samples for dating in the lab. Glaciers carve out the landscape as they grow and shrink leaving a classic “U” shape on the landscape as seen here in Talari Valley.
Most of the animals on Chirripó are nocturnal, but when the sun comes out after the daily burst of rain, lizards like this one join the geologists on the rocks.
In one low-sloping valley they discovered a winding streambed paved in sharp cobble stones. The stones’ angular edges suggest they experienced minimal erosion after a landslide or eroding glacier dropped them here.  
In another spectacular landscape translating to “Valley of the Lions,” they discovered a stone marker where a man, according to the inscription, had been killed by a mountain lion in 1956. They looked for material to date this ancient valley but most of the rocks that might have established when the ice last withdrew have long eroded away.
As they analyze their rocks in the lab, Kaplan and Cunningham will look for evidence that the ice grew and retreated multiple times. They also hope to understand the processes that created the low-angle summit valleys they visited. Were the valleys eroded beneath the ice or by landslides as the ice withdrew? Future research may take them to Taiwan where similar mountain-top features have been observed.
<
>
As they analyze their rocks in the lab, Kaplan and Cunningham will look for evidence that the ice grew and retreated multiple times. They also hope to understand the processes that created the low-angle summit valleys they visited. Were the valleys eroded beneath the ice or by landslides as the ice withdrew? Future research may take them to Taiwan where similar mountain-top features have been observed.

Tropical mountain ranges erode quickly, as heavy year-round rains feed raging rivers and trigger huge, fast-moving landslides. Rapid erosion produces rugged terrain, with steep rivers running through deep valleys. However, in a number of tropical mountain ranges, landscapes with deep, steep valleys transition quickly into landscapes with low-sloping streams and gentle slopes at high elevations. This topographic contrast between high and low elevations poses a problem for geologists. Though heavy rains fall throughout the mountain range, erosion seems to sculpt parts of the mountain differently from others.

Mount Chirripó, Costa Rica’s highest peak, bears exactly this type of terrain, with flat valleys at high elevation capping rugged valleys below. The beveled summit of Mount Chirripó bears striking resemblance to summits as far away as Taiwan, Papua New Guinea and Uganda. Some geologists think that tectonic forces deep below earth’s surface pushed Chirripó into its flat-topped form about 2.5 million years ago. Others think glaciers did the work, sculpting the peak in over hundreds of thousands of years.

Max Cunningham, a graduate student at Columbia University’s Lamont-Doherty Earth Observatory, traveled to Chirripó this past summer to test the idea that mountain glaciers carved the summit we see today. Working with his adviser Colin Stark, a geomorphologist, and Michael Kaplan, a geochemist, both at Lamont-Doherty, Cunningham chiseled away samples of glacial debris to take home for analysis. The researchers hope to eventually pin down when the high-elevation valleys capping Mount Chirripó’s summit eroded into their current form. Read more about their work in the above slideshow.

Photos by Max Cunningham unless otherwise credited.

XBT (a short story)

The ENAM Seismic Experiment - Tue, 09/30/2014 - 00:53
            “Twenty shots until the next XBT.”
            It was nearing time to launch the next expendable bathythermograph probe, or XBT.  The software was readied and two scientists headed out of the lab, radio in hand.  They donned lifejackets that had once been bright orange but were now closer to a dull rust color from long and dirty use on the deck and selected a T-5 probe from the box.
            Out on the deck they were alone, perched partway up the stack of levels in the stern of the ship, the gun deck below them and the paravane deck above.  It seemed that the others working the graveyard shift were all inside, perhaps wrestling with some mechanical puzzle or else simply keeping watch to make sure all was well, sipping strong coffee, playing cards to pass the time.  The scientists snapped the probe into the gun-shaped launcher.  They removed the plastic end cap from the black cylinder that housed the probe and its spool of fine copper wire.
            “We’re in position.”
            There was a pause, then the radio crackled back, “Launch probe.”
            In a moment the probe was sliding down the long tube that extended out and downward from the starboard side.  With a small splash it plunged from the end of the tube into the inky deep.  Now to wait while it made its journey towards the bottom, more than 4000 meters below.  Despite the very late (or very early, depending on your point of view) hour, it was warm.  The air was muggy – not exactly a welcome change from the air-conditioned lab, although the tinge of diesel fumes was less out here in the relative open.  There was little wind and the seas were calm.  Standing on the moving island of light that was the ship the sea quickly disappeared into the surrounding void.  What surface that could be seen appeared to rise disturbingly close up alongside them, like a churning wall of water.  It was only visible at all by the few swirls of foam formed by the ship’s passage and a reflection here and there off the constantly moving face of the black oily-looking water.  They waited for the go ahead to terminate the probe.
            Down in the lab, there was a strange blip on the screen showing the multibeam bathymetry data, but no one noticed as they were too busy entering in location data for the XBT or scrutinizing the movement of the streamer birds that regulated the depth of the hydrophone streamer.  There were, after all, 36 other monitor screens to watch.
            Outside there was a louder than usual splash.  The two scientists peered into the gloom.
            “Dolphin?” one wondered out loud.
            “While we’re shooting?  I hope not,” the other replied, “We’ll end up having to interrupt the line.”
            Was there something just under the water surface?  A pale sinuous shape at the very edge of the ship’s halo of light?  No, it must be a trick of the light and the weird perspective engendered by the lack of any sense of distance.  Perhaps more coffee was in order when they got back inside.
            The radio crackled again, “Terminate probe.”
            The scientists broke the wire that was still spooling out to the probe that was now falling behind them.  “Probe terminated,” they reported.  They were just turning to leave when it emerged.
            At first it looked like a whale back, though pale milky green in color rather than the expected grey.  As it lifted free from the surface it became clear that it was much longer than an orca or even a grey whale, more like an ancient marble column turned soft and rubbery.  It tapered as more of its length was exposed until the tip broke free of the clinging water.  One side of the enormous snake-like shape was covered with round suckers the size of dinner plates in a poisonous green color.  The cyclopean tentacle towered out of the water, waving gently with a sickening sort of grace ten meters or more above the uppermost deck.  Here and there along its length were clots of a coppery tangled substance, almost like seaweed wrapped around it.  “The XBT wire,” one of the scientists realized from the midst of her fascinated horror.
            The tentacle hovered for another movement before swooping down with surprising swiftness.  The two scientists were neatly plucked from the ship in the blink of an eye.  With a clatter, the radio fell to the deck.  They were held above the water for a long moment, crushed together so tightly they couldn’t speak and could barely draw breath.  Then, slowly, the tentacle disappeared beneath the smoothly rolling waves.

            Two hundred and sixty-seven shots until the next XBT.


-by Tanya Blacic aboard the R/V Langseth (with a wink to H. P. Lovecraft)

Life at Sea

The ENAM Seismic Experiment - Sat, 09/27/2014 - 22:34
September 27, 2014

Our small ship is in a state of endless motion with pitch, roll, yaw, and heave. We continuously experience a feeling of fluctuating gravity at sea, as one minute we are several pounds heavier and the next we are several pounds less. We’re tossed about endlessly like riders at the fair. It’s a feeling that can turn the stomach of the saltiest of sailors, but more often disturbs the newbies the most. At sea there is also no such thing as silence. Out here the engines are always running, hydraulic pumps are always droning, and ships operations occur around the clock. From my bunk I can feel us lurch forward and lean into a turn to starboard, or port, and then they reverse the pitch of the propeller as if applying an emergency brake to slow the ships forward motion. This reverse pitch causes a shudder in the hull that shakes us like a cheap hotel vibrating bed and it chatters every moveable thing. From my bunk I can also hear the acoustic pings emanating from the hull-mounted transducers. Speaking to me in code, they tell me if OBS operations are going well.  Based on the ping styles I can also discern the acoustic techniques used by WHOI and Scripps, so that I know which instrument type is being talked to. All of this information creates a movie in my mind that plays out until I fall asleep. Life on a ship is a constant immersion in all that is going on and for 30-days there will be no escape.

-Ernie Aaron

And then there was data…..

The ENAM Seismic Experiment - Fri, 09/26/2014 - 21:10

It’s been a week since we deployed all of our gear and started steaming along our lines, so now we have amassed a lot of data!  Although we can only steam at very low speeds while towing the equipment (~4.5 nautical miles an hour or  ~5 mph), each time we fire the air gun array, the 636 channels on the seismic streamer listen for returning sound waves for 18 seconds and record a total ~25 Mb of data. Repeat that every 30 seconds for 7 days, and it begins to add up!  We now have 400 Gb of seismic data alone, not including all of the other types of data we collect while underway (bathymetry, magnetics, gravity).  We are a data-collecting machine.  

Matt, Jenna and Derek sit  back and watch the data roll in from the Main Lab
Not only are we collecting data, we are also doing some preliminary data analysis to get a first look at the geology hidden below the ocean, which is always exciting.

Kara and Matt are entranced by velocity analysis
Although we are only a week in, our data collection has already taken us through water depths as shallow as 20 m and as deep as 6000 m.  At the edge of the continental shelf, water depths change rapidly from ~500 to ~3000 m over just 20 km – a slope of 10%.  For perspective, that’s very similar in elevation change and slope to the course for the Pikes Peak marathon.

Perspective view of seafloor depth from MGDS across the continental slope overlain by a higher resolution swath of bathymetric data that we acquired along our transect, which is also shown projected onto the seafloor.
We have also traveled over widely variable geology – from 35-km-thick continental crust to ~7-km-thick oceanic crust, and from sediment thicknesses of 5 m to over 7 km.   Our data are also revealing cool structures in the sediments and crust – faults, sediment waves, and more.  Below is a picture of a salt diapir that we imaged at the edge of the continental margin.  The salt was probably first deposited at least 150 millions years ago in a flat layer, but as more sediments were deposited on top of it, it got squeezed up and out into dramatic diapirs.

Preliminary image of a salt diapir in seismic reflection data near the base of the continental slope. The y-axis shows the time it takes for a sound wave to travel down in the earth and back again. This images shows about ~5 km down into the earth below the seafloor. Donna Shillington aboard the R/V Langseth

First day of land deployment - showing kids how cool seismology is - by Kara Jones

The ENAM Seismic Experiment - Fri, 09/26/2014 - 16:32

(Originally posted on September 12)

Today was the first day of the onshore deployment of the RT130s through southern Virginia and North Carolina. My partner, Yanjun Hao, and I, were just one of five teams working to deploy instruments along the two survey lines. We deployed the first two instruments at West Harnett Middle School and South Hartnett Elementary School, both outside of Lillington, NC. In both case, the fifth and sixth graders were very interested in learning about what we were doing and eager to participate. I explained to them the basic concept of P and S-waves and then asked the children to jump so that we could test that each of the channels on the sensors was working correctly. They very much enjoyed getting to see on the clié exactly what the signal they generated looked like. At both schools, I was surprised how much the children, and the teachers, knew about earthquake seismology and the intelligent questions they asked. A teacher asked whether they would detect the explosives detonated at nearby Fort Bragg, and a sixth grader named Gauge blew me away when he asked if the sensors would be able to record the sound waves generated by the planes or nearby explosions! In total, we probably spoke to 100 kids about the project today. It was a very encouraging to see how excited and interested they all were in the science. When we first arrived and explained that we would be installing a seismometer, a 5th grade teacher looked at us with wide eyed and asked "Are you seismologists?!" I nodded yes and she was so excited she started jumping up and down. Despite some rain and GPS trouble later in the day, the excitement that the elementary and middle schoolers showed about seismology was enough to make it a great start to the deployment.

At South Hartnett Elementary School in Anderson Creek, NC. I am showing one fifth grade class what the seismic signal they just generated looks like on the clié.

The land instruments

The ENAM Seismic Experiment - Fri, 09/26/2014 - 16:26
The insulation was tough but gratifying. The weather in North Carolina is unpredictable. At times it was hot and humid. I was drenched in sweat burying the sensors. Other times we were caught in torrential downpours working under a tarp; terrified by the sound of thunder. The sites were located on mostly private property, hosted by people who were eager to help with the experiment. The interaction with the local people enriched the experience. Many of them showed true southern hospitality. 
 
Station deployed!
From an academic prospective I learned about survey design, instrument deployment and the logistics. This provided a distinctly unique experience that is unavailable in the classroom environment. Beatrice and Dan were tremendously helpful and supportive. I learned a great deal about active seismic from my conversations with them. They’re passionate about nurturing future geophysicist. The GeoPRISMS is an altruistic endeavor for them. I am thankful to them for investing so much of their time and expertise into the project. 

The GeoPRISMS experiment has been an overwhelmingly positive experience. I am grateful to have been given the opportunity to help with the deployment and look forward to my involvement in the recovery of the instruments! A future workshop will be held for processing the data and the inversions. This pre to post educational approach is invaluable to me as a future geophysicist.

Posted by Christopher Novitsky 

The Land Deployment Team!

The ENAM Seismic Experiment - Fri, 09/26/2014 - 15:30
From L-R: Yanjun Hao, David Boyd, Dam Lan, Ana Corbalan, Christopher Novitsky, Pnina Miller, Jason Leiker, Kara Jones, Beatrice Magnani (front), James Farrel (back), Dan Lizarralde.It took us a while, but here we are, the team that deployed the land seismometers on Sept 12-15. The instruments are now continuously recording the Langseth shots and will continue recording for few more weeks. The East Carolina University in Greenville, NC graciously allowed us to use one of the research facilities on their West Campus (a place with a fascinating story - blog on that coming soon!) as the headquarter for operations. We will be back to the field at the end of October to pick up the instruments, download/save the data and demob.

Posted by Beatrice Magnani

The Night Watch in Action!

The ENAM Seismic Experiment - Fri, 09/26/2014 - 12:29
We've captured the process of recovering and deconstructing a Scripps OBS thanks to Harm's nifty GoPro camera attached to the crane. This OBS was a little tricky to hook, but otherwise it was a smooth recovery!



Time series of the recovery after the OBS has been attached to the crane. Photo Credit: Ernie Aaron.



See ya'll later,
Jenny Harding
R/V Endeavor

Aureococcus

Geopoetry - Fri, 09/26/2014 - 10:00

 

Aerial view of a brown tide caused by Aureococcus anophagefferens. Long Island. Photo by Chris Gobler.

Aerial view of a brown tide caused by Aureococcus anophagefferens. Photo by Chris Gobler.

 

On skin, it’s barely a freckle I’d make,

But baby, en masse, we turn seas opaque!

Come darkness, come famine, come poison or flood,

My kind can flourish in any old crud.

I may be a tiny and brainless brown cell,

But my tactics are brilliant; I’m doing quite well.

So, “higher” life-forms, with deep-furrowed brow,

I’ve made my move … what will you do now?

 

________________________________

Further reading (on what humans are doing now …):

Like Weeds of the Sea, ‘Brown Tide’ Algae Exploit Nutrient-Rich Coastlines, Earth Institute

De novo assembly of Aureococcus anophagefferens transcriptomes reveals diverse responses to the low nutrient and low light conditions present during blooms, Frischkorn et al., Frontiers in Microbiology

 

This is one in a series of poems written by Katherine Allen, a researcher in geochemistry and paleoclimate at the Lamont-Doherty Earth Observatory and the Institute of Marine and Coastal Sciences at Rutgers University.

What are we up to

The ENAM Seismic Experiment - Thu, 09/25/2014 - 16:09
September 25, 2014

        For those of you following at home, it might be a bit confusing on which ship is doing what and where. I've made a little cartoon timeline that will hopefully illuminate our progress so far.
       There are two ships currently in the Atlantic: the OBS deploying R/V Endeavor and the seismic shooting R/V Langseth. The R/V Endeavor has been putting OBS down and picking them back up again on lines 2, 3, and 4 while the R/V Langseth has shot seismic along line 2 and 3, and is going to head over to shoot on line 4 soon.


See you later,

Kate Volk aboard the R/V Endeavor

Group photo time

The ENAM Seismic Experiment - Wed, 09/24/2014 - 13:30

September 24, 2014

Well we have finished deploying OBS on line four and are now transiting back to the beginning of line 3 to start picking OBS back up again. At this point, we've all fallen into our jobs and are working like a well oiled machine. Each shift was able to deploy around 9 or 10 OBS in 12 hours time, moving smoothly from one site to the next. To celebrate our progress so far, I've got some group photos to share.

The science party from left to right: Gary, Dylan, Afshin, Harm, Brandon, Pamela, Jenny, and Kate (Photo credit: Dave DuBois, edited by Gary Linkevich)
The WHOI and SIO OBS technicians from left to right: Ernie, Peter, Mark, and Dave (Photo credit: Gary Linkevich)




The whole science group (Photo credit: Ethan, edited by Gary Linkevich)

The science group in the WHOI van with the WHOI OBS (photo credit: Dave DuBois)See you later,

Kate Volk aboard the R/V Endeavor

Graceful, Tiny, Toothy Ancestors

Geopoetry - Fri, 09/12/2014 - 10:00
An artist's illustration of the tree-dwelling mammal Xianshou songae (by Zhao Chuang). The discovery of three new Jurassic species suggests that mammals evolved earlier and diversified more rapidly thank previously thought.

An artist’s illustration of the tree-dwelling mammal Xianshou songae (illustration by Zhao Chuang). The discovery of three new Jurassic species suggests that mammals evolved earlier and diversified more rapidly than previously thought.

 

With body spry, tail curly,

This mammal showed up early.

Did Xianshou squeak?

If bones could speak …

These might say “I’m squirrely!”

 

 

________________________________

Further reading:

Chisel-toothed beasts push back origin of mammals, National Geographic

Three new Jurassic euharamiyidan species reinforce early divergence of mammals, Nature

This is one in a series of poems written by Katherine Allen, a researcher in geochemistry and paleoclimate at the Lamont-Doherty Earth Observatory and the Institute of Marine and Coastal Sciences at Rutgers University.

 

 

Dreadnoughtus

Geopoetry - Fri, 09/05/2014 - 08:00
 Jennifer Hall

An artist’s vision of how Dreadnoughtus schrani would have appeared. Credit: Jennifer Hall

 

If you, like me, are something of a paleo-romantic,

Swooning over dinosaurs both fearsome and gigantic,

Come feast your eyes on new reports the bone-hunters have brought us:

“Fearing nothing” means its name – the mighty beast Dreadnoughtus!

Seven times as heavy as Tyrannosaurus rex,

This gentle vegan creature boasted tons of muscle flex.

Patagonian earth under its massive feet would quake,

What a silhouette at dawn a family would make!

Even ‘mongst Titanosaurids, this one breaks the ceiling,

A shoulder blade as tall as I am – God, it sets me reeling.

On top of that, when this one died, it wasn’t yet mature …

How much more would it have grown? We can not be quite sure.

3D-scanning, high-tech models try to help us see one,

But why were creatures bigger then? What was it like to be one?

Children are the best at this, working on all fours,

Today, I think I’ll try it too: fear nothing, shake the floors!

 

____________________________________________

Further reading:

Giant dinosaur unearthed in Argentina, Science SHOT

A Gigantic, Exceptionally Complete Titanosaurian Sauropod Dinosaur from Southern Patagonia, Argentina, Nature

New “Dreadnought” Dinosaur Most Complete Specimen of a Giant, Scientific American

This is one in a series of poems written by Katherine Allen, a researcher in geochemistry and paleoclimate at the Lamont-Doherty Earth Observatory and the Institute of Marine and Coastal Sciences at Rutgers University.

Erosion, Then Explosion

Geopoetry - Fri, 08/29/2014 - 10:00
 Peters & Gaines, Nature, 2012

Illustration: Peters & Gaines, Nature, 2012

When viewing The Great Unconformity,
The result of a vast denudation,
One feels a new sense of enormity …
And above it lie critters crustacean!
Life during this wild explosion,
For armor, developed affinity.
Whence the new ions? Erosion!
Gooey life — meet alkalinity!

______________________________

Further reading:

Formation of the “Great Unconformity” as a trigger for the Cambrian explosion, Shanan E. Peters & Robert R. Gaines, Nature, 2012

This is one in a series of poems written by Katherine Allen, a researcher in geochemistry and paleoclimate at the Lamont-Doherty Earth Observatory and the Institute of Marine and Coastal Sciences at Rutgers University.

Faint Young Sun

Geopoetry - Fri, 08/22/2014 - 10:31
  Science online, J.F. Kasting

Image: Science online, J.F. Kasting

 

Through an ancient looking-glass,
Perhaps you’d see more H2 gas,
And if with denser gas collided,
Greater greenhouse warmth provided.
With faint young sun, would this suffice
To maintain water and not ice?
And when methanogens arrive?
This old debate is much alive.

_____________________________

Further reading:

Hydrogen-Nitrogen Greenhouse Warming in Earth’s Early Atmosphere, Wordsworth and Pierrehumbert, Science, 2013

This is one in a series of poems written by Katherine Allen, a researcher in geochemistry and paleoclimate at the Lamont-Doherty Earth Observatory and the Institute of Marine and Coastal Sciences at Rutgers University

Reflections of a Changing North

Greenland Thaw: Measuring Change - Fri, 08/22/2014 - 08:48
View from our small Poco 500 fishing boat as we skirted through the ice to collect samples. (Photo M. Turrin)

View from our small Poco 500 fishing boat as we skirted through the ice to collect samples. (Photo M. Turrin)

No one ever leaves the field the same way they entered it. Yes there is a new layer of mud on equipment, the expected wear and tear on your personal gear and your physical being, but that is not what I am referring to. I am acknowledging the intangible shift in perspective from a deepened understanding and a broadened vision that has been provided by the experience and beyond that the questions that drive the next field campaign.

Fishing and hunting is still the main livelihood of the Kullorsuaq community.  This type of small Poca 500 with a hand winch was what we found along the waterfront. (Photo M. Turrin)

Fishing and hunting is still the main livelihood of the Kullorsuaq community. This type of small Poca 500 with a hand winch was what we found along the waterfront. (Photo M. Turrin)

The end of any field campaign is bittersweet. The adrenaline rush of the data collection phase slows to a more normal rhythm of daily life. There is a change from an unwavering focus on the many details of the project with a hard push day after day to extract as much out of the field time as possible, to a position of intense reflection. Was the campaign a success? Were we able to accomplish what we had hoped? Did we come away with the data we wanted? What did we learn? Should this project be repeated? or adjusted? perhaps expanded?

Our Reflections –

The Kullorsuaq waterfront. (Photo M. Turrin)

The Kullorsuaq waterfront. (Photo M. Turrin)

Establishing Connections

Our fledgling partnership has shown there is both a willingness and an interest among the local Greenlandic to work with scientists in collecting measurements. There is an aptitude for working with the instruments and a desire by them for the collected data on temperatures at depth in their local fjords to build a broader understanding of their environment. Both the science team and the Greenlandic fishermen see this data as important to planning for the future.  They are hopeful it will provide them insights to direct their fishing practices, which in this traditional community remains their main livelihood. We are hopeful it will provide evidence of processes driving change in the Greenland tidewater glaciers.

The Kullorsuaq fishermen are seen moving through the water at all times of the day and night. While we were there fishing conditions were difficult and fishermen were traveling well south to drop their lines. (Photo M. Turrin)

The Kullorsuaq fishermen are seen moving through the water at all times of the day and night. While we were there fishing conditions were difficult and fishermen were traveling well south to drop their lines. (Photo M. Turrin)

The Kullorsuaq fishermen have told and showed us that they will adapt to change in the north. We can help them adapt by providing them information that assists their choices and adjustments.

Deeper Understanding

Alison Glacier flows into Melville Bay just behind the rocky foot of Kullorsuaq (visible at the top of this photo). The bits of ice debris are loosely jumbled at this distance from the glacier front unlike at the mouth where they are densely packed. (Photo M. Turrin)

Alison Glacier flows into Melville Bay just behind the rocky foot of Kullorsuaq (visible at the top of this photo). The bits of ice debris are loosely jumbled at this distance from the glacier front unlike at the mouth where they are densely packed. (Photo M. Turrin)

When we arrived in this small community there were no water temperature measurements inside the fjords for this  area of Greenland.  We hoped to collect water column data that would tell us if this northwest corner of Greenland was being affected in the same way as other parts of Greenland, with warm Atlantic Water flowing in at depth. Bathymetry (bottom depth) measurements did not exist in this section of Greenland’s coastline and it turned out the area was much deeper than we had expected. When we planned the project the little data that is available showed depths of 400m, yet we lowered our instrument approximately 500 meters and only three of our casts reached bottom. The Kullorsuoq fishermen told us that in front of the glacier it is over twice this depth which they have learned from lowering their fishing line.

A preliminary look at one of our data casts shows the temperature dropping and then warming as the depth increases, a result of intersecting the different water masses. (Credit D. Porter)

A preliminary look at one of our data casts shows the temperature dropping and then warming as the depth increases, a result of intersecting the different water masses. (Credit D. Porter)

While we were not able to get data the full extent of the water column the measurements we collected confirmed that, as in other areas of Greenland, warm surface water (>4°C) is layered on top of colder fresh Polar Water (<-1.5°C), and below this, from about 200 m (700 ft.) and below, flows warmer Atlantic Water. As our equipment didn’t allow us to go the full water depth we don’t know how warm it  gets, but we know it exceeded 1.7°C and was still rising at the depth of the cast. This warm deep water is affecting glaciers like Alison that sit in deep fjord troughs by melting the ice at the base of the glacier, causing weakening and retreat.

Moving Forward

Map of the series of casts completed in front of Alison Glacier and Hayes Glacier to the north. Red was day 1 of sampling, Green was day 2.  (Credit D. Porter)

Map of the series of casts completed in front of Alison Glacier and Hayes Glacier to the north. Red was day 1 of sampling, Green was day 2. (Credit D. Porter)

Our sampling plan was adjusted to deal with the ice conditions in the field. We had to shift our collection points to work around the mélange in front of glacier. We focused the first day (shown in red) on getting as close to the ice front as possible, collecting a ‘transect’ or line of measurements, and surveying the smaller channels. Day 2 (shown in green) we extended the transect from day 1, tested for pathways to the outer shelf, and tested one of Hayes Glacier (just north of Alison) outlets paths, and collected some repeat measurements from Day 1 to see how conditions vary with time and tides.

Moving through the water to collect more samples is done by boat for summer sampling, but the conditions will be very different in the winter when dog sledges will be needed. (Photo M. Turrin)

Moving through the water to collect more samples is done by boat for summer sampling, but the conditions will be very different in the winter when dog sledges will be needed. (Photo M. Turrin)

We have plenty of data to analyze but in the future collecting data in other seasons and locations would be beneficial. According to our Greenlandic partners getting winter measurements in Kullorsuaq is possible using their dog sledges to move the instrument. Early spring would offer interesting conditions as well. The local fishermen are anxious to continue to work with us, and we hope to be able to continue and build on this partnership.

It is always bittersweet to leave an area where you have built connections and learned so much.  (photo M. Turrin)

It is always bittersweet to leave an area where you have built connections and learned so much, but we look forward to more opportunity to work together. (photo M. Turrin)

Qujanoq (kwee-yan-ok) to our new Greenlandic friends – Thank you.

Project Information: Dave Porter and Margie Turrin were in northwest Greenland working with local community members to collect water column temperature profiles. The Leveraging Local Knowledgeproject will work with members of local Greenlandic communities to collect water measurements in the fjords. This will assist in determining if warming Atlantic Ocean water is circulating up through Baffin Bay where it enters the fjords to lap against the frozen glacier footholds, causing them to loosen their hold on the rock below. Alison Glacier (74.37N and 56.08W) is selected as the project focus. Emptying into Melville Bay to the east of Kullorsuaq Island and has been undergoing dramatic change over the last decade.

The project is funded by the Lamont Climate Center with support from the NASA Interdisciplinary Program and logistical support from NSF.

http://www.ldeo.columbia.edu/~dporter/Kullorsuaq/

Bottom Feeders

Geopoetry - Fri, 08/15/2014 - 10:28
 Yuki Morono

Microscopic images: Yuki Morono

Graduate students, microbe goo …
What is it that links the two?
It seems that both life forms are found
Where electron donors (food) abound!
Sed rates, organic stuff control
Cell distribution on the whole.
New techniques birth a new notion:
Sub-seafloor mass, the same as ocean.

_______________________________

Further reading:

Downsizing the Deep Biosphere, Perspective, Science 2012

Global distribution of microbial abundance and biomass in subseafloor sediment, Kallmeyer et. al., PNAS 2012

Katherine Allen is a researcher in geochemistry and paleoclimate at the Lamont-Doherty Earth Observatory.

Bird Brain

Geopoetry - Fri, 08/08/2014 - 10:17
Science 2012

Science 2012

A pigeon’s got cells in its brain
That link up with its inner ear.
Despite any wind, fog, or rain,
These talented birds, they can steer!
The magnetic field is their guide
(At bygone reversals: a rumpus?)
A field vector’s measured inside
A bird-brain equipped with a compass!

_____________________________

Further reading:

Neural Correlates of a Magnetic Sense, Wu & Dickman, Science, 2012

Katherine Allen is a researcher in geochemistry and paleoclimate at the Lamont-Doherty Earth Observatory.

Deep Sea Plough

Geopoetry - Fri, 08/01/2014 - 10:00
 2011room5mgk.wikispaces.com

Photo: 2011room5mgk.wikispaces.com

Giant fleets the oceans trawl,
Gasping fish they skywards haul.
Not just critters do they move,
But sediments they push and groove …
Ten times greater their extent
Than the land that farmers dent!
What will come of shelf slopes now,
Underneath the deep-sea plough?

___________________________

Further reading:

Ploughing the deep sea floor, Puig et al., Nature 2012

Katherine Allen is a researcher in geochemistry and paleoclimate at the Lamont-Doherty Earth Observatory.

A ‘Bumper-Car’ Ride in the Ice Mélange

Greenland Thaw: Measuring Change - Tue, 07/29/2014 - 10:28
Kullorsuaq's thumb is a beacon when on the water. (Photo M. Turrin)

Kullorsuaq’s ‘thumb’ serves a beacon when you are on the water. (Photo M. Turrin)

By this point many people in the village know about our project and greet us with ‘Aluu’ (Greenlandic Hello) as we move back and forth down the steep hill to the small harbor.  We are anxious to get back on the water but we need more benzene and are looking for a swivel that Magnus has suggested will improve the function of the line we are using on the CTD casts.

Magnus and Dave work on improving the CTD connection to the.  (Photo M. Turrin)

Magnus and Dave work on improving the CTD connection to the. (Photo M. Turrin)

Like many places around the world Sundays in Kullorsuaq get off to a slow start.  The local branch of the Pilersuisoq, a state owned general store with branches throughout Greenland, doesn’t open until 11AM on Sundays meaning little happens until close to noon. In this village the store serves as a type of community hub, it is where you purchase benzene, boating line, swivels, shackles, cigarettes, food and any other gear one might need for time out on the water.

Gabriel Petersen navigates through the ice with the GPS (Photo M. Turrin)

Gabriel Petersen navigates through the ice with the GPS (Photo M. Turrin)

Gabriel arrives at 11:30 AM as planned and although we can’t find the swivel Magnus had suggested we have a few back up options and so we begin to load. Dave hands Gabriel the GPS he loaded with a map and sample points. We learned yesterday that Gabriel really enjoys using this to navigate, employing his knowledge of the local waterway and the GPS points to smoothly move us as close as possible to the sample points.  We head out.

The local community talked of the distinction between large and small icebergs. Minitoq,the large iceberg, were described as being  more tabular in shape, very high and straight sided, extremely large and more dangerous when they split or broke apart because of the large waves they could generate or the sudden ice fall that could bury a boat.  The iceberg pictured here was not a minitoq but was large enough to be skirted with a respectful distance in the boat.

The local community talked of the distinction between large and small icebergs. Minitoq, the large iceberg, were described as being more tabular in shape, very high and straight sided, extremely large and more dangerous when they split or broke apart because of the large waves they can generate or the sudden ice fall that can bury a boat. The iceberg pictured here was not a minitoq but was large enough to be skirted with a respectful distance in the boat.

Today’s plan is to extend the sampling to include a wider region of the water exchange between Alison (Nanatakavsaup), the surrounding ocean and the connection to Hayes glacier. At the Village Meeting we had queried the local fisherman about the iceberg exit pathways for both Alison and Hayes to confirm or correct information we have gleaned from satellite imagery. These pathways should be where the water is the deepest providing the best connection to the open ocean, the measurements we are after.  On the water Gabriel and Magnus were able to provide more context to the discussions showing us regions that are shallow with larger icebergs ‘fast’ or grounded to the bottom, and other areas where the depth allows the icebergs to move more readily through to the open ocean.

Dave Porter and Magnus Petersen enjoy a koffemik while Gabriel navigates with the GPS (Photo M. Turrin)

Dave Porter and Magnus Petersen enjoying what we called a ‘boat kaffemik’. Gabriel is intent on the GPS as he navigates to the next sample spot. (Photo M. Turrin)

The Day 2 plan is just as aggressive as Day 1 with a minimum of 8 sample points intended.  We expect the workday will last a full 8 hrs. again.  Each day when we load into the boat Magnus pulls out a few surprises- a thermos of coffee complete with a box of sugar lumps, and snacks.

Greenlandic cake and coffee become a Kaffemik on the water. (Photo M. Turrin)

Greenlandic cake and coffee become a Kaffemik on the water. (Photo M. Turrin)

Today he has brought Greenlandic Cakes which include several loaves of cake with raisins and a chocolate glazed finger cake.  It will be just like a ‘Kaffemik’, the name for a popular open-house Greenlandic gathering of friends and family with coffee, cakes and visiting. We had been included in one a few days earlier in honor of a 15th birthday celebration in one of the local families. On a cool day in the small Poca 500 this is a real celebration with the coffee and food supplies layered on wrappers in the fishing line bucket.

When out on the water icebergs fill your vision in every direction. (Photo M. Turrin)

When out on the water icebergs fill your vision in every direction. (Photo M. Turrin)

The first few sample points go extremely well, we have a protocol down that seems efficient and we are smoothly moving through the sites.  A small island appears which is not on our map images or the map we purchased in Upernavik.  The shallower depths in this area match with ‘fast’ or grounded icebergs and requires an adjustment in two of the sample points of our transect.

Gabriel and Magnus climb to a high point to get a better view of the  dense ice pack in front of Alison fjord. (Photo M. Turrin)

Gabriel and Magnus climb to a high point to get a better view of the dense ice pack in front of Alison fjord. (Photo M. Turrin)

We complete 8 points with a bit of time left in our 8 hour day to fit in additional sampling.  The hope is to still collect a transect of 3 points close in across the mouth of the glacier but we have not navigated into that ice congested area today to see if it is possible.  We consult with Magnus and Gabriel – it is 18 km further in from where we are currently which could take an hour or more with the ice. ‘Suu’ (yes) they answer, they are willing to try. (Suu is pronounced with a quick inward most gasp of air and punctuates much of their conversation. Some speakers, like Magnus, follow it with a short inward whistle for emphasis.)  As Gabriel moves through the ice it closes around us so he suggests navigating in to land to climb up high for a vantage point.  He pulls over immediately and we clamber out to see what we can see. Gabriel can see what might be a pathway close to the north edge of Alison’s fjord outlet.

We found shells of sea urchins, mussels and Greenlandic scallops along the northern flank of Alison fjord. Dropped by the sea birds they seemed out of place against the ice scraped rock. (Photo M. Turrin)

We found shells of sea urchins, mussels and Greenlandic scallops on the southern flank of Alison Fjord. Dropped by the sea birds they seemed out of place against the ice scraped rock. (Photo M. Turrin)

We move towards the possible ice opening in what feels like boat bumper cars.  The ice is banging against the sides of the boat with regular thumps and knocks as Gabriel maneuvers expertly through the maze of ice mélange. Periodically I look back and he smiles and laughs when he catches my eye – hard to tell if he is trying to encourage me or if he is enjoying showing how well he can navigate the ice debris.  We make it across the front and in a bit along the north edge of the fjord before Gabriel suggests another lookout view is needed, and we stop to clamber up the rocks that form the northern flank of the Alison glacier outlet.

A look out is taken by our guides from on top of Alison Fjord's northern flank. (Photo M. Turrin)

A look out is taken by our guides from on top of Alison Fjord’s northern flank. (Photo M. Turrin)

This time the news is not so good.  The ice is pretty densely packed.  Magnus explains that Gabriel had been in this area just a few days ago edging his way up bit by bit to try to get to the front edge of the glacier to drop his fishing line. When he tried to work his way back out he had been stuck for several hours in the tightly packed ice and is reluctant to take us into that situation, especially this late in the day and with a threat of rain in the sky.

Reluctantly we take a look at the ice before us.  It is densely compacted.  Gabriel notes he can maneuver us back to resample one point we collected near the center of the glacier on Day 1. We are happy with this consolation for all the navigating through the ice.

 

 

Alison Fjord filled with icy mélange. (Photo M. Turrin)

Alison Fjord filled with icy mélange. (Photo M. Turrin)

As we collect this last site the rain begins to fall, and turns to a sharp biting storm on the way back to Kullorsuaq. Gabriel notes a seal just meters from the boat as we travel and quickly slows so we can get a look.  His sharp eyes have been spotting seals all day but they pop up quickly and we hardly catch a glimpse before they are gone.  This time the seal is much closer and we see its full head and flipper emerge. When asked if they could identify the type Magnus noted without hesitation “ours” – claiming it as the Greenlandic seal.

Project Information: Dave Porter and Margie Turrin are in northwest Greenland working with local community members to collect water column temperature profiles. The Leveraging Local Knowledge project will work with members of local Greenlandic communities to collect water measurements in the fjords. This will assist in determining if warming Atlantic Ocean water is circulating up through Baffin Bay where it enters the fjords to lap against the frozen glacier footholds, causing them to loosen their hold on the rock below. Alison Glacier (74.37N and 56.08W) is selected as the project focus. Emptying into Melville Bay to the east of Kullorsuaq Island and has been undergoing dramatic change over the last decade.

The project is funded by the Lamont Climate Center with support from the NASA Interdisciplinary Program and logistical support from NSF.

http://www.ldeo.columbia.edu/~dporter/Kullorsuaq/

 

 

 

 

 

 

Pages

 

Subscribe to Lamont-Doherty Earth Observatory aggregator