News aggregator

Mad Dogs and Englishmen

Vanishing Tropical Glaciers - Mon, 07/11/2011 - 23:32

10th July – Dispatch from Nevado Tolqueri, Cordillera Carabaya, Andes

We have acquired a dog, ¨”Mooch”. Walking back to camp yesterday, amid driving snow and fully laden with rock samples, there he was exploring what passes for our kitchen. Unlike most Andean dogs –  ferocious beasts trained to keep geologists from harassing the livestock – this one is a cheerful soul, happy to hang around and be fed whatever is going, and always up for affection. Where he came from we don´t know. We´re camping at 4750 m in a shallow valley between moraines that keeps the worst of the wind at bay.

Mooch arrives in our camp, Cordillera Carabaya

There is nothing to burn here and so the nights are frigid, though the view of the entire Cordillera Carabaya, as far as Bolivia, is superb. There are a few hardy souls farming alpacas up here, so presumably the canine comes from one of those, but nobody seems to be missing him. Last night he cleaned our plates and pans, as the snow fell all around, and this morning he was still there. I awoke to find  Mooch curled up by the stoves, tucked up in a snowy ball. He immediately perked up once I arrived and waited with agreeable patience as we made a sort of rice pudding for breakfast. Then, with breakfast done, he followed Matt and me as we went off to collect a few more samples for surface-exposure dating. It will be sad to leave the pup, but we must head west soon to the desert Andes. And as Kurt noted, a high-altitude dog accustomed to sleep in the snow would hardly fare well in subtropical New York!

Happy campers in the eastern Andes

A word on the weather here. It´s taken a turn for the worse. We´ve been working on LGM moraines beneath Nevado Tolqueri and have made great strides there, collecting tens of samples from a fantastic sequence of moraines. But a drawn out storm has engulfed us from the east, appearing first as enormous thunder clouds and transitioning into incessant snow and high wind. It´s not quite what we´d expected but what can you do? It´s times like these we wish we had a kitchen tent instead of a patch of open mountain for cooking. It will be interesting to see how far west this system goes. In the meantime, we will try to keep our feet dry and the dog fed.

Gordon

Ancient mud from the high Andes

Vanishing Tropical Glaciers - Fri, 07/08/2011 - 12:22

4th July – Dispatch from the Andes
Thanks in large part to Matt, an undergraduate from Pacific Lutheran University in Washington, we now have more than sixty samples for surface-exposure dating. This is no easy feat, for collecting these samples requires a great deal of hammering on granite boulders with nothing more than a hammer and chisel. There are other ways of doing it, such as using small explosive charges, rock saws, or splitting wedges, but we find that good old-fashioned hammering is by far the safest way. I say ‘we’ but really this means Matt. He has a gift for removing large amounts of rock, be it a soft shale or the hardest quartzite. And best of all, he doesn´t complain. So in all, we have sixty four samples from the Aricoma region, from moraines of all ages. In addition to the hammering, the process includes detailed descriptions of each boulder and measurement of location, altitude, and how much of the surrounding sky is obscured by mountains. It can take a while but we have it down to an art now, as the ton or so of granite in the back of our vehicle attests!

Gordon sampling a sediment core from a bog

We´re also collecting sediment cores from bogs within the moraines, so as to provide radiocarbon ages for the deposits. Just yesterday we extracted a two-meter core from a basin near camp that lies between two long moraine ridges. It was a messy business, taking the three of us to punch the core barrel through the malodorous slime and into the stiff glacial clay, going as and as far as the rocks below. When all was said and done, each of us was fairly bloody and covered with ancient mud, but the core was extracted and the day was ours. Now the core is neatly contained in plastic tubing, sealed from the air and ready for shipment to Lamont where it will be analyzed.

Gordon

Summoning ocean bottom seismometers from the deep

Ernie reaches to tag an OBS

After leaving our seismometers on the seafloor offshore Alaska for a few days to record sound waves generated by the air guns of the R/V Langseth, we returned to collect them.  The recovery of OBS always involves a certain amount of suspense.  Despite all of the advanced engineering and planning that goes into these instruments, it is an endeavor with inherent risk, and things can and do go wrong sometimes: one or more of the glass balls that make the OBS float could implode; the acoustic communication with the instrument could fail; it might be stuck on the seafloor for one reason or another; it could have been accidentally dragged off by trawlers. All of these thoughts ran through my mind at each site as we waited for the instrument to come to the surface.

OBS returned with surprise stowaway: an octopus

To recover the OBS, we return to the place where we deployed it and communicate with it acoustically. We send it a command to release from its anchor and float back to the surface. The OBS rises through the water at 45 meters per minute, so the wait can be long if the water is deep. Some of ours were 5500 m below the surface! The instruments can also drift away from their original deployment location on the way down or the way back up due to ocean currents.  When they arrive at the surface, we can spot their orange flags and strobe lights; they also send out radio signals.

Despite all the technology required to place a seismometer many miles below the ocean on the seafloor and summon it back to the surface, many aspects of actually plucking an OBS out of the ocean and pulling it on deck are remarkably low tech (yet still very impressive).  Once we have spotted the OBS floating on the surface, the ship drives alongside. It is akin to driving your car up next to a ping-pong ball. People lean over the starboard side of the Langseth and attempt to attach a hook with rope to the bars on top of the OBS using a long pole. Its not always easy since the OBS is bobbing up and down in the waves. Once we hook it, we can attach a rope to the winch and haul the OBS onboard. Sometimes, OBS’s bring back surprises – an octopus returned with one of our OBS’s! He was alive and healthy, so we returned him to the sea (though some lobbied to keep him for lunch…)

Recording from an OBS. An earthquake (large event) overwhelms the regularly spaced pulses from our air guns.

Happily, we recovered 100% of our OBS’s and have started to (briefly!) pore over the data they recorded while they were on the seafloor. We can see the arrivals of sound waves from our air guns as well as lots of earthquakes, some very close and others far away.  It would be delightful to dig into the analysis of these data immediately, but it must wait – there is more data to collect! We’re currently deploying OBS’s along our second profile.

Deploying Ocean Bottom Seismometers off Alaska

Mark, Ron and Mladen deploy an OBS

On July 2, we finished deploying over twenty ocean-bottom seismometers as a part of our marine expedition to study a major tectonic boundary offshore Alaska. Ocean bottom seismometers (OBS’s) are autonomous instruments that sit on the seafloor and record sound waves traveling through the earth and the water. Floats made from glass balls and syntactic foam make each OBS buoyant, but an anchor holds it on the seafloor during the study. We communicate with each OBS acoustically, allowing us to send it a command to release from its anchor when we are ready to recover it.

For our project, we are placing OBS’s from Scripps Institution of Oceanography on the seafloor along two lines that span the major offshore fault zone.  Immediately prior to deployment, we assemble the main components of each OBS on deck while the ship transits between sites.  When we arrive at the deployment site, the ship slows down, and the OBS is lifted over the side of the vessel and into the water with a large crane. We release it, and it sinks to the sea floor. Thanks to the skill and hard work of the Scripps OBS team and the ship’s crew, we were able to deploy one OBS every hour, which is very efficient!

Rugged Alaska Peninsula seen from the sea

The larger the distance between the sound source (earthquakes or air guns) and the seismometer, the deeper into the earth the recorded sound waves travel. OBS are very sensitive and not attached to the vessel, so they can record sound waves generated very far away by earthquakes or air guns (commonly >200 km). Because we want to examine deep fault zones that cause large earthquakes off Alaska, OBS are a critical part of our effort.

In a few days, after we steam back over the OBS’s generating sound waves with our air guns, we will return to retrieve them. Even after ten years of working with ocean-bottom seismometers, it never ceases to amaze me that we can throw a bundle of very sophisticated electronics over the side of the ship and hope to pick it up and retrieve useful information from it. We are very excited about the new insights that will be provided by the data recorded on these instruments…

A typical day in the high Andes

Vanishing Tropical Glaciers - Sat, 07/02/2011 - 16:32

30th June
Each morning starts the same in the Andes: the frost is heavy on the insides of our tents and falls with the slightest movement, while the realization that it´s going to be a freezing exit from the sleeping bag is tempered by gratitude that the thirteen hour night is over. Yes, sunrise in the Andes is a momentous occasion each day, one that feels a million miles away from home. Kurt typically is the first up and dutifully begins brewing fine coffee on the camp stove. Matt emerges shortly thereafter. Nobody says a word, we just stand around in the frost like cold lizards – or maybe zombies – until the sun arrives to warm us. By midday it is fearsomely hot in the sun and the down clothing is replaced by sandals and wide-brimmed hats. Then, just as one is getting used to the idea of a nice afternoon siesta, the sun drops behind the skyline and the climate is icy once again.

Gordon and Matt mapping Holocene moraines above Veluyoccocha

One thing I am reminded of daily is that here in the Cordillera Carabaya, unlike in the western Andes, we are never alone. The moraines we investigate and the valleys we explore are someone´s backyard. Herds of alpacas swamp our campsite, followed by ferocious dogs, and mining trucks, laden with gold ore from Limbani, compete with our 4 x 4 for road space. We´ve met some interesting folk here, too, such as the toothless, Quechua-speaking alpaca herder high on a moraine, to school children asking us how to pronounce derogatory words in English.

We´ve been at Aricoma a week now and, I am pleased to report, have a lot to show for it. In addition to scratty, dusty beards and admirable tans, we´ve mapped and sampled glacial deposits young and old, from the last glacial maximum right up to the present day. This work has taken us up into the high valleys, where the last remnants of glacier ice are tucked away in shady recesses above 5000 m elevation. Here, we are surrounded by imposing peaks and deep, glacial lakes of indescribable beauty. It truly is a geologist´s dream, if a cold one.

Gordon

Heading to Sea off Alaska Aboard the R/V Langseth (at last)

View of Kodiak from the ship

Yesterday evening, we left Kodiak aboard the R/V Marcus G. Langseth and began our 38-day-long research cruise offshore Alaska. As we left port, we were treated to clear skies, calm seas and spectacular views of Kodiak – dark grey mountains tipped with snow emerging from the lush green landscape.

Although Kodiak offered beautiful sights and delicious seafood (like locally caught halibut and scallops), our science party was eager to leave for sea. We have been waiting for the opportunity to collect these data for a long time. Our expedition was originally planned for September 2010, but there were delays in the Langseth’s schedule that would have required us to conduct our offshore study later in the fall, when the weather deteriorates. Rough seas make some marine operations more dangerous and can also reduce the quality of the data. We opted to postpone until the summer of 2011 to secure a better part of the limited weather window in this remote and northerly region.

The R/V Langseth in port in Kodiak

But for some members of our science party, the wait has been much longer. In 2003, my colleagues Mladen Nedimović, Spahr Webb and the late, great John Diebold first conceived the idea for this study. Although many other scientists in our community and the National Science Foundation were very supportive of this project, it was scuppered by limited science funding and the temporary lack of a US academic seismic vessel between retiring the R/V Ewing and acquiring the R/V Langseth. But sometimes good things come to those who wait, and at long last we are setting out…

Foreigners in a Strange Land

Vanishing Tropical Glaciers - Sun, 06/26/2011 - 23:40

June 22, 2011

After a very cold morning in Crucero, the sun burned off the clouds to reveal the black peaks of the Cordillera Carabaya to the east. There´s not so much snow left on the hills these days, just a few glacier patches clinging to the south faces of the highest summits. Nonetheless, the vista is spectacular and Crucero by day is quite colourful, with fantastically painted buildings spaced around a busy plaza.

Stars over Laguna Aricoma

We had a stroke of luck today when we ran into a local man by the name of Demitrio. Demitrio was an enormous help back in 2009, helping us gain access to Aricoma and the hills beyond. This year he was all smiles and quickly ushered us into the mayor´s office, where Kurt explained (in his superior spanish) what we were doing and the objectives of our project. Now, with the town´s  blessing and a signed, official-looking letter in hand, we´re about to head off to our camp at 4600 m on the shore of Aricoma.

Gordon sawing plastic pipes on the roof of our hostel in Crucero

This morning we also made our final gear acquisitions – some plastic piping to transport sediment cores back to the US for analysis. These we had to cut into sections with a small hacksaw and then split in half, a delicate and quite tiring job at this altitude, but necessary. Now, vamos a trabajar!

Gordon

Finishing Up Onshore and Heading Offshore

Map showing the seismic stations we deployed onshore (red triangles) and planned offshore work

Seven days and eleven flights after we arrived in Alaska, we finished deploying our seismic stations onshore.  Our final constellation of stations differs a little from our original plan (as always happens with field work), but achieves our main goal of instrumenting the part of the Alaska Peninsula that is nearest to our planned offshore work on the R/V Langseth. We installed our final seismic station yesterday in aptly named Cold Bay. This town sits next to a large bay with the same name and is famous for its wind. The most common damages sustained by cars and trucks here are jack-knifed doors from the wind (as I learned the hard way!).

As luck would have it, we finished deploying our seismometers just in time to catch a large earthquake (magnitude 7.2) that occurred farther west in the Aleutians around the Fox Islands.  Of course we would love to immediately look at the recordings of this event on our stations, but we must wait patiently until August when we return to recover them. Many permanent seismic stations are telemetered, so data are transmitted back to scientists in near real time. But for temporary deployments like ours, the data are just written to a local disk and thus must be downloaded in person at the station.

I admire a small earthquake recorded at our Nelson Lagoon station

We did have the chance to take a sneak peak at some of the data recorded at our station in Nelson Lagoon during the first few days of our deployment.  Reassuringly, we saw evidence for several local earthquakes in these data, including a magnitude 3.1 near Sand Point.

Now that the onshore deployment is finished, Katie and Guy departed for home, and I soaked in some sunshine in Anchorage and started looking ahead to our upcoming research cruise.  Tonight I fly to Kodiak to await the arrival of the R/V Langseth and our shipboard science party…

Into Thin(ner) Air – On Route to the Cordillera Carabaya

Vanishing Tropical Glaciers - Thu, 06/23/2011 - 22:37

June 20, 2011

This morning we left Arequipa and the comforts of the tourist trail, driving east across the puna towards the Andes proper. Our route took us along the newly constructed Caraterra Interoceanica – a highway linking the Pacific coast of Peru to ports in Brazil – and up to elevations of 4700 m. Along the way we passed the smoking Volcan Ubinas, Peru’s most active volcano, and the enormous inland sea of Lake Titicaca. As we approached the Cordillera Carabaya, which bounds the puna to the east, the clouds increased and the landscape changed dramatically, from desert to grassland.

El Misti rising above the puna, en route to Aricoma

In recent weeks, social unrest related to the opening of a gold mine near the city of Puno has resulted in violent protests. Though we were able to avoid Puno as we travelled east, this sort of anti-mining sentiment underlines the importance of obtaining the blessing of locals to carry out our research on their land.

By mid afternoon we arrived in the small town of Crucero, located at 4100 m beneath Laguna Aricoma – our first site. This town is, frankly, a bit grim, consisting of grey concrete houses and rubble streets, and located on a windswept plain below the mountains. Nonetheless, we’ll spend the night here in order to meet with the governor tomorrow. Fingers crossed that he will remember us and grant us permission once again to roam around. To end on a light note, the Cordillera Carabaya happens to be the alpaca centre of the universe, and so there is a high chance that one of these cute fluffy camelids will end up on our dinner plates tonight.

Gordon

At the Feet of El Misti

Vanishing Tropical Glaciers - Wed, 06/22/2011 - 15:23

19th June 2011

What a difference a day makes! We’ve said goodbye to the sprawling metropolis of Lima and now are happily settled in Arequipa – the White City. This name refers to the white sillar rock used in the construction of the old colonial city and which is in fact a pyroclastic deposit from the volcanoes towering above us. From our hotel room I can see the massive bell-shaped peak of El Misti (5800 m), the only active volcano of the group, and it’s looking particularly snowy this year. In fact, flying in to Arequipa, I was surprised to see so much cloud. Normally, with this being the dry season, the sky in this desert region is blue and the mountains dry. Perhaps we should prepare for some wet, snowy field work!

Arequipa has grown on the flank of the active volcano, El Misti. The city center lies only 17 kilometer from the summit of El Misti. Much of the building stone for Arequipa, know as 'sillar', is quarried from the typical white pyroclastic flow deposits nearby.

Thankfully, nothing has changed at La Casa de Melgar, our Arequipa base, and I dug out my sampling tools from where I’d stashed them last year, a little dusty but in perfect working order. The rest of our gear, due to its incredible weight, is making its way slowly from Lima by road and should be here tomorrow morning. As for Matt, we found him in the airport, looking surprisingly fresh-faced after his red-eye flight, and so our field team is now complete.

Kurt and Matt arriving at Arequipa airport with Nevado Chachani behind

We’ll spend the rest of the day organizing our transport and, in the interests of science, sampling the rather incredible local cuisine.

Gordon

Installing Seismic Gear On The Beautiful (But Challenging) Alaska Peninsula

Katie and Guy install station in Port Heiden

Every field location comes with logistical hurdles, and the Alaska Peninsula is no exception. Weather, wildlife and modes of transport pose the greatest challenges. We are hardly the first scientists to encounter these: Lamont-Doherty Earth Observatory has a long, rich history of collecting seismic data in this region (e.g., Shumagin Seismic Network, which ran for >20 years), and many groups continue to collect geophysical data here today.

The Alaska Peninsula is too rugged and wild for a network of roads, so planes, helicopters or boats are the only transportation options.  We opted for planes, which immediately imposed a restriction on the locations of our seismic stations: they must be near airstrips. Happily, the Peninsula is sprinkled with small communities and lodges with airstrips, most of which lie close to the Pacific or Bering coasts rather than in the remote interior. Back in the office before our deployment, we chose the most ideally located airstrips for our stations and connected the dots between them with the most efficient possible flight plans.  But, our plans quickly changed once we were in the field. The weather dictates when and where you can fly each day, and it varies dramatically.  We have been lucky enough to have several clear days (even saw some blue skies and sunshine!), but other days we have been grounded by weather and wiled away the time indoors at the inn in Nelson Lagoon.

Scenic location for a seismic station

Once we arrive in each location, we need a quiet, safe place to install our equipment and a ride from the airstrip. On both counts, local communities have been unwaveringly helpful and friendly. The two school districts here kindly granted us permission to install our seismic stations at any of their schools, and we also obtained permission to place equipment at various lodges and village offices.  Residents volunteered to take our gear and us from the airstrip to our sites. In one town, our pilot made a general plea over the radio: “Is anyone listening on Channel 3? I’m here at the airstrip with scientists who need a ride to the school”. Someone answered immediately and picked us up 5 minutes later.

Fresh bear paw print near one station

Many of our sites are in spectacular places near remote lodges or in towns nestled between mountains and the ocean.  All of them are home to impressive wild life that poses a risk to our equipment, particularly bears.  We can protect the equipment against curious small animals but fully bear-proofing a station for a short  (two-month-long) deployment is not feasible. Instead, we hope that placing our stations in villages (rather than in the wild) will provide some protection, but we will also need good luck. Fingers crossed…

Off to Lima, World’s Second Largest Desert City

Vanishing Tropical Glaciers - Mon, 06/20/2011 - 23:29

18th June 2011  Lima, Peru

Our 2011 field season is underway. After a full day’s travel from New York, we arrived in Lima, the capital of Peru. This sprawling city perched on the edge of the Pacific Ocean is home to more than nine million people and, after Cairo, is the largest desert city in the world. Being winter in the Southern Hemisphere, the Peruvian coast is swamped by fog rolling in off the cold Humboldt Current and the sky over Lima is grey with smog and cloud. It’s surprisingly cool, too. Only the palm trees, cacti, and spectacular Spanish colonial architecture remind you that this is indeed the tropics.

Gordon outside the Instituto Geografico Nacional in Lima, Peru, holding freshly caught aerial photos in hand - an essential tool for the field work in the high Andes

Since our work will focus on detailed mapping and sampling of glacial deposits, we are heavily reliant on high-resolution aerial photographs of the field sites. Therefore, our first port of call this morning was the Instituto Geografico Nacional, a cartographer’s dream where enormous collections of maps and imagery are stored. It’s a spartan building with a distinct military air – a real throwback to more austere times – but the personnel there were very helpful, dutifully returning from store rooms with stacks of black and white photographs for us to peruse. Incidentally, these photos were taken in the 1960s by the United States Air Force and it never ceases to amaze me just how much the has retreated over the past 50 years. Some of the glaciers have vanished.

With that chore done, we’re currently packing (and repacking) our equipment for the next leg of our journey. Tomorrow we fly to Arequipa, Peru’s second city, located at 2300 m at the foot of the famous Volcan Misti. There we’ll meet up with Matt, who’s on his way from Tacoma as I write. Though we’ve been here only a few hours, it’ll be great to leave the coastal smog for the blue skies of the Andes.

Gordon

Switchyard Project: A Very Successful Year

May 22: The 2011 field season has been a very very successful year, in fact the most successful one we have ever had. The weather has been great, the equipment proved to be mostly reliable, the people have been great and the samples are plenty. In the month to come, we will analyze the water samples and eventually end up with a tremendous amount of very exciting data. Thanks to everyone who made this happen.

Area of operation and sampled stations in 2011 by LDEO (red "o" symbols) and UW (pink "+" symbols). Open white circles show the LDEO stations that we would like to target every year.

We left Alert yesterday and are on our way back home. We are stranded in Kangerlussuaq, Greenland, for a couple of days until the Air National Guard can take us and our valuable freight back to the U.S.

Best wishes.

The Switchyard Team.

Celebrating the end of the Antarctic field season

Using Rocks to Decode Antarctic Climate - Thu, 02/17/2011 - 22:18

We decide today is the last day for our camp, and we pack up and drive back to our base camp, the Central Transantarctic Mountain camp (CTAM). A sadness in a way, because it was our cozy home for a week. We ate, slept, and joked around here night after night. Also, we realize that packing up camp represents the end of the field season, except for one more day. For the last day of work we will fly by helicopter to the Achernar area from the CTAM camp.

Moraines at the Lewis Ice Tongue, the location of the last rock surface sampled during the field season

The last day at Mount Achernar. We use the helicopter to go near the southernmost part of the area, near the Lewis ice tongue, which comes off the East Antarctic ice sheet. After a long day, we collect our last samples, and wait for the helo to pick us up – the end of the field work for this season. We realize we had a very successful field season. Not one day of work was lost at either Mt Howe or Mt Achernar (a very rare experience for Antarctica). We think about how we accomplished our goals in terms of getting to both remote sites and collecting samples.

Spontaneous dance performance celebrating the end of the highly sucessful field season

Back at CTAM camp, we scramble to get all our stuff packed up ready to be shipped back to McMurdo. They are closing the CTAM camp for scientific work in a week because they need to take everything down by the middle of February. The middle of February represents the end of the field work for everyone in Antarctica. It starts to get too cold, and the sun starts setting in some areas farther north. People start to go home then and McMurdo gets ready for the winter.

The 'Antarctica's Secrets' team (Mike Roberts, Mike Kaplan, Nicole Bader, Kathy Licht, Tim Flood) getting ready to fly back to McMurdo station

We all fly back to McMurdo. A bed and running toilets (!) for the first time since we left for our camping trips. Also, the dorms have dark curtains that go over the windows. So, darkness, a bed, and a toilet – who would have known life can get so good!

Mike Kaplan (Lamont)

The Twin Otter, ready to fly the team back to McMurdo

Glacial deposits: A clue to reconstructing the history of the Antarctic ice sheet

Using Rocks to Decode Antarctic Climate - Thu, 02/10/2011 - 11:44

We set out on the snowmobiles with all the sleds to Mount Achernar with all our stuff. After about three hours we reach the site (crossing the flagged crevasse zone with no problem). We are joined by a fifth team member, Tim Flood, a Professor at St. Norbert College in Wisconsin. Tim has expertise in petrology or rock composition. So, we will have one additional person for the Achernar part of the trip.

Kathy Licht, Tim Flood and Nicole Bader exploring glacial deposits near Mt Achernar

At first we only find ‘blue ice’ to set up camp. Blue ice gets its name mainly because – in contrast to the typical situation of having a layer of snow on top of the ice sheet – there is only ice. The snow layer that normally covers the top of the ice sheet is blown away where the winds blow pretty fast and consistently. This means there is no good place for camp right in the Achernar area because all the blue ice is a sign of strong winds. We decide to back up a few miles to where the snow starts again and camp a little but away from Mount Achernar. This means we will have a ‘daily commute’ to get to where we want to work, but at least we have a nice place to live for the week. It is less windy where we decide to set up camp and a nice layer of snow in which to pitch the tents and walk around. Blue ice is very difficult to walk on – it is just what it sounds like – walking on ice!

Setting up just another field camp at Mt Achernar

We set up camp. Unlike at Mount Howe, here each person will have their own tent. In addition, we set up the bathroom tent and a huge kitchen tent, named the ‘Arctic oven.’ The arctic oven will act as a kitchen and dining area. It is about 25 feet long, enough to be comfortable. And, when we have two stoves going inside, the temperature gets up to a comfortable 60 degrees or even higher (hence, its name); comfortable enough to start peeling off all our jackets while eating. Two little speakers that Tim picked up in an airport, attached to ipods, means we even have a stereo system in the arctic oven cook tent.

The first day we drive out to where we want to work. It takes about an hour and a half each way by snowmobile. This is quite a bit of time. In addition, the glacier deposits we want to study are much larger in area compared to at our first site at Mount Howe. It is not practical for us to drive everywhere and get to all the places by walking. We realize we will need to utilize the helicopter from nearby CTAM. So, the next week or so we alternate: a “snowmobile day” when we commute by snowmobile from camp to the field site and “helo days”. On the helo days, the helicopter flies out to our camp (a short flight by helicopter from the CTAM camp) picks us up, takes us exactly where we want to go around Mount Achernar, and then at the end of the day, comes back out to bring us back to our camp. All these trips only take the helicopter folks about 75 minutes in total each day, given how fast they go.

Collecting samples from the top of boulders that got left back by the retreating glaciers. At home in the lab at Lamont, we will use a method called 'Surface Exposure Dating' to figure out when the ice sheet left these boulders behind when it retreated.

We spend the next 8 days or so doing the same sort of work as at our first site Mount Howe. We map the glacier deposits (how red or oxidized are they – how do their elevations changes? How do the deposits themselves change in terms of shape and composition and other characteristics?). Mike K and Mike R (with occasional assistance from others) collect samples for the surface exposure dating, so they can eventually figure out how old all the deposits are. Kathy, Nicole and Tim study the composition and types of glacier rocks and sediments left behind.

Similar to our finding at Mt Howe, we find pronounced changes in the glacier moraine deposits around Mt Achernar. This indicates there are likely deposits of different ages, left behind at different times by the ice sheet when it was bigger. All the team members continue to collect samples that will be analyzed later in the lab.

Running water in Antarctica at Mt Achernar

Mike K, Kathy, Mike R, Nicole and Tim

How to cross a crevasse zone on the Antarctic ice sheet

Using Rocks to Decode Antarctic Climate - Sun, 02/06/2011 - 21:32

We are back at the CTAM (Central Trans Antarctic Mountain) camp.

Gas station in Antarctica

Over the last several days we take stock in that we accomplished the first major goal of our trip. That is, to study the glacier deposits at Mount Howe, the southernmost rock outcrop on Earth. We found (what we think are) deposits left behind by the ice sheet when it was bigger, at several different time periods in recent Earth’s history. We can tell in a preliminary way, before we have carried out the laboratory work back home, that the glacier deposits must be of different ages because they are different ‘colors’ – red for more oxidized (rusted). They also show other signs of varying in age such as the weathering of the rocks and landforms, which increases away from the ice sheet (=older). This means that there will be a record of the glacier leaving behind different types of rocks over a period of time, likely well before the last ice age. It was an important goal to find such deposits for our sampling.

Using snowmobiles to move to the next field camp site at Mt Archernar

We quickly regroup our stuff over the next few days at the CTAM camp and start to get ready for the next major camp move, to Mount Achernar. For this stage of our trip, which is only about 25 kilometers from the CTAM camp, we are hoping to get there by snowmobile. We will use 4 snowmobiles pulling 6 sleds (two snowmobiles will pull two sleds each). This will allow us to move our entire camp, set it up for more than a week near the site, work, and then come back to CTAM after 8 days or so. However, there is a small problem. There is a crevasse shear zone in the ice sheet between the CTAM camp and Mount Achernar. So, we must figure out where to cross the crevasse zone. We do this two ways. First, we take a helicopter trip from CTAM for an hour (they are quick) to scope out or reconnaissance the area (a “reconn”). On the helicopter, we think we figure out where we might be able to cross the crevasse zone. The helicopter trip also allows us to see the whole area of Mt Achernar and where we want to camp. Camp ideally has to be on a snow patch so we can stake the tents down and in a spot not too windy.

Kathy Licht from Indiana University-Purdue University, Indianapolis on a reconnaissance helicopter flight to check out the best way to get to Mt Archernar

The second way we figure out how to cross the crevasse zone is to go to it, by snowmobile on just a day trip from CTAM (another “reconn”). Mike R (Roberts), our mountain guide, shows us how to link the snowmobiles by ropes, in case one falls into a crevasse. We also put on climbing harnesses and rope ourselves to a second set of ropes between the snowmobiles. This is so that if we fall in, we can either climb out or be pulled out by others.

Checking out the crevasse zone and finding a way to get safely to Mt Archernar

We get to the crevasse zone which starts at about 15 miles from the CTAM camp. The first few crevasses seem quite bad – each about 2 to 5 feet cross. Although they all seem to have natural ‘snow bridges’ that cross the top of the crevasse, which we can drive across, we need to be confident that they will not collapse due to the weight of the machine. Mike R slowly investigates each crevasse we cross to see how strong the overlying snow bridges are and how wide each crevasse is. After about an hour, we start thinking maybe there are just too many crevasses (every few hundred feet we are finding another one) and it would take too long to figure out how to get across the entire crevasse zone. Mike R suggests we park and get off the snowmobiles, link up with ropes and slowly walk for a while to see how much longer the bad crevasses continue. This seems easier at the moment then stopping and starting the snowmobiles every time we reach another crevasse. To our surprise, the crevasses quickly get smaller and disappear just as we start walking! We did it ! We found a reasonable and quick way to get across the crevasse zone which is less than a 1 mile wide at its bad part. We put flags next to each one so that we can easily see where they are when we come back through on the way to Mount Achernar site to do our work.

Mike Kaplan, Kathy Licht, Nicole Bader and Mike Roberts

Moraines and spaghetti in the Transantarctic Mountains

Using Rocks to Decode Antarctic Climate - Mon, 01/31/2011 - 23:30

The first day of geologic work at our Mt Howe field camp. We start walking on the moraines (piles of debris left by a glacier, just like around NY, Indiana, Wisconsin, where we are from) and we have to put on crampons. These are spikes that go on the bottom of our boots. This is because the moraines are really hummocky to walk on and right under just a few inches of dirt is ice, making us slip and slide and do more leg splits than we can remember!

Taking a sample from a huge boulder on a moraine that got left behind by a glacier

But, we quickly identify roughly where we think the ice was during the last ice age. We can do this because the deposits are ‘grey’ in color as they do not have time to oxidize (like rust on a car). The stuff left behind by older ice ages is red in color – because it has had time to oxidize. We start collecting our first samples. Kathy and Nicole collect material to figure out the type and chemistry of the glacier deposits left behind, which will help tell them which way the ice must have been moving in the past and what kind of rocks it brought up from below. Mike K and Mike R start measuring the elevations of all the glacial deposits and more important start collecting samples from the tops of large boulders. These samples will help us figure out the time at which they were left behind. Once back home, we will use a method called cosmogenic surface exposure dating. We will use our lab facilities at Lamont-Doherty Earth Obsservatory to date the rocks, using the cosmogenic nuclides Beryllium-10 as well as Helium-3.

Over the next 6 days or so, both teams just systematically collect samples from each set of ridges or moraines that the ice sheet left behind in the past. The idea is that each distinct moraine ridge represents a different time period or glacial period when the ice sheet was bigger. The weather holds up well, an important fact when you are only a couple hundred miles from the South Pole. The temperature remains about -10 to 0 during the day. Anytime the wind picks up thought, the wind chills causes it to get colder fast. Often exposed skin has to be covered quickly. Only a few days are cloudy, otherwise the sun adds a little bit more warmth. Fortunately, the tents are warmer, especially when we run the coleman stoves. So, eating dinner is way more comfortable than being outside.

Mike K., Mike R., Kathy and Nicole

After a long day sampling glacial deposits at -10 degrees it is time for dinner in one of the tents at Mt Howe field camp

Setting up camp 184 miles from the South Pole

Using Rocks to Decode Antarctic Climate - Fri, 01/28/2011 - 15:12

We fly from McMurdo to our first base camp, named CTAM, which stands for Central Transantarctic Mountains. This camp is set up by the US National Science Foundation every 5 to 10 years, with input from scientists on the cutting edge research that can be done in the region where it is set up. An idea for having the camp is to make central Antarctica more accessible every once in awhile to scientists who want to carry out research in remote parts of the continent, such as our team. Otherwise, many of these areas are too hard to get to from the larger more permanent bases and camps such as McMurdo.

Tent city at the Central Transantarctic Mountain Camp

Here we will gather all our things, organize our gear for the final time, and then go to our remote ‘deep’ field sites to work. This is the third largest camp on the Antarctic continent this season, and is helping various science teams carry out research, such as in biology and on fossils, geology, and on the ice sheet (for example, how it flows). The camp allows teams such as ours to reach by helicopter and twin otter plane more remote locations this year in central Antarctica, which is normally very difficult.

First, Kathy and Mike R fly to the first of our major camps, at Mount Howe. The next day, Mike K and Nicole fly.

Loading gear (including a snow mobile!) into the Twin Otter to fly to the Mt Howe Camp

We use a twin otter plane to take all of our gear, including a snow mobile, and only two people can go at a time. The trip takes about two hours each way. This is the first time Mike K and Nicole really get to see Antarctica. The flight is one of those unique experiences of a lifetime as we fly over the mountains high enough to poke through the Antarctic ice sheet. Upon arriving, camp is set up (fortunately Mike and Kathy get much of this done the first day), including two three Scott tents and a mountain tent. One Scott tent is our bathroom – one of the most important tents to go up! Mike K’s tent will act as a dining room and kitchen.

Flying across the Transantarctic Mountains - a unique experience of a lifetime

Using a GPS, we figure out the South Pole is only 184 miles from our camp. Less than 3 hours if we are driving on an interstate in the US.

Mike, Kathy and Nicole

Setting up the camp at the Mt Howe field site

Survival training in Antarctica – aka Happy Camper

Using Rocks to Decode Antarctic Climate - Thu, 01/20/2011 - 22:48

We survived Happy Camper survival school! This is essential training for anyone who goes into the field on the coldest most remote continent on Earth. Kathy took hers 4 years ago. We learn to build snow trenches for survival and all things related to camping in the cold, although we still appreciate that it is warmer here than back home (in the 30s, dry and sunny). Also, everyone goes through snowmobile basic repair and use, rock climbing 101, and crevasse rescue training.

Happy Camper - required two day/one night class where one camps outside, learns about all the camping equipment, and shows he or she can deal with the elements, before being sent out into the unknown

Tomorrow is the last day before flying out to the remote CTAM (central Transantarctic Mountains) camp that we will use a base for getting to Mt Howe and Mt Achernar. Mike Roberts, our mountaineering guide, uses the last day to give one more crevasse-rescue training course.

Mike Kaplan from Lamont practicing rock climbing, in preparation of the field trip to the Transantarctic Mountains

We learned how to stop a fall down a steep slope, set up rescue systems and traversed around an ice fall to learn to recognize and avoid crevasses. Upon our return, we found out that our flight will be delayed a day. Very typical for Antarctica!

Mike and Nicole

Antarctic Impressions

Using Rocks to Decode Antarctic Climate - Mon, 01/03/2011 - 15:47

It’s great to be back on this amazing continent.  I certainly never tire of the beauty of this place.  Well, I wouldn’t call McMurdo a beautiful place, but it is buzzing with activity and provides great support for the scientists.  Things are much the same here as 4 years ago when I was last on the ice.  Dozens of science groups work out of McMurdo station, which acts as a hub of activity for a wide range of scientists, including geologists, biologists, glaciologists and atmospheric scientists.

McMurdo Station is the largest Antarctic station and the logistic hub of US-lead Antarctic research

Many groups, like ours, utilize McMurdo as a place to organize field gear for camping trips to distant sites on the continent to collect samples.  Others groups stay in McMurdo to conduct experiments on samples collected nearby.  All the science groups have small offices and some work on high tech equipment here in the Crary Lab.  This is an amazing resource, particularly in terms of support staff who really work hard to help us out.

An exciting new addition to the local scenery is the small group of windmills erected to generate power for this energy hungry place.  My understanding is that this effort was led by the New Zealanders, whose base (Scott Base) in only about a mile away.   Luckily, the international cooperation between the NZ and US Antarctic programs means that McMurdo is benefitting from this great ‘green’ experiment in power generation.

Mt. Erebus (77°32'S, 167°10'E), Ross Island, Antarctica is the world's southernmost active volcano

McMurdo station rests on the South West tip of Ross Island, which is dominated by the active volcano, Mt. Erebus.   As a current resident of the rather flat state of Indiana, I take pleasure in temporarily living on the flanks of a volcano rising more than 12,000 ft above sea level, with its nearly perpetual puff of smoke at the summit.

Kathy Licht, IUPUI

Pages

 

Subscribe to Lamont-Doherty Earth Observatory aggregator