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The purpose of Computer Aided Lean Management (CALM) is to enable operational 

innovation through the deployment of software algorithms.  Lean management is a 

methodology for efficient enforcement of process rigor and discipline in order to 

dramatically cut costs and improve operations of an enterprise (see 

http://leanenergy.ldeo.columbia.edu/ogj).  This software development will also reduce 

operating risk, enhance customer service and reliability, and increase the assurance that a 

new design introduced to the “market” will be effective.  CALM is software-controlled 

lean systems integration that drives breakthroughs in cost and risk reduction.  Operational 

innovation within an energy organization will be enabled through the integrated 

deployment of three major software systems that we call the Integrated System Model 

(ISM): 

 Product modeling – High resolution model of physical infrastructure. 

 Business process modeling – Capturing detailed process and work flow 

information in order to track and measure performance on a daily basis with a 

goal of optimizing these processes. 

 Machine learning system - Diagnostic analysis of historical and operational data 

captured in existing data as well as from Product model and Business Process 

model outputs to predict and/or prioritize required operations and maintenance of 

an energy company’s business. 

CALM is a methodology for running a business based on the common sense approach of 

measuring the results of actions taken and using those measurements in an experimental 

way to design new processes that drive out inefficiencies.  In the ISM we will have 

models of the business where alternatives can be explored to find the innovations 

required to improve the company’s performance.   

 

The ISM will provide the tools needed to “see” the competitive landscape or environment 

the company operates in.  Some the feedback to improve performance will be provided 

by the machine learning tools being developed in this project.  The company will need 

these tools and will need to adopt CALM in order to become more adaptive and therefore 

better able to perform successfully in the future as the “business we are in” changes.    

 

The adoption of CALM is expected to provide the enterprise with a significant 

competitive advantage in its existing core business of electric and gas utilities.  This 

competitive advantage may be used in the future to enable mergers and acquisitions 

where significant synergies are achievable in both SG&A and operational departments 

http://leanenergy.ldeo.columbia.edu/ogj
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(synergy savings traditionally unachievable) through deployment of this platform.  In 

addition, the development of a professional services firm that can support the deployment 

and on going decision making for operations and maintenance support for other 

companies is a strategy of business growth that will be analyzed at a future date. 

 

Chapter 1: What is Computer-Aided Lean Management 
 

Computer-Aided Lean Management (CALM) is software-controlled Lean Systems 

Integration that drives innovation toward breakthrough cost and cycle-time savings. This 

methodology is used throughout the communications, chemical processing, aerospace, 

automotive, and other high-tech manufacturing and processing industries, but is not yet 

widely used in the energy Industry.  This tutorial sets out the background, logic, and 

processes and systems engineering changes needed for a company to migrate to Lean 

Management.  There are extensive websites for Lean accessible through Google, but two 

of the most relevant are maintained by the Lean Aerospace Institute at MIT  

(http://lean.mit.edu) and by us at Columbia University’s Lamont-Doherty Earth 

Observatory (http://leanenergy.ldeo.columbia.edu). 

 

 
 

Lean Management Background 

 

Lean management is a methodology for efficient enforcement of process rigor and 

discipline in order to dramatically cut costs and improve cycle times of all operations of 

http://lean.mit.edu/
http://leanenerrgy.ldeo.columbia.edu/
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an enterprise.  It is an outgrowth of IDEF (Integrated Definition) modeling in aerospace 

manufacture that was pioneered by the US Air Force in the 1970’s. 

IDEF is a methodology designed to model the end-to-end decisions, actions, and 

activities of an organization or system so that costs, performance, and cycle-times can be 

streamlined and optimized. IDEF methods have been adapted for wider use in 

automotive, aerospace, military, pharmaceuticals, and even in the software development 

industries.  Toyota is now the most famous practitioner, with their Lexus divisions 

“Continuous Pursuit of Perfection” its most prominent call-sign. 

 

There are now 16 subsystems for IDEF that model function, information, and data flow 

and simulate processes, design, ontology, improvement, systems architecture, and the 

organization's networks. There is even an auditing IDEF.  As an example of the process, 

IDEF methods are used to model the functions of an enterprise, creating a graphical 

model, or roadmap, that shows what controls each important function, who performs it, 

what resources are required for carrying it out, what it produces, how much it costs, and 

what relationships it has to other functions of the organization. 

 

Computer-based IDEF simulation of the enterprise has been found to be efficient at 

streamlining and modernizing both companies and governmental agencies. IDEF 

methods are maintained by the National Bureau of Standards, through the Knowledge-

Based Systems company (see http: //www.idef.com). 

 

GE 

 

First Motorola, then famously GE, developed Six Sigma principals of lean management 

that can be traced to roots in IDEF modeling. At GE, Six Sigma has grown into more 

general "lean engineering" principles that are rigorously enforced throughout the 

organization.  Software is used to make the entire manufacturing system transparent and 

measurable, whether it's a light bulb, electric generator, or jet engine factory. GE requires 

process mapping of the "as is" condition of whatever system is to be improved, 

establishment of baseline metrics, identification of where the waste is occurring, planning 

of the improved "to be" process—all on the computer before change is authorized. 

 

Then, software controls the implementation of the innovation plan, with constant reviews 

of performance metrics along the way. As good as its technologies are, GE does not 

differentiate through innovation itself so much as through execution of the systems 

integration processes required to manage innovation, whether it is new product or the 

manufacture of old, reliable light bulbs. 

 

Toyota 

 

The most famous IDEF derivative is the Lean Automotive engineering model at Toyota. 

The Japanese derivatives Kaizen, Kaikaku, and Judoka can, in turn, be found at the base 

of process improvement methodologies of most other major innovation companies, both 

inside and outside the automotive industry today. The Toyota process management 

methodology is "bottom-up," consisting of "learning steps" of skill and knowledge 
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acquisition, followed by "standards building" so that metrics of improvement can be 

mapped out. Only then does the "do action" start (sound like Six Sigma?). 

 

 
In particular, significant improvements in lean engineering were made by Toyota in 

dealing with its subcontractors. Toyota realized that everything from just-in-time 

inventory delivery to total-quality-management, to adoption of new innovations, all 

depend as much on the performance of its outside suppliers as with itself. 

 

At Toyota, corporate investments in new technologies include not only acquisition and 

venture investments, but also loans, and sometimes, outright gifts to suppliers to get them 

to buy into the Toyota lean management system. Why go to all that extra expense? 

Metrics and performance standards can then be tracked all day, every day throughout the 

"greater organizational system." 

 

Toyota begins with a road mapping of existing processes so that a plan for migration 

from "unhealthy to healthy" processes can be planned (Fig. 1, top). Boeing, GE, 
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Lockheed-Martin, and countless other great corporations throughout the world have 

adopted and modified Toyota's model. In fact, if GM, Ford, and Chrysler can successfully 

convert to lean then surely the energy industry can, too. The level of software rigor 

increases steadily up this improvement ladder. Toyota has described how to manage the 

learning of lean processes with its Jidoka strategy that defines five levels of growth: 

 

Level 1 requires the benchmarking of the existing manufacturing processes, whatever 

they are, to create a baseline to measure future progress. In addition, employees and 

subcontractors are all introduced to lean process theory. They are challenged to stop 

measuring specific actions and instead think of each and every process in terms of the 

whole system they are producing. It is only the cumulative results of all those actions that 

results in a quality product. 

 

In Level 2, powerful software tools are put into place to build and enforce standards and 

identify and eliminate waste in materiel, machines, effort, and methods. 

 

Level 3 tools escalate to the introduction of a common, 3D solid model for all to use to 

standardize and streamline work. 

 

Level 4 introduces a continuous improvement plan. 

 

Level 5 finally achieves lean management. 

 

Boeing put Computer Aided into CALM 

 

Perhaps the best developed evolution of the IDEF model is at Boeing. Their project life 

cycle process has grown into a rigorous software system that links people, tasks, tools, 

materiel, and environmental impact of any newly planned project before building begins.  

Routinely, more than half of the time for any given project is spent building the 

precedence diagrams, 3D process maps, integrating with outside suppliers, and designing 

the implementation plan, all on the computer. Once real activity is initiated, an "action 

tracker" is used to monitor inputs and outputs versus the schedule and to deliver metrics 

in real-time throughout the organization. When the execution of a new airplane design 

begins, it is so well organized that it consistently cuts both costs and build-time in half for 

each successive generation of airframe.1 And, of course, it is paperless. Boeing has found 

that these cost and cycle-time savings can even be accomplished on one-of-a-kind 

production projects such as the X-32, X-45, and X-50 experimental air vehicle. 

 

At Boeing, for example, the ratio of computer-aided design to assembly line 

manufacturing time went from 1:5 before their experience with development of the 777 

aircraft to 5:1 after using Lean processes for building that aircraft.  They are 4 

generations beyond that plane now, and they have succeeded in cutting the time AND 

cost by 50% for EACH new generation of plane using CALM. 
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Why CALM for the Energy Industry 

 

There are, believe-it-or-not, many similarities between the automobile, computer, and 

aerospace experiences and those in the energy industry.  All require large-scale systems 

integration of complex engineering processes. They involve multiple suppliers that are 

global, and there are many common suppliers to each owner.  Lean management provides 

for earlier engagement of integrated development teams, improved access to new 

technologies, earlier rigor to "go/no-go" decisions, and an enhanced resource base and 

skill level of its managers and engineers.  In this time of the "graying-of-the-industry," a 

lean energy revolution would also open up an entirely new employment pool: aerospace, 

computer and automotive engineers and managers.  These lean thinkers would bring a 

fresh look to the elimination of customization, complexity, and interface conflicts. 

 

Lean Energy Management would lower costs through more commonality in supply, 

compress cycle times, produce projects that are all on time and to budget, allow no "train 

wrecks," drive innovation matched to need, and improve first year operability to 90% or 

better—all these improvements have been driven by the lean aerospace and automotive 

models, and can be expected if they can be adapted successfully into a "lean energy " 

management model for the energy industry. 

 

Lean Energy Management a frontier much like landing on the moon was in the 1960’s.  It 

is the equivalent of a “moonshot” for the energy industry.  The challenge is twofold: Deal 

with the risks and uncertainties of the technological frontier, while at the same time 

reducing the costs and cycle time required to exploit the resources by half or more.  Lean 

management processes and tools have created fundamental improvements elsewhere only 

because the "behavior" of the entire system was fundamentally changed. 

 

As with automotive and aerospace workers before, the energy industry will encounter a 

predictable set of reactions to these lean energy concepts, processes and tools: 

 

1. You don't understand our business; ours is harder; the offshore is different. 

2. We don't need lean; we just need to be quicker and cheaper in what we do now. 

3. We are already using lean; we're doing that, and that, and that U as each new level is 

introduced. 

4. But only design/build will benefit from lean processes, not HR, not finance, and 

certainly not operations. 

 

Lean energy management will take any company several years to fully implement, and 

the above reactions must be worked through. Examples of success become critical 

teaching tools to overcome the considerations of the risks involved in conversion. Honest 

awareness of previous "train wrecks" and a realization that technologies alone will not 

produce the step change improvements promised by lean management are two human 

barriers to overcome. Fundamentally, lean is a people-process, and "soft side" change is 

hard to achieve. 
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Chapter 2: What is Computer-Aided Lean Energy Management  
 

Lean energy management is a methodology and software tool set that seeks to integrate 

all design processes into one openly shared, enterprise-wide model of the operations and 

processes of the company. CALM addresses planning, construction, installation, and 

maintenance, all together inside the same integrated systems model. However, the 

uncertainties unique to the industry’s economic evaluation, appraisal, fabrication, 

installation, and design, will have to be integrated into the CALM if we are to succeed in 

transferring lean efficiencies to the energy industry.  Such a paradigm shift to CALM 

should immediately affect positively on cash flow and profitability. 

 

The initial objective of CALM will be to exploit the potential for significant 

improvements in cost and cycle time savings by addressing the integration of Operations 

and maintenance practices to eliminate what are called “White Spaces” – idle times in the 

workflow process when detection is missed, parts are not delivered on time, assets are not 

efficiently deployed, and silo’s of responsibility are not effectively crossed. 

 

 
 

CALM tightly integrates: 

 

1.  Lean tools for appraisal, planning, construction, operations, all the way to 

abandonment, with 

2.  Lean processes in the organization for planning, scheduling, supervisory control, 

regulation, management, security, and environmental impact. 

 

Included are major cost reductions and operability gains from enhanced project visibility 

and transparency, increased innovation, and the sharing of knowledge and understanding 
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throughout the enterprise. These gains can come only IF the vast majority of the people 

of the enterprise adopt lean management practices and break from the past to make it 

happen. 

 

 
 

 

The implementation of CALM requires first and foremost, a better understanding of how 

lean processes and tools are able to perform more accurate design studies, account for 

uncertainty, and eliminate waste in the fabrication of offshore facilities. 

 

The six major systems components of CALM are: 
 

1.  Product life cycle management, combined with 

2.  A systems engineering approach to assist in the selection of the best concept to go to 

the select phase, which leads to 

3.  Feature-based design, which is then used for parametric modeling, morphing, and 

standardization driven by digital component libraries, that in turn facilitate 

4.  An integrated analysis process 

5.  Virtual model simulations that visualize the environment, workflow, and generate 

electronic work-instructions, and finally 

6.  Preventive maintenance and supportability plans that are developed on the computer 

before any actual Operations and Maintenance (O&M) changes begin. 
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CALM shortens time and cost by paradoxically maximizing the digital design time and 

preserving options, should later understanding of uncertainty yield a revised set of 

operational parameters as the project matures. This dichotomy of shortening cycle time 

while providing more decision time is a hallmark of the Lean Management processes. 

 

The six CALM processes eliminate waste and miscommunication, while assuring 

seamless information flow downward and amongst the owners and the contractors 

involved in any job.  However, this change requires major redefinition of 

Information Technology departments, in particular.  No longer is “ownership” of 

data or computer processes confined to the IT department, CALM instead 

distributes it outward to the locations of the workflow itself. 

 

In another CALM paradigm shift that affects the IT department, integration of 

subsystems is enforced by software. When one engineer changes a design specification, it 

propagates instantly to all other users of the CALM software system.  Earlier supervisor 

involvement, changed needs for inspections, and many fewer parts, outages, and 

particularly rework orders, are the result.  Cost and schedule controls are transparent and 

available for all to see. A key to the success of CALM is the simulation of requirements 

and appraisal of needs using real options for quantifying cost versus added value of each 

decision along the critical path. Analyzing costs and defining the structures to be built or 

repaired, then planning the execution of the chosen designs, testing operations and 

evaluating the options required by customer and market uncertainties–all are done on the 

computer before the first piece of wire is laid or pulled. 

 

The reason for real options as a preferred choice over net present value in the CALM 

decision-making economic model is that real options require flexible operating principles 

to be applied to the "factory" whatever it is.  Real options are the modern way to 

quantitatively evaluate the costs and benefits of this flexibility. 

 

Another primary weapon of CALM is modeling.  Only if the system can be adequately 

simulated can we fully evaluate consequences before we take actions.  Battlefield terms 

such as situational awareness, global visibility of assets and inventories, distribution and 

transportation options, and optimization of logistical supply chains, then become 

important to the energy industry. 

 

Common actuators for CALM are single-source-of-product, standardization-across-

platforms, parts-grouped-into-assembly kits, and above all else, large-scale systems 

integration. Resulting improvements are a digital library that allows attributes and 

geometries of all parts to be matched to create standard configurations and suppliers. 

Reduced design, tooling, and manufacturing instructions, increased procurement & 

manufacturing lot sizes, and efficiencies that minimize artificial shortages and surpluses 

in manufacturing and support follow (just-in-time).  Below, we examine the six processes 

of CALM more directly and discuss the tools and processes required to enact each in the 

energy industry. 
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Project Life Cycle Management 
 

Project life cycle management (PLCM) seeks to link all data and processes across the 

appraise, select, define, execute and operate stages of all projects.  The result is faster, 

quicker, and better performance through enforced discipline, transparency and continuity 

of design and requirements over the full life cycle of each project. PLCM consists of a set 

of software tools that enforce this process rigor across the stakeholders all day, every day, 

throughout the life of each project. 

 

 
 

For example, everything works off the same model of the entire system being operated. 

Automatic data updates assure linkages between analysis, simulations, and ultimate 

designs, shortening the definition and testing cycle. "Smart software" flags interferences 

among bulkheads, electrical wiring, and piping. A digital parts library is integrated into 

the conceptual design process to limit the number of components and increase 

commonality among projects. Requirements and objectives are clearly recorded for all to 

see. 

 

Risk management tools are used throughout to identify, assess, categorize, and strategize 

through a formalized risk mitigation process. An integrated planning process creates 

precedence diagrams for all subsystems and then computes a resource load schedule for 

critical paths. It tracks actions and provides daily progress metrics to all indicating actual 

costs and time versus plan for suppliers as well as owners. Assembly is planned on the 

computer, and a process map is created from start to finish of the project and signed-off 

by all before physical construction begins. Budgets are prepared from this bottom-up 

process map. All this is done with commercial, off the shelf software (COTS) to assure 

availability throughout the chain of responsibility, including all subcontractors. Activity 

pert charts and electronic work instructions are then issued, and task load schedules are 

calculated so the project can be staffed. PLCM provides a single source for all 



©  Roger Anderson and Albert Boulanger 

12 

procurements and bills-of-materiel. 

 

 
 

 

Modularity is built into the PLCM system through software enforced distribution of the 

operating model. Electronic schematics, routing and installation layouts, subsystems 

analyses, and virtual prototyping are all shared with relevant suppliers by the software so 

that version mismatches, modifications that are incompatible with each other, and module 

conflicts are identified in the model long before any construction or repair occurs. 

 

Lean Systems Engineering 
 

In aerospace, avionics engineers have traditionally used systems engineering to do their 

work, whereas vehicle and hardware engineers have designed components first and 

evaluated their performance later. The latter methodology is closer to that used by 

electrical engineers. Lean energy management uses the systems engineering approach 

throughout the enterprise, a process that has proved far more efficient from both a cost-

saving and time-saving standpoint.  It requires that all significant owner and contractor 

requirements are thoroughly understood before a specific solution is developed to address 

these requirements. All disciplines (structural, manufacturing, quality, security, support, 

etc.) participate in the CALM systems engineering analysis. 

 

Effects of modifications to one system can then be analyzed for adverse effects to other 

systems.   Conflicting issues always emerge among fabrication, weight, cost, 
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accessibility, maintenance, safety, and schedule. As these conflicts are resolved on the 

computer, the form, cost, and performance of the likely optimal system design or 

modification slowly emerges. Lean systems engineering data flow starts with the 

customer needs, objectives, and requirements described in terms of real options. This 

leads to requirements analysis and carpet plots that evaluate the uncertainty window.  A 

large scale, full system scenario is then simulated that evaluates the responsiveness of the 

design to variances caused by uncertainty, such as price volatility or unusual component 

wear and tear.  Real options are used to identify and assess the relative value of solutions 

to the uncertainties in the simulation. 

 

The key is to design-in flexibility in both the surface and subsurface "factory floor" and 

to use real options in the decision procedure to enforce quantitative rigor. Gap analyses 

are conducted to further refine the concept and add lessons learned from the best 

practices database. Operational, safety and environmental issues are then examined. 

Performance metrics are designed to monitor implementation. Metrics that track 

owner/contractor relationships and cross-organizational performance are particularly 

important to define, and efficiencies can then be proved. All this is done on the computer 

before any construction or repair begins. 

 

Feature-Based Analysis 
 

The emergence of design conflicts leads to more and more in-depth computational 

analysis, or feature based design and integrated systems analysis.  These analyses focus 

in very specific areas, addressing unique issues that arise through simulations of 

variability. The critical conflicts usually cross disciplinary boundaries and involve three 

or more processes that in the "old way" would seldom have discussed alternatives with 

each other until after the need for painful reworking became obvious. 

 

As the re-configuration matures, many of the most difficult issues re-appear. Electronic 

signoff then freezes features one after another until the "preferred design" emerges.  A 

configuration baseline emerges in the feature based design process, whereby conceptual 

assembly layouts and "build to" packages are designed using the digital parts library. 

These, in turn, automatically define supportability requirements.  Integrated systems 

analysis is then used to test functional capabilities of the new assemblies, their ties to 

central control, and multiple subsystem integration capabilities. Functional electrical 

schematics and logic diagrams are then automatically generated for each subsystem.  A 

virtual prototype of the new configuration emerges, ready for the supportability 

simulation. 

 

Virtual Supportability 
 

Virtual supportability tools then simulate the "factory floor" or field operations to layout 

the most efficient construction or repair sequence for each project. Virtual supportability 

takes model scenarios and adds operational and maintenance evaluations. It incorporates 

simulations of complicated maintenance tasks, including placing human sized repair 

crews into a virtual reality environment to make sure tolerances will allow maintenance 
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access. The supply chain is laid out along with procurement sequences. Historical 

requirements, forecasts, and consolidation of demand (turn rates) are used to determine 

appropriate sourcing and just-in-time delivery schedules. Virtual support begins the 

operator training process using operational and maintenance tasks even as the 

reconfigurations are being constructed.   

 

Evaluation of Cost-Cycle Time Gains 
 

How can the energy industry effectively evaluate the risks associated with conversion to 

CALM processes and tools?  Until there is a substantial track record of CALM 

improvement, cost and cycle time impact can be estimated by considering the following 

steps applied to all the process subsystems: 

 

 •  Use previous project experience of your personnel to describe the as is state of project 

subsystem tasks. 

 •  Define savings based on other lean industry performances at similar subsystem tasks. 

 •  Add uncertainty factors for industry differences (may initially be as high as 50%, but 

will drop over time. 

 •  Add in worst case delays and confusion from first-time use of CALM tools and 

processes. 

 

Contrast the economic value of these risks against estimates from your own personnel of 

the positive value of: 

 

 •  Reduced instruction ambiguity. 

 •  Faster reviews of options. 

 •  Earlier scheduling decisions. 

 •  Better supplier and fabricator collaboration. 

 •  Improved visibility of the total project. 

 •  Improved change-order management. 

 •  Reduced site queries. 

 •  Better health, safety, and environmental impact assessments. 

 •  Improved interfaces between contractors for hookup and commissioning. 

 •  Supply chain improvement. 

 

The major difference between CALM and what the energy industry uses today is that the 

tools and processes for each task are not currently integrated to implement a system-wide 

model.  In today's xml and web-services world of COTS software, tools can be integrated 

to produce the required seamless digital environment. The value of that transformation 

should become evident as the checklist described above is worked through. Once 

installed, the CALM system must then be kept open to best-in-breed improvement 

solutions. Most importantly, people must re-invent their workplaces. All stakeholders 

must work together before the required cost and cycle time savings from lean energy 

management can be fully realized. 

 

 



©  Roger Anderson and Albert Boulanger 

15 

 

 

Chapter 3: Implementation of CALM 
 

In order to implement Lean Energy methodologies, process and economic models must 

be constructed that integrate horizontal stages of development from appraisal, through 

planning, construction, and operations all the way to abandonment, with vertical levels in 

the organization from planning, through scheduling, supervisory control, regulation, 

reservoir management, engineering decision making and environmental impact.  

Industries such as automotive, aerospace, pharmaceuticals and the military have cut 

CAPEX and OPEX costs and cycle times up to 25% yearly through Lean practices 

(Anderson, et al, 2001, Anderson and Esser, 2000, Saputelli, et al, 2000). Such a 

paradigm shift to Lean Energy systems will immediately affect cash flow and 

profitability of energy developments to the same degree as in these other industries. 

 

Pain that Lean Energy Management and Economic Models address: 

1. Eliminates the "Wish I could have seen it coming" 

2. Failure Models become predictive 

3. Expedites cost out analyses 

4. Estimates risk & return on all investments 

5. Identifies solutions quickly 

6. Selects only the most efficient processes 

7. Verifies that work is being done on schedule and on cost 

8. Eliminates latency in getting the right data to and from the right people 

9. Improves the whole system performance for its whole life-cycle 

 

Lean Energy Management requires significantly more integrated software tools than are 

currently utilized by the petroleum industry to assure that all gaps are filled and 

connectivity maintained among a large number of contracted principals, as far-field 

industries have discovered over the last 20 years. As we have seen, Lean processes have 

spread throughout not just the aerospace (Boeing and Lockheed Martin) and automotive 

(Ford and Toyota) industries, but also in computers (IBM, Dell) and general 

manufacturing (GE, and United Technologies). 

 

Most "energy factories," such as refineries and petrochemical plants, nuclear and electric 

power generation facilities, and energy transmission and distribution systems have 

processes that are centrally controlled by operators monitoring supervisory control & data 

acquisition (SCADA) sensors distributed throughout the field operations. The National 

Aeronautics & Space Administration's Mission Control exemplifies this type of control 

center methodology that uses computers to keep operators up to date with measurements 

that monitor the real-time conditions of the system, whatever it is.  Next generation, the 

central control centers are migrating to the field operations themselves.  Two-way 

communications is required in real-time.  Not only is information on the state of the field 

operations now being delivered to all users in near real-time, but support has begun to be 

distributed to process control decisions being made at any given time and condition at 

each remote site. 
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Figure. Predicted impact of Lean Energy methodologies based on aerospace results. 

 

A general term for this progression in computer support is, from "information" to 

"knowledge" management. Optimization of the enterprise is being augmented with 

"learning systems" that "close the loop" to empower control center personnel to take 

actions to modify processes based upon the lessons learned from analysis of past-

performance and real-time market conditions. 

 

Modern Knowledge Management in CALM 

 

This evolution in knowledge management can be illustrated in terms of common games. 

The TV show "Jeopardy" can be won consistently if information is managed efficiently. 

A laptop computer these days can win every game. All that is required is a good 

encyclopedia in its information database and a "Google-like" rapid data mining 

capability. Backgammon is a step up from "Jeopardy" in complexity. A computer again 

can be trained to win every game, but it must be programmed to deal with the 

uncertainties introduced by the throw of the dice. Moves must be re-computed at each 

move based on a changing board position.  Chess is another matter, however. Strategies, 

end-games, pattern recognition, and tactics must all be mastered, in addition to managing 

information and uncertainty. A few years ago, IBM tied for the World Chess 
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Championship, but it required a dedicated supercomputer, "Big Blue," to sort through all 

possible future moves as the game progressed.  Last year, an Israeli minicomputer beat 

the human chess champion of the world. The machine used machine learning (ML) 

technologies to recognize patterns, evaluate likelihoods of success of move sequences, 

and optimize board positions and strengths. It did not compute every possible move for 

every possible contingency to the end of every possible game, as Big Blue had. 

 

This illustrates the progression first from information management to knowledge 

management and now to what is called "machine learning." ML promises to further 

revolutionize process control in all of the diverse industries mentioned above, from 

aerospace and the military, to refinery and petrochemical plant control, to the 

pharmaceutical and automotive assembly.  How does the energy industry adapt its 

decision support systems to this new knowledge management paradigm?  Progress in 

three dimensions is required. We must simultaneously climb the knowledge ladder, close 

the feedback loop, and add ML to our enterprise management systems. 

 
 

The knowledge ladder 

 

The best known plane of the cube for improving process control is the "knowledge 

ladder." Migrating from data management to information management allows 

relationships among data to be defined. Adding pattern recognition converts the 

information to more actionable information about how the system works. But this is still 

not knowledge. 

 

Knowledge requires people. There have been many failures from not recognizing this 

human requirement to get from information to knowledge. That said, there is a role for 

knowledge management tools and best-practices capture at this level, but it must be 
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recognized and is a core concept of the lean approach, that knowledge is fundamentally 

in the minds of people. 

 

Closing the feedback loop 

 

In order to attain the conversion of data into wisdom, computer models must evolve from 

just providing possible operational scenarios to being capable of modeling whole system 

performance. Consistency and linkages among the many "silos" of management 

responsibility must be modeled first before they can be understood and implemented. 

 

Then models must become dynamic rather than static. That is, time-lapse information 

must be used to continually update the control model with system interactions and 

feedback. 

 

Finally, adaptive models have been developed that execute the process based on 

continually evolving evaluation of performance. The feedback loop must take incoming 

data, translate it into actions, evaluate the effectiveness of those actions, and then modify 

future actions based upon a likelihood of success. 

 

Machine Learning 

 

Perhaps the least understood of the knowledge planes is ML. The natural progression is 

from understanding data, to modeling the enterprise, to the addition of new ML 

technologies that learn from successes and failures so that continuous improvement is not 

only possible but is the operational dictum. We know the energy industry has enough 

data and modeling capabilities to evolve to this new lean and efficient frontier. 

 

Whenever an event happens, such as the Aug. 14, 2003, Northeast US blackout or a well 

blows out, we set up a study team that quickly reviews all incoming field data, models the 

system response, identifies exactly what went wrong where and when, and develops a set 

of actions and policy changes to prevent the event from happening again. 

 

Progress up the ML plane requires that this data analysis, modeling, and performance 

evaluation be done all day every day. Then the system can be empowered to continuously 

improve itself before such catastrophic events happen to the system. 

 

ML uses computer algorithms that improve actions and policies of the system 

automatically through learned experiences. Applications range from data mining 

programs that discover general rules in large data sets such as principal component 

analysis to information filtering systems that automatically learn users' interests. 

 

Importance of CALM for field oriented industries 

 

This revolution is just beginning to be spread into the exploration and development of oil 

and gas fields because it is difficult to execute lean energy management at remote 

locations where "unplanned events" are the ordinary.  Lean processes require extensive 
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planning and simulation by integrated teams. Five times more work must be done on the 

computer to simulate possible outcomes as is done on the physical work in the field. 

 
It is easy for teams that are not fully integrated to fall into the "silo trap" by allocating 

support tasks to subgroups of narrowly focused experts. The tendency is to isolate the 

exploration of "what if" contingencies into those teams that are most comfortable with 

them. Only by supporting lean planning with vigorous software checks and balances that 

require integrated inputs across all teams can this trap be avoided. Anyone who has 

worked a very large development project offshore can probably recognize that cost and 

time overruns always seem to happen because of unforeseen events. Why were they 

unforeseen? 

 

Lean energy management requires that the exploration space for the risking of problems 

be ever expanding, with a feedback loop so that every new event from wherever it occurs 
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in the company's worldwide operations is captured in computer memory and can never be 

unforeseen again. 

 

In such a lean world, customization tendencies are fought at every turn, interface issues 

are dealt with continuously, and everything is measured so that it can be scored and 

formally managed via software support. This progression is well known in other 

industries as a natural path up the knowledge management cube. This description of lean 

energy management seems complicated, but in fact it is simple. There are five basic rules: 

 

1. A 5:1 ratio of modeling and simulation versus field operations U compared to standard 

practices in our industry of a 1:5 ratio! Spend 5 times more than today in upfront 

computing of possible outcomes and the plan to deal with them becomes a moneymaking 

proposition. 

 

2. The same operations model must be used by all. Everyone has the same model, and it 

is updated in real time. 

 

3. Metric everything, all the time! Only then can it be managed. 

 

4. Constantly ask whether you are making more money? And above all else, 

 

5. Long-term commitment from management is required. If you say you are already 

doing 1 to 3 but are not saving 50% in both cycle time and costs, then your company 

hasn't gotten the concept of lean yet. 

 

At Columbia, we have developed a series of implementation steps to migrate a company 

that is already good at knowledge management to process optimization and lean energy 

management using Machine Learning.   We begin by populating a series of matrices that 

are adept at learning, which we call suitability matrices because they describe the 

sequence from symptoms-to-problems and then problems-to-solutions for any given 

contingency. Composition and hierarchy are derived through the matrix formalization 

and used to guide the ML feedback loop towards optimal decision support. We map the 

"as is" processes before using the ML algorithms and human-in-the-loop feedback to 

recommend the "to be" state. 

 

Chapter 4: Implementation Steps of CALM 
 

Step 1. Encode Learning into a Simulation Model: It is absolutely necessary that all 

levels of “execution tree” understand and implement the lean practicum developed by the 

other industries. A model capable of simulating the operations of the “plant” is required. 

Capturing the decision trees from actions to subsequent reactions are therefore central to 

accurate simulations necessary for proper evaluation of profitable production scenarios 

throughout the life-cycle of ultra-deepwater plants.  Columbia uses a knowledge 

elicitation method we call the Suitability Matrix as a tool for building the Lean practicum 

and populating the simulator. The Suitability Matrix captures and encodes the knowledge 

from best practices elicitations from experts and knowledge bases. The suitability matrix 
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tool set includes a user interface that uses 3D visualization and web-based explanation 

with a graphical user interface to collect feedback from the experts in each company.  

 

Suitability Matrices also perform Gap Analyses, problems-to-solutions tracking, and 

construction of a “House of Quality”, a widely used method for mapping from customer 

requirements to product strategy. The latter contains the How, What, Where, Why, and 

How Much information that is used to evaluate Lean strategies and verify that there is not 

overlap of technologies or services. 

 

Step 2. Develop Real Options Capabilities for the Economic Model: Real Options are  

used in industries such as pharmaceuticals, aerospace, and on wall street as a guide to 

make quantitative evaluations of what is most likely to be useful to systems improvement 

through all life-cycle stages of a product Decision and financial science discipline must 

be developed and applied at all levels of the Lean system in the energy Industry, as well.  

Decision-making-under-uncertainty and conceptualization-to-product tools are absolutely 

necessary ingredients in the Lean Economic Model. They include not only Real Options, 

Gap Analysis, House of Quality, and Suitability Matrices (neural nets), but also EVA, 

Balanced Scorecards, and other more advanced metrics to actionable response tools such 

as the  Metrics Thermostat and The Virtual Customer. 

 

Step 3. Overlay a Reinforcement Learning Harness: Adaptive learning algorithms to 

"close the loop" are then required to assemble a Lean, gap-free integration of these core 

business processes. Once process integration is wired, it can be measured and online 

adaptive learning algorithms used to first monitor, then learn, based on gradients in the 

processes measured. Both the Real Option framework of Step 2 and the adaptive control 

in the Learning Harness of Step 3 have used dynamic programming as a means of 

evaluating future actions under uncertainty.  These are then integrated into a 

Reinforcement-Learning-Real-Option Evaluator that is then used to adapt and find 

systemic synergies among project efforts via simulations. The learning's from this system 

are applied to broader use through the Learning Harness. Parallel design evaluations then 

allow the Real Option valuator to drive cross-system optimization. Processes can then be 

transferred literally to new development planning for the Ultra Deepwater. 

 

Step 4. Create Transparent Performance Metrics: Performance metrics and their 

efficacy in tracking the improvements in innovation processes are critical to Lean process 

improvement. Traditional implementations like balanced score cards can be used with the 

learning harness to develop an adaptive control based Metrics Thermostat.  

 

CALM Implementation Details  

 
In order to implement CALM for a project, a company needs: 

 

 Identification of the Business Capability and enumeration of its objectives that 

define the required performance improvement 

http://www.ams-inc.com/readings/John/MetricsThermo.htm
http://mitsloan.mit.edu/vc/papers/VirtualCustomer.pdf
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 Road maps, chained matrices and simulation Models of the processes and 

workflows comprising the desired Business Capability 

 Tracking of the actions that effect the processes of the Business Capability – an 

Action Tracker 

 Metrics that quantify the response of the system to those actions 

 Identification of the locations of flexibility in the system, and Real Options for 

improvement of the Business Capability utilizing that flexibility 

 Continuous reassessment of internal and external Risks and Uncertainties 

contributing to the Business Capability 

 An automated means of then generating Steering Signals at all levels of the 

operation to drive the system towards more and more positive objectives – the 

feedback loop required for Machine Learning. 

 

 

The CALM principals are discussed in more detail below: 

 

Identification of the Business Capability 

 

The organizational barriers and relationships must first be described, and technologies 

and processes used by both system components and people in the project mapped. 

 

A Model of the System 

 

An axiom of control theory is: “to control a process, one first must understand the 

system well enough to model it”– either implicitly or explicitly. Using the chained 

matrices approach, one can first map the processes involved in a business capability. 

Later, a higher fidelity computer model representing behavior of an airframe, or how 

electric power flows, or a fluid simulation of a reservoir, must be integrated with these 

more discrete models.  For an oil and gas field, both the above-ground “plant and 

facilities” model and the below ground “reservoir” model are necessary for CALM.  

They, in turn, must communicate with each other and give compatible results. 

 

Action Tracking 
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Untold loss of intellectual and real capital occurs because of the lack of the recording of 

all the actions affecting a process.  We have found that realizing this capability often is a 

major IT problem because it requires tracking actions from application to application and 

person to person across the software inventory and people workflow processes of the 

Business Capability.  One must build a database of these software and people interactions 

in order to track actions, as well as build an archive of the context of each action.  They 

must then be "playable again" in a simulation mode, so that incorrect actions can be 

analyzed, understood, and prevented from happening again.  

 

Scoring the Responses to Actions 

 

CALM requires that metrics must be produced to score the response of the business 

capability to each action taken, so that the system can learn from and be optimized to 

better and better actions.  It is an amazing fact that in non-Lean organizations such as 

those in our industry, bad actions are consistently repeated, over-and-over again. 

 

Flexibility and Real Options 

 

This important step is at the core of the constant reevaluation of a Business Capability as 

Lean organizations improve and adapt to a world of increasing volatility. Since under a 

real option framework, there is value to adding flexibility under uncertainty, any system 

will be driven to maximize its locations of flexibility in lean implementation.  Several 

previous parts of this continuing series in Oil & Gas Journal have dealt with the need for 

real options evaluation methodologies in our industry. 

 

Continuous Reassessment of Risk and Uncertainty 

 

Likewise, risks and uncertainties must be continuously reevaluated. We envisage that oil 

and gas fields of the future will remotely use live price and expense data streams, and 

their volatilities, to generate control signals via CALM to optimize performance 

automatically. 

 

Automated Steering Signals to Optimize Performance 

 

The generation of steering signals is the critical part of CALM that is often missing from 

organizations.  We have discussed one mechanism for generating such steering signals 

using the Metrics Thermostat (see Part 5 of our Lean Energy Management series).  The 

Metrics thermostat is a way of using implicit, rather than observable, explicit models for 

generating the steering signals.  A more robust and scaleable approach is to map both the 

processes and steering signals at multiple levels using chained matrices based on the 

back-propagation algorithm from neural networks (Figure 7).  A method of generating 

steering signals in all kinds of business capabilities is presented in Webs, 1974.   In 

general, these steering signals must anticipate and adapt to external and internal 

uncertainties and locations of flexibility within the Business Capability, simultaneously, 

which is a step beyond both the metrics thermostat and back-propagation. 
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Putting it all together into a CALM System 
 

CALM has steadily evolved from simple process control to information and then 

knowledge management and currently to real-time optimization of the product being 

manufactured.  Lean systems not only tell the decision maker what might happen next, 

but they also present contingency information in a clear and concise way at all times. 

Operators particularly need help when multiple areas have significant problems at the 

same time, and lean decision support provides not only what is likely to happen next but 

also what are the risks and ramifications of different preventive remediation sequences. 

"Pain indices" that record actions taken then provide a basis for future ML so that the 

system gets better and better at its decision support and training jobs. 
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The CALM System can be used to advise or guide operators on what actions to take in 

the same manner that common car navigation systems are used to guide or direct car 

drivers. The Lean controller also continually tracks the current state of the drilling 

systems to provide look-ahead contingency analyses, a common practice in other 

industries. The Lean controller is configured to evaluate opportunities as real options (see 

previous parts of this series). The learning system uses feedback to generate actions or 

decisions that are always in the money (i.e., a martingale in business terms) with respect 

to both financial profitability and engineering efficiency. 

 

Chapter 5: The Future of Computer-Aided Lean Energy Management   

 

Assembled together, the Encoded Learning, Real Options Reinforcement Learning 

Harness, and Performance Metrics tracking form an Economic Model that drives all 

management implementation decisions.  Lean Innovation Management then has an 

Economic Model or “Engine” that will continually address the following basic 

challenges: 

 

 The functional process-mapping cuts through much of the complexity that clouds 

understanding of the real drivers in product design, fabrication and operation 

under constantly changing uncertainty. 

 It is easy to modify/update so that the mapping of new architectures can be 

incorporated easily to keep the fully integrated system dynamically viable. 

 The Lean Energy system builds a “held-in-common” process rigor for the ultra-

deepwater industry to advance the pace of innovation, and couples this capability 

with the option to expand the system to enable broader collaborations and new 

“out-of-the-box” architectures. 

 

Micro-Options: In turn, Lean Energy Management lays the foundation for silicon-based 

Micro-Options for the ultra-deepwater in the future. Within the next several years, 

inexpensive silicon will be attached to every component of all complex systems in 

aerospace, automotive, and general manufacturing.  These ubiquitous chips will have the 

following general characteristics: 

 

 Geo-located via GPS or other means such as wireless triangulation, inertial, etc. 

(There is the remaining challenge to communicate and geo-locate underwater 

components.) 

 Sensors, such a temperature, humidity, power consumption, light level, tilt, and 

acceleration will be incorporated into the silicon. 

 Product specifications -- physical, operational, and fiscal. Eventually enough 

silicon to even simulate different uses for itself. The real options available to each 

component will be embedded in its own silicon – thus enabling Micro-Options. 

 2-way Wireless (eventually UWB) to each component to form dynamic peer-to-

peer, self-healing, aware networks.  The network will bring the market to the last 

mile for real options valuation.  
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 Grid computing using these networks will be used for real option evaluation of 

the hierarchal system of components.  Plug and play modular design components 

will have a silicon face to them. These networks will be self-organizing, and self-

aware during the different phases of the lifecycle of a complex system 

deployment. 

 

The enterprise-wide use of these coming silicon-based Micro-Options for the ultra-

deepwater will include: 

 

 Design-Build: The silicon will be created as the design of components develops. 

The silicon will form a grid-computing network to simulate the operation and to 

optimize design decisions. This includes the economic and risk side. Training on 

future operations will use this network. 

 Fabrication:  The silicon will be attached to the component and will be used to 

track its completion. The master database for the whole platform will be the 

embedded silicon in all the components being fabricated. 

 Shipping and Deployment:  When shipped, the silicon attached to each 

component will form a vigilant self-organizing network aware of intrusion, theft, 

alteration, etc. During deployment the attached silicon will be vigilant for 

dangerous or harmful situations caused by bad construction, assembly methods, or 

cheating by the contractor. It will also be vigilant for ISO 9000/14000 and other 

future standards violations in deployment. 

 Operation: Once deployed the system of components will form a sensing and 

computational grid that will monitor itself and its environment. Smart Sensors and 

smart materials incorporated will form a vigilant system looking for variances 

from plan and simulating its own physical and economic performance. Real 

options valuation of operational decisions will be done at the lowest level and 

propagated upwards the system hierarchy. The peer-to-peer networked system 

will be able to simulate itself for adaptive control. Based on the reinforcement 

learning harness, the adaptive control will use dynamic programming to optimize 

its own operations. Real options valuation will be used as metrics along with 

others such as regulatory measures for safety, MMS, environmental and other 

regulations, etc. The master database of the operation will be the life-cycle silicon 

attached to each component. 

 Abandonment: The silicon will be vigilant for a safe and environmentally sound 

decommissioning and eventual recycling of certain components. Even in the scrap 

yard, the silicon has use. 

 

In the future, the distinctions of the life-cycle phases will become blurred. With Lean 

Energy Management infrastructure in place and operational in the ultra-deepwater, 

modular design, fabrication, assembly and operation will be driven by Micro-Options 

rigor and economic return-on-investment will skyrocket – the irony is that only such a 

“Lean Energy Revolution” will make it truly affordable in the first place. 
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Chapter 6: Machine Learning in CALM 
 

CALM requires that this data analysis, modeling, and performance evaluation be done 

all-day, every-day. Then and only then can the system be empowered to continuously 

learn in order to improve performance.  The increased costs for migrating to this new 

“sense and respond” operational framework are easily offset by subsequent decreases in 

Capex and O&M costs that have been documented in industry after industry.  

 

Add computational machine learning to the data analysis loop and you have what is 

termed an adaptive aiding system. A car navigation system is one common example of 

this.  The car’s GPS system learns when you make a wrong turn and immediately re-

computes a new recommended course-correction. It is the feedback loop of such CALM 

systems that contains the newest and most unfamiliar computational learning aids, so we 

need to step through the progression of technological complexity in more detail.  Actions 

taken based upon information coming in are objectively scored, and the metrics that 

measure the effectiveness of those actions then provide the feedback loop that allows the 

computer to learn.  In other words, once software infrastructure is in place, the continual 

recycling between decisions and scoring of success or failure throughout the organization 

are used to guide operators to take the best future actions. 

 

 
 

Computational Learning  

 

Computational or machine learning has proved effective at predicting the future in many 

industries other than energy (c.f. http://www.berkeley.edu/users/breiman). Luckily, the 

field of computational machine learning has recently extended the range of methods 

available for deriving predictions of future performance (Figure 2).  Examples of 

successful computational learning abound.  It is now used to interpret user queries in 

http://stat-www.berkeley.edu/users/breiman
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Microsoft Windows, and to choose web advertisements tailored to user interests in 

Google and Amazon.com, for example.  In aerospace, computational machine learning 

has driven the progression from flight simulators that train pilots, to computers that fly 

the plane completely on their own, and now to the newest Unmanned Combat Air 

Vehicles like the X-45 that can dogfight with the best “Top Gun” pilots.  Other successes 

are found in the progression from speech recognition to synthetic conversation, and now 

to synthesizers of journalism itself (see http://www1.cs.columbia.edu/nlp/newsblaster ).  

In the automotive industry, there are new navigational aids that can park a car, not just 

assist the driver.  Examples of other successful uses of machine learning are given in the 

on-line appendix for this article, available from http://www.ogjonline.com .   

Machine Learning methods effectively combine many sources of information to derive 

predictions of future outcomes from past performance.  Individually, each source may 

only be weakly associated with something that we want to predict, but by combining 

attributes, we can create a strong aggregate predictor.   Additional advantages of 

computational machine learning over traditional statistical methods include the ability to 

take account of redundancy among the sources of evidence in order to minimize the 

number of attributes that need to be monitored for real-time assessment and prediction.   

 
 

Suppose we want to classify a data stream into like-performing characteristics. If we have 

a lot of data about what we want to predict, we will need a complex function that uses 

almost everything we know about the object, and still we will have imperfect accuracy. 

To accomplish this, we must start with some already-classified example data we can use 

for training a Machine Learning (ML) system. ML techniques allow the system to find 

http://www1.cs.columbia.edu/nlp/newsblaster
http://www.ogjonline.com/
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good classifying and ranking functions in a reasonable amount of computer time for even 

the largest of data sets.  Although there are a wide variety of machine learning 

approaches, they have common features: 

   

1. Adding more data over time improves accuracy.  With just a few points, the 

ML algorithms can make an educated guess.  As the number of data points 

rises, the confidence and precision of the results rises also. 

2. Each ML technique prefers some explanations of the data over others, all else 

being equal.  This is called an “inductive bias”.  Different ML approaches 

have different biases. 

 

ML techniques mathematically combine the results of computations that produce a score 

for each object reflecting the estimation of its likelihood of doing something, like failing, 

from an evaluation of all the variables of the data for that object.  Those with the highest 

scores may be viewed as being predicted to fail soon.  The scores can be sorted, resulting 

in a priority order ranking for taking preventive actions among many similar objects.  

Which compressor in a large production facility to overhaul next is a common example. 

 

The data we wish to analyze will always have many dimensions -- each dimension is an 

attribute of the data.  For instance a compressor has a large number of attributes, such as 

its age, what it is used for, its load, its configuration, etc.  Every object analyzed by a ML 

algorithm is described by a large vector of these data points.  For example, compressor 

#433 has an age = 20 years; its location is 40’s field; its peak load to rating is 80%, …etc.  

If there are only two or three attributes per data point, we can view each reading as a 

point on either a plane or in 3-dimensional space.  We will usually have many more 

attributes than that, and thus be working with many dimensions. High-dimensional 

mathematics works in a similar way to the math of two and three dimensions, even 

though our visual intuition fails.  The techniques described below can be extended to 

thousands, or even hundreds of thousands of dimensions. Further, special algorithmic 

techniques have been devised to make the larger dimensionality problems manageable. 

 

Below, we describe the sophisticated mathematical approaches to machine learning in the 

simplest two and three-dimensional context so they can be easily understood.  Among the 

most basic problems attacked by ML is learning how to sort items into classes.  The same 

techniques can then be expanded from classification to rankings.  For instance, ML can 

begin by classifying which compressors are at extreme risk and which are not, at 

significant risk or not, at moderate risk or not, etc, and then the data can be used again to 

calculate a ranking of the risk of imminent failure for every compressor in the inventory. 

 

Modern ML methods called Support Vector Machines (SVMs) and Boosting have largely 

replaced earlier methods such as the so-called Artificial Neural Networks (ANNs ), based 

on a crude model of neurons.  ANNs and other early machine learning methods are still 

widely used in the oil and gas industry.  The modern methods have significant advantages 

over earlier ones. For example, ANNs require extensive engineering-by-hand – both in 

deciding the number and arrangement of neural units and in transforming data to an 

appropriate form for inputting to the ANN.  ANNs have been replaced in the financial, 
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medical, aerospace, and consumer marketing worlds by SVMs and Boosting because the 

new techniques use data as is and require minimal hand-engineering. Unlike ANNs, both 

SVMs and Boosting can deal efficiently with data inputs that have very large numbers of 

attributes.  Most importantly, there are mathematical proofs that guarantee that SVMs 

and Boosting will work well under specific circumstances, whereas ANNs are dependent 

on initial conditions, and can converge to solutions that are far from optimal.  Details and 

web links to more information on ML are in the on-line appendix. 

 

Support Vector Machines (SVMs) 

 

Support Vector Machines were developed under a formal framework of ML called 

Statistical Learning Theory. SVMs look at the whole data set and try to figure out where 

to optimally place category boundaries are that separate different classes.   In three-

dimensional space, such a boundary might look like a plane, splitting the space into two 

parts.  An example of a category might be whether or not a compressor is in imminent 

danger of failure. The SVM algorithm computes the precise location of the boundary -- 

called a “hyper-plane” -- in the multi-dimensional space. By focusing on the points 

nearest the boundary, which are called 

“support vectors,” SVMs define the 

location of the plane that separates the 

points representing, in our running 

example, compressors that are safe, 

from those that are in imminent danger 

of failure.  SVMs work even when the 

members of the classes do not form 

distinct clusters. 

 

 

In the Monte Carlo simulation 

approach, system reliability evaluation 

is performed by determining the state 

of each component and, by the 

application of an SF, assessing if the 

system succeeded or failed. A single 

simulation run or data captured from a 

crisis generates either a system success 

or failure, and multiple simulation runs 

or events 

can be used to determine the reliability 

estimator. Since the method requires a 

large number of SF evaluations, it is 

convenient to substitute this evaluation 

with a fast, approximated, algorithm?]  

 

 SVM is an estimation algorithm 

(“learning machine”) in which the 

Figure 14. Simplify the discovery of a decision boundary 

between a grouping of “go-decision” case-history 

outcomes in green versus “no-go” in red by cutting the 

dimensionality of the data being mined (whatever it is) so 

that the decision space can be described by only a few 

“support vectors” that define the space -- with error -- 

between the green and red clusters.  The computer 

algorithm that defines the surface is the “Support Vector 

Machine” 

 

http://en.wikipedia.org/wiki/Vapnik_Chervonenkis_theory
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training phase involves optimization of a convex cost function, hence there are no local 

minima to complicate the learning process. Testing is based on the model evaluation 

using the most informative patterns in the data (the support vectors). Performance is 

based on error rate determination as test set size tends to infinity. 

 

 

 

One of the simplest methods for classification is to: 

 

 View a training dataset as points, where the position of each point is 

determined by the values of its attributes within a multi-dimensional space. 

 Use SVMs to find a plane with the property that members of one class lie on 

one side, and members of the other class lie on the other side of the plane. 

 Use the hyper-plane derived from the training subset of the data to predict the 

class of an additional subset of the data held out for testing. 

 After validation, the hyper-plane is used to predict that future data is of the 

same class as those in the training set if it falls on the same side of the hyper-

plane. 

 

Finding a hyper-plane that separates two classes is fairly easy, as long as one exists.  

However, in many real-world cases, categories cannot be separated by a hyper-plane, as 

illustrated in Figure 3.  In SVMs, extra variables are computed from the original 

attributes to further separate the data so a classification plane can be found.  For example, 

two categories that can’t be separated with a simple line in one dimension (Figure 3) can 

be separated if we convert them into two-dimensional space by adding an extra variable 

that is the square of the original variable.  The data can now be separated by a hyper-

plane. 
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The breakthrough with SVMs was the discovery of how to compute a large number of 

variables, embed all that data into very high-dimensional space, and find the hyper-plane 

effectively and efficiently.  Another important aspect of SVMs is that the hyper-plane is 

chosen so that it not only correctly separates and classifies the training data, but ensures 

that all data points are as far from the boundaries of the hyper-plane as possible.  

Avoiding overdependence on borderline cases protects against “over-fitting,” a dangerous 

condition that produces “false positives” because the ML algorithm’s output has captured 

insignificant details of the training data rather than useful broader trends.  We might then 

conduct preventive maintenance on the wrong compressor in our running example. 

 

Boosting 

 

All companies struggle within limited O&M budgets to deploy enough information 

sensors to make preventive maintenance predictions, so it is critical to determine what 

attributes are really needed versus those that are less useful.  A ML technique called 

“Boosting” is especially good at identifying the smallest subset of attributes that are 

predictive among a large number of variables.  Boosting often leads to more accurate 

predictions than SVMs, as well. 

 

Boosting algorithms seek to combine alternative ways of looking at data by identifying 

views that complement one another.  Boosting algorithms combine a number of simpler 

classification rules that are based on narrower considerations into a highly accurate 

aggregate rule.   Each of the simple rules combined by boosting algorithms classifies an 

object (such as a compressor) based on how the value of a single attribute of that object 

compares to some threshold.  An example of such a rule is that anyone in a crowd is a 

basketball player if his height is above 7 feet. While this rule is weak because it makes 

many errors, it is much better than a rule that predicts entirely randomly.  Boosting 

algorithms work by finding a collection of simpler classifiers such as these, and then 

combining them using voting. Each voter is assigned a weight by how well it does in 

improving classification performance, and the aggregate classification for an object is 

obtained by summing the total weights of all the classifiers voting for the different 

possibilities.   

 

Voting increases reliability.  If each voter is right 75% of the time, taking a majority vote 

of three voters will be right 84% of the time, five voters 90%, seven voters 92%, and so 

on.  However, this only works if the voters are independent in a statistical sense.  If 

there’s a herd of voters that tends to vote the same way, right or wrong, it will skew the 

results, roughly as if there were fewer voters.  Boosting algorithms try to only pick a 

single representative voter from each herd: undemocratic, but effective.   In general, 

boosting tries to select a group of voters based on two competing goals: choosing voters 

that are individually pretty good and choosing voters that independently complement one 

another as sources of evidence of the correct class of a typical object.  In the following 

diagrams (Figure 4), the points in the left and center represent voters (not data), and the 

distance between voters corresponds to the extent of similarity in their behavior. 
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The series of diagrams in Figure 5 illustrates the way the separation planes are fitted.  

The simple example is run for only three rounds on only two variables.  In actual usage 

boosting is usually run for thousands of rounds and on much larger datasets. Boosting 

adds an additional classifier to the list for each round.  Before a given round, the 

examples are re-weighted to assign more importance to those that have been incorrectly 

classified by previously chosen classifiers.  A new classifier is then chosen to minimize 

the total weight of the examples that it misclassifies.  Thus, boosting looks for succeeding 

classifiers that make errors in different places than the others, and thus minimizing the 

errors.   



©  Roger Anderson and Albert Boulanger 

34 

 
 

 

In CALM, we use the machine learning tools that best fit each problem.  We try several, 

and usually one will work better on some portions of the data than the others.  Our 
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purpose in classifying is to gain fundamental understanding of the relationships between 

cause and effect among the many attributes contributing to the performance of each 

object.  CALM can then manage many objects as integrated components of a larger 

system.  Consider the real-life example in Figure 6.  A good initial predictor can be 

derived by just looking at the number of past failures on each component (green curve), 

but nothing more is understood about cause-and-effect from an analysis of only this one 

variable.  If in addition, we apply both SVM and Boosting, we gain insights into how the 

many attributes contribute to failure beyond just whether the component failed in the past 

or not.  SVMs have an inductive bias towards weighing variables equally.  In contrast, the 

inductive bias of Boosting penalizes members of what appear to be “herds.”   

 

 
 

SVMs often produce accurate predictions, but it is frequently difficult to get deeper 

intuition from them.  In other words, SVM classifiers are often “black boxes.”  Some 

insights may be possible if there are very few support vectors, but the number of support 

vectors rises rapidly with the amount of input data and the noisiness of the data. Boosting 

has a better chance of giving actionable results, and it is particularly good at identifying 

the hidden relevance of more subtle attributes – an important benefit when looking for 

what is important to measure for preventive maintenance programs. 

 

The above has described only static variables that do not change over time.  ML analysis 

of the sequence of changes over time of dynamic variables is an important additional 

determinant for root cause analysis in CALM.  Magnitude and rate of change of the 

variables can be used to derive the characteristics leading up to failure of a group of 

objects so that precursors can be recognized for the overall system.  For compressor 

failure, for example, accumulated cycles of load can be counted and added as an attribute.   

Such dynamic variables are important in fields such as aerospace, where airplane take-off 
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and landing cycles are more critical predictors of equipment failure than hours in the air. 

As these dynamic, time varying attributes are added to the ML analysis, new solution 

planes can be re-calculated every time a new data update occurs, and the differences 

between past solutions analyzed. Over time, the results migrate from prediction to 

explanation, and the feedback continues to improve prediction as the system learns how 

to optimize itself. 

 

Examples of successful machine learning abound in medicine and transportation, in 

particular.  Consider the progression from storing patient medical records to synthesizing 

patient data to reach a machine driven diagnosis. Or the progression from flight 

simulators that train pilots in how to fly to flight controllers that fly the plane on their 

own – even dogfight.  Other successes are in the progression from speech recognition to 

synthetic speech conversation, and from driver aids such as navigation to a car that can 

park itself. 
 

 

Reinforcement Learning Detail 

 

Reinforcement learning is learning what 

to do---how to map situations to actions---

so as to maximize a numerical reward 

signal. The learner is not told which 

actions to take, as in most forms of 

machine learning, but instead must 

discover which actions yield the most 

reward by trying them. Thus 

reinforcement learning can "close the 

loop" and as such represents a key step 

in fully realizing the potential of Know 

Management systems as discussed above 

(see Close the Feedback Loop).  In the 

most interesting and challenging cases, 

actions may affect not only the immediate 

reward, but also the next situation and, through that, all subsequent rewards. These two 

characteristics---trial-and-error search and delayed reward---are the two most important 

distinguishing features of reinforcement learning.  

Reinforcement learning is different from supervised learning, the kind of learning studied 

in most current research in machine learning, statistical pattern recognition, and artificial 

neural networks. Supervised learning is learning from examples provided by some 

knowledgable external supervisor. This is an important kind of learning, but alone it is 

not adequate for learning from interaction. In interactive problems it is often impractical 

to obtain examples of desired behavior that are both correct and representative of all the 

situations in which the agent has to act. In uncharted territory---where one would expect 

learning to be most beneficial---an agent must be able to learn from its own experience.  

Figure 15. Reinforcement learning closes the 

loop between sensing and acting. 



©  Roger Anderson and Albert Boulanger 

37 

One of the challenges that arises in reinforcement learning and not in other kinds of 

learning is the tradeoff between exploration and exploitation. To obtain a lot of reward, a 

reinforcement learning agent must prefer actions that it has tried in the past and found to 

be effective in producing reward. But to discover such actions it has to try actions that it 

has not selected before. The agent has to exploit what it already knows in order to obtain 

reward, but it also has to explore in order to make better action selections in the future. 

The dilemma is that neither exploitation nor exploration can be pursued exclusively 

without failing at the task. The agent must try a variety of actions and progressively favor 

those that appear to be best. On a stochastic task, each action must be tried many times to 

reliably estimate its expected reward. The exploration--exploitation dilemma has been 

intensively studied by mathematicians for many decades.  

One of the larger trends of which reinforcement learning is a part is that towards greater 

contact between artificial intelligence and other engineering disciplines. Not all that long 

ago, artificial intelligence was viewed as almost entirely separate from control theory and 

statistics. It had to do with logic and symbols, not numbers. Artificial intelligence was 

large LISP programs, not linear algebra, differential equations, or statistics. Over the last 

decade this view has gradually eroded. Modern artificial intelligence researchers accept 

statistical and control-theory algorithms, for example, as relevant competing methods or 

simply as tools of their trade. The previously ignored areas lying between artificial 

intelligence and conventional engineering are now among the most active of all, 

including new fields such as neural networks, intelligent control, and our topic, 

reinforcement learning. In reinforcement learning we extend ideas from optimal control 

theory and stochastic approximation to address the broader and more ambitious goals of 

artificial intelligence.  

A good way to understand reinforcement learning is to consider some of the examples 

and possible applications that have guided its development:  

 A master chess player makes a move. The choice is informed both by planning---

anticipating possible replies and counter-replies---and by immediate, intuitive 

judgments of the desirability of particular positions and moves.  

Table 5. Reinforcement Learning Terms

A policy (  ) is a stochastic rule by which the agent selects actions as a 
function of state. Also known as a control strategy. An optimal policy 
( *) maximizes award. There can be several optimal policies. 
Reinforcement learning methods specify how the agent changes its
policy as a result of experience.

A value function is the expected return from each state (V), or state -
action pair (Q), given that the agent follows a particular polic y. Also 
known as the cost -to-go function.

Š An optimal value function and greedy actions produce an optimal policy *

A trajectory is a sequence of actions guided by the policy over time to 
reach the reinforcement learning agentÕs goal.
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 An adaptive controller adjusts parameters of a petroleum refinery's operation in 

real time. The controller optimizes the yield/cost/quality tradeoff based on 

specified marginal costs without sticking strictly to the set points originally 

suggested by human engineers.  

 A gazelle calf struggles to its feet minutes after being born. Half an hour later it is 

running at 30 miles per hour.  

 A mobile robot decides whether it should enter a new room in search of more 

trash to collect or start trying to find its way back to its battery recharging station. 

It makes its decision based on how quickly and easily it has been able to find the 

recharger in the past.  

 Phil prepares his breakfast. When closely examined, even this apparently 

mundane activity reveals itself as a complex web of conditional behavior and 

interlocking goal-subgoal relationships: walking to the cupboard, opening it, 

selecting a cereal box, then reaching for, grasping, and retrieving the box. Other 

complex, tuned, interactive sequences of behavior are required to obtain a bowl, 

spoon, and milk jug. Each step involves a series of eye movements to obtain 

information and to guide reaching and locomotion. Rapid judgments are 

continually made about how to carry the objects or whether it is better to ferry 

some of them to the dining table before obtaining others. Each step is guided by 

goals, such as grasping a spoon, or getting to the refrigerator, and is in service of 

other goals, such as having the spoon to eat with once the cereal is prepared and 

of ultimately obtaining nourishment.  

These examples share features that are so basic that they are easy to overlook. All involve 

interaction between an active decision-making agent and its environment, within which 

the agent seeks to achieve a goal despite uncertainty about its the environment. The 

agent's actions are permitted to affect the future state of the environment (e.g., the next 

chess position, the level of reservoirs of the refinery, the next location of the robot), 

thereby affecting the options and opportunities available to the agent at later times. 

Correct choice requires taking into account indirect, delayed consequences of actions, 

and thus may require foresight or planning.  

Figure 16. Golf as a reinforcement learning problem. The value function is depicted as contours. 
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At the same time, in all these examples the effects of actions cannot be fully predicted, 

and so the agent must frequently monitor its environment and react appropriately. For 

example, Phil must watch the milk he pours into his cereal bowl to keep it from 

overflowing. All these examples involve goals that are explicit in the sense that the agent 

can judge progress toward its goal on the basis of what it can directly sense. The chess 

player knows whether or not he wins, the refinery controller knows how much petroleum 

is being produced, the mobile robot knows when its batteries run down, and Phil knows 

whether or not he is enjoying his breakfast.  

In all of these examples the agent can use its experience to improve its performance over 

time. The chess player refines the intuition he uses to evaluate positions, thereby 

improving his play; the gazelle calf improves the efficiency with which it can run; Phil 

learns to streamline his breakfast making. The knowledge the agent brings to the task at 

the start---either from previous experience with related tasks or built into it by design or 

evolution---influences what is 

useful or easy to learn, but 

interaction with the 

environment is essential for 

adjusting behavior to exploit 

specific features of the task.  

The term ``optimal control" 

came into use in the late 1950s 

to describe the problem of 

designing a controller to 

minimize a measure of a 

dynamical system's behavior 

over time. One of the 

approaches to this problem was 

developed in the mid-1950s by 

Richard Bellman and 

colleagues by extending a 19th 

century theory of Hamilton and 

Jacobi. This approach uses the concept of a 

dynamical system's state and of a value function, or 

``optimal return function," to define a functional 

equation, now often called the Bellman equation. The 

class of methods for solving optimal control problems 

by solving this equation came to be known as 

dynamic programming (Bellman, 1957a). Bellman 

Figure 17. Bellman’s principle of optimality: Given an 

optimal  trajectory TAC from A to C, the portion TBC of that 

trajectory from any intermediate point B to point C must 

be the optimal trajectory from point B to C. An example of 

an optimal trajectory (ABDH) identified by dynamic 

programming by applying this principle is illustrated by 

the graph.  

Figure 18. Example of a reinforcement 

learning task: from any starting state 

x, move in the maze to reach the goal 

state G, without crossing the heavy 

lines, which represent walls 
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(1957b) also introduced the discrete stochastic version of the optimal control problem 

known as Markovian decision processes (MDPs), and  

Ron Howard (1960) devised the policy iteration method for MDPs. All of these are 

essential elements underlying the theory and algorithms of modern reinforcement 

learning.  

Dynamic programming is widely considered the only feasible way of solving general 

stochastic optimal control problems. It suffers from what Bellman called ``the curse of 

dimensionality," meaning that its computational requirements grow exponentially with 

the number of state variables, but it is still far more efficient and more widely applicable 

than any other method. Dynamic programming has been extensively developed in the last 

four decades, including extensions to partially observable MDPs (surveyed by Lovejoy, 

1991), many applications (surveyed by White, 1985, 1988, 1993), approximation 

methods (surveyed by Rust, 1996), and asynchronous methods (Bertsekas, 1982, 1983). 

Many excellent modern treatments of dynamic programming are available (e.g., 

Bertsekas, 1995; Puterman, 1994; Ross, 1983; and Whittle, 1982, 1983). Bryson (1996) 

provides a detailed authoritative history of optimal control.  

We consider all of the work on optimal control to also be work in reinforcement learning. 

We define reinforcement learning as any effective way of solving reinforcement learning 

problems, and it is now clear that these problems are very closely related to optimal 

control problems, particularly those formulated as MDPs. Accordingly we must consider 

the solution methods of optimal control, such as dynamic programming, to also be 

reinforcement learning methods. Of course, almost all of these methods require complete 

knowledge of the system to be 

controlled, and for this reason it 

feels a little unnatural to say that 

they are part of reinforcement 

learning. On the other hand, many 

dynamic programming methods are 

incremental and iterative. Like true 

learning methods, they gradually 

reach the correct answer through 

successive approximations. 

 

Reinforcement Learning (RL) is a 

general algorithmic approach to 

solve stochastic optimal control 

problems by trial-and-error (from 

Power Systems Stability Control: 

Reinforcement Learning 

Framework, Damien Ernst, et al, 

IEEE Transactions in Power 

Systems, 19, 427, February 2004). 

Figure 19. Application of value iteration in reinforcement 

learning: the value function is initialized with null values 

(V0), and Bellman’s equation is applied iteratively until 

convergence. 
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• RL methods do not make any strong assumptions on the system dynamics. In 

particular, they can cope with partial information and nonlinear and stochastic behaviors. 

They can therefore be applied to design many, if not all, practical types of control 

schemes. 

 

• RL methods use closed-loop control laws known to be robust. This aspect is 

important notably when the real power system is facing situations that were not 

accounted for in simulation models. 

 

• RL methods open avenues to adaptive control since the RL driven agents learn 

continuously and can adapt to changing operating conditions or system dynamics. 

 

• RL methods can be 

used in combination with 

traditional control methods to 

improve performance. As an 

example, they could be used to 

determine parameters of control 

policy for a grid device such as 

a capacitor bank.  The RL 

driven agent does not control 

directly the device, but rather 

offers decision support to the 

transmission operator who 

actually controls actions on the 

device. 

 

RL offers a portfolio of 

Figure 20. Two modes of application of Reinforcement Learning methods: (a) on-line, (b) off-line 

 

Figure 21. 
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methods that allow agents to learn a goal oriented control law from interaction with a 

system or a simulator. The RL driven agents observe the system state, take actions and 

observe the effects of these actions. By processing the experience they accumulate in this 

way they progressively learn an appropriate control law i.e., an algorithm to associate 

suitable actions to their observations in order to fulfill a pre-specified objective. The more 

experience they accumulate, the better the quality of the control law they learn. The 

learning of the control law from interaction with the system or with a simulator, the goal 

oriented aspect of the control law and the ability to handle stochastic and nonlinear 

problems are three distinguishing characteristics of RL. 

 

…. Importance of Dynamic Programming 

 

Reinforcement learning is a difficult problem because the learning system may perform 

an action and not be told whether that action was good or bad. For example, a learning 

auto-pilot program might be given control of a simulator and told not to crash. It will 

have to make many decisions each second and then, after acting on thousands of 

decisions, the aircraft might 

crash. What should the system 

learn from this experience? 

Which of its many actions 

were responsible for the 

crash? Assigning blame to 

individual actions is the 

problem that makes 

reinforcement learning 

difficult. Surprisingly, there is 

a solution to this problem. It is 

based on a field of 

mathematics called dynamic 

programming, and it involves 

just two basic principles.  

 

First, if an action causes something bad 

to happen immediately, such as crashing 

the plane, then the system learns not to 

do that action in that situation again. So 

whatever action the system performed 

one millisecond before the crash, it will 

avoid doing in the future. But that 

principle doesn’t help for all the earlier 

actions which didn’t lead to immediate 

disaster.  

 

Second, if all the actions in a certain 

situation lead to bad results, then that 

situation should be avoided. So if the 

Figure 22. 

Figure 23. 
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system has experienced a certain combination of altitude and airspeed many different 

times, whereby trying a different action each time, and all actions led to something bad, 

then it will learn that the situation itself is bad. This is a powerful principle, because the 

learning system can now learn without crashing. In the future, any time it chooses an 

action that leads to this particular situation, it will immediately learn that particular action 

is bad, without having to wait for the crash.  

 

By using these two principles, a learning system can learn to fly a plane, control a robot, 

or do any number of tasks. It can first learn on a simulator, then fine tune on the actual 

system. This technique is generally referred to as dynamic programming.  So, how do we 

devise an algorithm that will efficiently find the optimal value function? 

 

 
Figure 24. The learned control strategy for a resistive dynamic brake (RB) in a power network with 

2 hydro (G1, G2) and 2 thermo generators (G3 G4).   and , the relative angle and speeds of the 

two classes of generators are the state variables.   is expressed in rad and  in rad/sec.  Often the 

art is finding a representation such as these relative ones that reduce the dimensionality of the 

problem – from a potential 60 dimensional state space to a two dimensional one. Grey boxes 

represent states where the brake is applied. From Power Systems Stability Control: Reinforcement 

Learning Framework, Damien Ernst, et al, IEEE Transactions in Power Systems, 19, 427, February 

2004 
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….. Adaptive Learning with Real Options 

 

On the capital investment and long-term strategy side of Decision Support, another 

Dynamic Programming tool called Real Options adds value to uncertainty and choice-

over-time to the more traditional Net Present Value (NPV) technique that discounts 

options into the future. These added benefits arise from the nature of supply choices, the 

Figure 25. 

Figure 26. 
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nature and timing of the demand, the transmission capacity available from adjacent grids, 

and the specific regulatory characteristics of a market.  

 

In common use, the word option is used to suggest alternatives or choices. For real and 

financial options, the word has a different meaning. 

 

An option is the right, but not the obligation, to take an action. For example, an option 

contract is the right to buy (or sell) a stock at a date specified in the future. Options are 

valuable when there is uncertainty. For example, an option contract traded on the 

financial exchanges will be exercised (used) only if the price of the stock on that date 

exceeds the specified price. The value of the contract comes from this upside potential. 

Real options are created by investment - today's investment creates the right to make a 

decision later. The value of the investment includes these real options.  

 

Real options is the extension of financial option theory to options on real (nonfinancial) 

assets. In contrast to the valuation of financial options --where decision-making it is a 

matter of shopping for the best deal on a specified contract -- the valuation of a real 

option requires that it be identified and specified. Moving from financial options to real 

options requires a way of thinking, one that brings the discipline of the financial markets 

to internal strategic investment decisions.  

 

The real options approach works because it helps managers with the opportunities they 

have to plan and manage strategic investments. Stewart Myers of MIT coined the term 

"real options" to address the gap between strategic planning and finance. "Strategic 

planning needs finance. Present value calculations are needed as a check on strategic 

analysis and vice versa. However, standard discounted cash flow techniques will tend to 

understate the option value attached to growing profitable lines of business. Corporate 

finance theory requires extension to deal with real options." (Stewart C. Myers, Sloan 

School of Management, MIT (1984), p. 13).  

 

 

 
Figure 27. Surprise! This RL architecture is also an 

architecture for simulation-based real option valuation. 

 

 

Real options value is estimated with ranges of 

possible outcomes for waiting-to-invest, growth, 

flexibility, exit strategies, and learning-over-time 

options.  Pricing of real options on energy is fast 

becoming essential in budgeting analysis for the construction of any large capital 

investment.  The capital cost is evaluated by estimating the value over time of a strip of 

call options, where the exercise price is the marginal operating cost at which the 

equipment is offered into the supply curve (merit stack).  If there is no variation in prices, 

there will be no opportunity to earn economic quasi-rents equal to the difference between 

market price and marginal cost.  It is the value of these quasi-rents (options) that pays for 

the capital value of the plant.  Thus, understanding the market price process is essential in 
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the real option analysis.  It is also important in the more obvious field of risk 

management and hedging, and critical here because we are evaluating the capital costs of 

products that store energy when demand is low and provides energy when need, and thus 

when price is high.  The uncertainty of the market produces unrealistically constrained 

valuations using the classical NPV model.  Specifically, subjective inputs are replaced by 

objective evaluations from project analysis, including a range of outcomes. 

 

Data Required for Real Options Analysis  

  
From The Real Power of Real Options, McKinsey Quarterly, 3, 1997. 

 

A crucial aspect of real options is 

that most of the input data can be 

objectively verified.  From 

http://www.real-

options.com/overview_faq.htm, the 

following inputs are the only 

information you need to value a real 

option:  

 The current value of the 

underlying asset, which is observed 

in the market.  

 The time to the decision date, 

which is defined by the features of 

the investment.  

 The investment cost or 

exercise price (also called the strike price), which is defined by the features of the 

investment.  

 The risk-free rate of interest, which is observed in the market.  

 The volatility of the underlying asset, which is often the only estimated input.  

 Cash payouts or non-capital gains returns to holding the underlying asset, which 

are often directly observed in the market, or sometimes estimated from related 

markets.  

 

Information that is not needed to value a real option contributes greatly to its power.  

 Probability estimates are not needed because these are captured by the current 

value of the underlying asset and the volatility estimate.  

 An adjustment to the discount rate for risk is not needed because the valuation 

solution is independent of anyone's taste for risk.  

The expected rate of return for the underlying asset is not needed because the value of the 

underlying asset and the ability to form tracking portfolios already captures its risk/return 

tradeoff. 

Figure 28. 

http://www.real-options.com/overview_faq.htm
http://www.real-options.com/overview_faq.htm
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A differentiator to the  real option evaluation approach is the ability to simulate or model 

the system by using parameterized engineering models being driven by both engineering, 

environmental, and financial uncertainties and allowing optimal investment and operating 

decisions.  These include a detailed stochastic model for the price and cost processes as 

well as the representation of technical (engineering) risks separately.  The jumps in price 

process and associated jump volatility will occur due to a variety of factors including but 

Table 6. 
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not limited to grid congestion, environmental factors and reliability events.  The analysis 

also allows us to create optimal operating rules to maximize value -- addressing a long 

standing issue in realizing the real options value in actual operation.  Unlike common real 

option valuation methods such as binominal, our approach using approximate dynamic 

programming is non-parametric. It directly samples the possible paths via simulation 

instead of first building a parametric model of the distributions. The promise is that not 

only economic interactions, but also engineering and environmental interactions can be 

incorporated and policies enacted to avoid downside outcomes. 

 

One other advantage of the approximate dynamic programming with simulation approach 

in systems that require technical design is that real options in technical designs should 

differ from those that treat the technical systems as "black boxes". It is useful to 

distinguish between options "in" and "on" systems -- between those that do and do not 

deal with design elements.  The valuation of real options "in" and "on" systems should 

differ, because the specifics of the technical system may mean that the financial 

assumptions used to calculate option values may not apply (de Neufville 2004).  We can 

simulate both the baseline and the new design operating characteristics that are not 

market related. Such processes will have an impact on reliability and failure rates (and 

associated technical risks in real options analysis). Pairing a power flow simulator and 

Real Options add on, we can combine the stochastic operating conditions of the system 

(non-market related) with real options valuation. Such an approach will capture both the 

technical as well as market uncertainties in a holistic way as well as allow optimal 

decisions considering all aspects of the decision process. 

 

Real option values the following aspects of capital investment and operations: 

 option value of capital investments in terms of development and deployment of 

new technology, 

 option value of arbitrage,  

 option value of  supply and demand management,  

 option value of greater network reliability &, 

 option value of environmental benefits and (negatively) drawbacks 

 

Each of these applications of real options can be represented in a decision options tree 

showing investments needed, expected timing, operating costs, technical risks and 

benefits derived.  Benefits derived are represented as a function of the price process that 

is modeled in detail. A decision tree construct is used to represent the time to first 

operation as well as the time of operation during the life of the asset being valued. Actual 

time depends on demand, supply and price characteristics.  Real Options software is 

capable of analyzing the optimal timing of operation based on the modeled (and 

expected) price processes. 

 

Finally, the value of the real option is calculated from the cash flows created from the 

price, costs and timing of operation for the various applications under consideration.  

This can be viewed as a series of independent options to operate the asset or as 

‘swaptions’ based on the conditions and needs.  Additionally, the upside potential and 

downside risk of each application can also be calculated and represented.  The value from 



©  Roger Anderson and Albert Boulanger 

49 

the portfolio of applications can then be combined to calculate the overall value of the 

proposed asset deployment. 

 

Chapter 7: Use of Matrices in CALM 
 

A concern we have heard repeatedly is “We seem to have many, but not all of the Lean 

principals and processes you write about.  What should we do next to close the loop?”  

Below we describe an appropriately “Lean” process to identify the Business Capabilities 

where Lean principles will have the most value through a formal analysis methodology 

focused on how well technology, processes, and organizational interrelationships are 

being integrated in projects within your company (Figure 1).  

 

 
Figure 1. From: http://www.eller.arizona.edu/~finhome/lam/535/mt1.ppt 

 

We call this migration to Lean processes and tools “Computer Aided Lean Management”, 

or CALM, which sounds complicated.  Instead, it all starts with rather simple matrices.  

Matrices are powerful tools for evaluating the relationships between variables in the 

familiar form of rows versus columns (as in a spreadsheet). Matrices are indeed simple 

on first look, but chain them together and you get neural networks or rule-based expert 

systems.  These, in turn, are then superseded by even more advanced machine learning 

tools that force integrated connectivity and quantitative rigor.  They provide an effective 

methodology for defining how a company can migrate to Lean Energy Management. 

Furthermore, they offer a solid path to the oil patch becoming an adaptive enterprise as 

real time data begins to stream into field control rooms all over the world. 

 

Quality Function Deployment 

 

 One area of Lean Management that has developed extensive use of chained matrices for 

Lean evaluation purposes is termed Quality Function Deployment (QFD).  (More 

information on QFD is available in the online version of this paper at 

http://www.eller.arizona.edu/~finhome/lam/535/mt1.ppt
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www.ogjonline.com ).  QFD is widely used to develop implementation strategies for new 

or redesigned products.  It forces the Lean alignment of technology development with 

internal processes and customer needs. Obviously getting the product right is a very risky 

enterprise, and thus the need for Lean rigor. 

 

A QFD Implementation Matrix plots problems as rows against columns that provide 

solutions common to successful projects (Table 1).  QFD drives the user to document and 

list everything.  In addition to chained matrices, the basic tools of QFD are the project 

roadmap and these documents and lists. A project roadmap defines the flow of data 

through a QFD project. Documents are required to record all background information for 

the project. Lists form the input rows and output columns of the matrices.  Examples of 

lists include: user benefits, measures, basic expectations, functions, and alternative 

concepts. Lists generally have related data associated with them. For example, the 

priorities and perceived performance ratings resulting from market research can be 

associated with the list of benefits. Importance values are associated with measures and 

functions.  

 

 

 
Table 1. QFD Implementation Matrix adapted from Lowe and Ridgeway, 2000. 

 

A matrix is simply a format for showing the relationship between two lists, and thus a 

matrix deploys, or transfers, the importance from the input list to the output list.   For 

example, a common matrix relates “performance measures” to “user benefits.” Another 

http://www.ogjonline.com/
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matrix can then be created to relate “user's benefits” to “product options.”  A chain of 

matrices has been created.   See the below website for an excellent animation of how a 

QFD product identification plan chains matrices together:  

http://www.gsm.mq.edu.au/cmit/hoq/QFD%20Tutorial.swf 

 

Matrices provide very powerful tools for representing, mapping and modeling Lean 

principals in terms of existing organizational structures, processes, and expert knowledge 

comprising the Business Capabilities being studied. For example, rule based expert 

systems, decision tables, and neural networks can be represented using matrices (Figure 

2). 

 

 

 
Figure 2. 

 

The Pugh Matrix 

 

In QFD matrices, indicators are associated with each measure and function. The 

indicators placed in each cell of the matrices can be as simple as a binary “yes” or “no” 

answer, or as quantitative as weights, probabilities, or confidence scores that are real 

numbers.  Often, an evaluation begins with binary indicators, which are then replaced 

with numbers to make the mapping a more accurate representation of the process being 

http://www.gsm.mq.edu.au/cmit/hoq/QFD%20Tutorial.swf
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modeled.  Even probabilistic or “fuzzy” processes can be represented with error estimates 

to incorporate an additional measure of uncertainty.  

 

The “Pugh Matrix” (Figure 3) is a part of Stuart Pugh’s Total Design methodology, and it 

determines which potential solutions are more important or 'better' than others to solve 

any give problem.  The Pugh Matrix is used for concept selection in which options are 

assigned scores. The Pugh Matrix contains evaluation criteria (rows), plotted against 

alternative product variations (columns), and a weighting of the importance of each 

criteria is placed into each cell.  Scores from 1-10 for each alternative are then 

“weighted” for overall system importance to derive a total score. The final design 

selection is made based on the highest consolidated score. The company is forced to 

consider many options so that they must choose the best among many.  It can only be 

used after the Voice of the Customer (VOC) has already been captured, which in Lean 

nomenclature means after product planning, but before the design phase begins.   

 

 
 

Figure 3. From:  http://www.rpi.edu/~castil2/hand1.html 

 

 Chained Matrices 

 

A key to the use of matrices for Lean evaluation is to systematically map processes 

within the Business Capabilities of an enterprise by chaining, or cascading multiple 

matrices.  For example, chained matrices are a vehicle for mapping the complex cause-to-

effect relationships from symptoms to problems and then from problems to solutions 

among technologies, processes, and organizational boundaries that compose the many 

levels of every project, as illustrated in Figure 4. Another example of chaining two 

matrices like this is the decision table from decision theory (above right in Figure 4).  The 

methodology of chained matrices is to make the vertical columns of the first matrix 

become the horizontal rows of the second, and so on through the series. As we will 

encounter in the next section, these chains can be formed in multiple directions, 

depending on the dimensional links. How the matrices are linked is guided by the QFD 

roadmap. As an example, a user can enter the decision table with a symptom, then define 

the most likely problem, and select among several solutions in the last of the chained 

matrices. 

 

http://www.rpi.edu/~castil2/hand1.html
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Figure 4. 

 

 The House of Quality 

 

The House of Quality (HOQ), which has become synonymous with QFD, is a technique 

for chaining multiple matrices used in QFD product development or redesign to ensure 

that the customer's wants and needs are the basis for the improvement (Figure 5, top, 

from Karsak et al, 2002).  HOQ is a highly structured approach that starts with customer 

surveys to establish the Voice of the Customer (VOC) and ends with detailed engineering 

solutions to design requirements based on the VOC.  The Expanded House of Quality 

(Figure 5, bottom) chains even more matrices together, and depending on the complexity 

of the QFD project roadmap, the "rooms" of this expanded house will change. There are 

three common "blueprints" or templates, available for laying out HOQ rooms: 

1. The American Supplier Institute Four Phase Approach of cascading houses 

2. The Expanded House of Quality of Figure 5, bottom, developed by International 

TechneGroup Incorporated (producers of QFD/Capture) 

3. The Matrix of Matrices methodology developed by GOAL/QPC which is likened 

to the modular design of homes ( c.f. King, 1989 & http://www.GOAL/QPC.org) 

These methods are included in QFD software such as QFD/Capture 

http://www.qfdcapture.com & Qualica QFD and http://www.qualica.de  

 

http://www.goal/QPC.org
http://www.qfdcapture.com/
http://www.qualica.de/
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Figure 5 From: http://mielsvr2.ecs.umass.edu/virtual_econ/module2/HOQ_Frames.htm & 

Karsak, et al., 2002. 

The Roof of the House of Quality 

 

Like in many other industries, we have a general need to represent "common mode" 

interactions and failures.  In the HOQ, these are represented by a row (column) of a 

matrix that interacts in either a beneficial or antagonistic way with another parallel row 

(column).  These interactions occur in relatively few situations. If this is the case, then 

separate entries representing the synergy can be added to the matrix. If, however, there 

are many interactions, then this approach becomes unwieldy and another approach must 

be used. Borrowing from neural network theory, a two-layer, chained matrix network can 

represent such interactions.  Thus the symptoms->problems matrix in Figure 4 can be 

replaced with two matrices if there are common mode interactions amongst the systems.  

Likewise the problems->solutions matrix can be replaced with two matrices if there are 

interactions amongst the solutions. 

 

The roof of the House of Quality is an example of this later method of a matrix used to 

capture synergies and antagonisms of possible common mode failures that are at the end 

of the HOQ matrix chain (see the roof above the what’s->how’s matrix in figure 5).  

These relationships are symmetric, so only half a matrix is needed – the 60º triangle roof 

is used to represent this half matrix. An example of the "main rooms" of the HOQ is 

given for the design of a new fountain pen product (Figure 6). Note the roof of the House 

http://mielsvr2.ecs.umass.edu/virtual_econ/module2/HOQ_Frames.htm
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of Quality, where the + represents synergy between two columns of the “How” matrix, 

and the – represents conflict between the diameter to weight trade-off in those “How” 

columns. Also notice the side “roof” that captures the interactions of the "What" rows 

represents interactions among the customer needs. 

 

 
Figure 6. From the QFD/CAPTURE website http://www.qfdcapture.com/ 

 

Chapter 8: Closing the Feedback Loop 

 

A Lean Management System continually seeks perfection in performance. This 

aggressive learning of improvement (termed Kaizen by Toyota) requires feedback loops 

that are a key concept of Lean. The goal of Lean Energy Implementation is to reach 

Kaizen through rigorous enforcement of feedback loops that first predict outcomes and 

then make corrections based upon objective scoring of the predictions versus actual 

events (Figure 7). Again, the Lean process is solidly footed in theory.  Derivatives 

calculated by the chain rule of basic calculus are the source of the steering signals used 

for optimization via a generalized "back-propagation" learning method from, again, 

neural network theory, which allows the feedback loop to be closed. Computer Aided 

Lean Management (CALM) is the rigorous enforcement of the feedback loop using 

software to automatically track all operator actions, score of outcomes of those actions, 

and back-propagate corrections of the numeric values in the matrices to the system 

performance model that optimizes performance from such feedback loops. 

http://www.qfdcapture.com/
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In our experiences with many Lean implementations, most of the tools and methods of 

Lean can be in place at energy companies, but this feedback loop is usually the one 

critical piece that is missing.  Companies must implement an automated way to track 

actions, measure performance, and rigorously adjust the system to then improve 

performance.  People alone are not enough. 

 

 
Figure 7. 

 

The Balanced Scorecard is an example of a way many energy companies improve human 

performance, but it does not improve the linkage among human, machine, and computer 

models in the unified, integrated way required by Lean Energy Management. In contrast, 

CALM uses ideas from stochastic control, option theory, and machine learning to build a 

software support system that forces the optimization of business and engineering 

objectives simultaneously under uncertainty. 
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Expanded House of Quality 

From: http://www.proactdev.com/pages/ehoq.htm 

As seen in Figure 4, this "Expanded House Of Quality" consists of multiple "rooms."  

Four of the rooms form the basic axes of the house. These are lists of "WHATs", 

"HOWs", "WHYs", and "HOW MUCHes". Four of the rooms consist of relationships 

between these lists. A brief explanation of each room follows.  

WHATs - This is a list of what the customer wants or what is to be achieved. When the 

"Expanded House of Quality" is used with end user requirements, these would be 

History of QFD 

QFD was developed in Japan in the late 1960s by Professors Shigeru Mizuno and Yoji 
Akao. At the time, statistical quality control, which was introduced after World War II, had 
taken roots in the Japanese manufacturing industry, and the quality activities were being 
integrated with the teachings of such notable scholars as Dr. Juran, Dr. Kaoru Ishikawa, 
and Dr. Feigenbaum that emphasized the importance of making quality control a part of 
business management, which eventually became known as TQC and TQM. 

The purpose of Professors Mizuno and Akao was to develop a quality assurance method 
that would design customer satisfaction into a product before it was manufactured. Prior 
quality control methods were primarily aimed at fixing a problem during or after 
manufacturing. 

The first large scale application was presented in 1966 by Kiyotaka Oshiumi of Bridgestone 
Tire in Japan, which used a process assurance items fishbone diagram to identify each 
customer requirement (effect) and to identify the design substitute quality characteristics 
and process factors (causes) needed to control and measure it. 
 
In 1972, with the application of QFD to the design of an oil tanker at the Kobe Shipyards of 
Mitsubishi Heavy Industry, the fishbone diagrams grew unwieldy. Since the effects shared 
multiple causes, the fishbones could be refashioned into a spreadsheet or matrix format 
with the rows being desired effects of customer satisfaction and the columns being the 
controlling and measurable causes. 
 
At the same time, Katsuyoshi Ishihara introduced the Value Engineering principles used to 
describe how a product and its components work. He expanded this to describe business 
functions necessary to assure quality of the design process itself.  

Merged with these new ideas, QFD eventually became the comprehensive quality design 
system for both product and business process. 

 From http://www.qfdi.org/what_is_qfd/history_of_qfd.htm  

 

http://www.proactdev.com/pages/ehoq.htm
http://www.qfdi.org/what_is_qfd/history_of_qfd.htm
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customer statements about what they want to see in the product. Hint: A common 

problem is that a lot of customers tend to state their requirements in terms of a possible 

solution. It is important that you understand the true requirement rather than accepting 

customer statements at face value.  

HOWs - This is a list of what your company can measure and control in order to ensure 

that you are going to satisfy the customer's requirements. Typically, the entries on this list 

are parameters for which a means of measurement and a measurable target value can be 

established. Sometimes HOWs are also known as Quality Characteristics or Design 

Requirements. Hint: It is best to try to keep these entries as concept-independent as 

possible. Failure to do this will lock you into a particular design solution that will almost 

never be what you would arrive at if you do QFD correctly. For example, if you were 

developing the lock for a car door you might be tempted to define HOWs such as "Key 

insert force" and "Key turn torque". These both imply that the lock will be key actuated. 

You will have immediately eliminated concepts such as combination locks that might 

have security and cost advantages for your particular application. A better HOW might be 

"Lock/Unlock Work" which could be measured for both key operated and combination 

locks.  

WHYs - Conceptually, this is a list that describes the current market. It is a way of 

explaining why this product needs to exist. It indicates what data will be used to prioritize 

the list of WHATs. Commonly included are lists of the customer groups your product 

must satisfy and their importance relative to each other. Also included are lists of 

products that will compete with yours in the marketplace.  

HOW MUCHes - This list is used to specify how much of each HOW is required to 

satisfy the WHATs. Commonly it contains a listing of the products on which testing will 

be performed. This testing helps establish realistic target values for the HOWs. It also 

includes entries where the priority of each of the HOWs can be established. In general, 

WHYs and HOW MUCHes are very similar. WHYs lead to the importance of the 

WHATs while HOW MUCHes document and refine the importance of the HOWs.  

WHATs vs. HOWs - This is a relationship matrix that correlates what the customer wants 

from a product and how the company can meet those requirements. It is the core matrix 

of QFD. Relationships within this matrix are usually defined using a strong, medium, 

weak, or none scale. If a HOW is a strong measure of compliance with a WHAT, then the 

WHAT and HOW are strongly correlated. Similarly, if a HOW provides no indication as 

to whether your product complies with the WHAT, there is probably no relationship. 

Filling and analyzing this matrix will likely take a large portion of the time you spend in 

QFD meetings.  

WHATs vs. WHYs - This is a relationship matrix that is used to prioritize the WHATs 

based upon market information. Usually, the data in this matrix consists of ratings on 

how important different customer groups perceive each of the WHATs to be. Ratings of 

how well competitive products are perceived to meet each of the WHATs can also be 

included here. Averaging the stated importance ratings and factoring in where your 
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product is perceived relative to your competition helps establish the overall importance of 

each WHAT.  

HOWs vs. HOW MUCHes - This is a relationship matrix that helps you decide what the 

next step in the project should be. Typically, this matrix includes calculated values which 

identify the relative importance of each of the HOWs. Also included is information about 

how your competition performs relative to each of the HOWs. This information can lead 

you to establish realistic and measurable target values which, if met, will ensure that you 

meet the customer's requirements.  

HOWs vs. HOWs - This matrix forms the roof of the "Expanded House of Quality" and 

gives it its name. It is used to identify the interactions between different HOWs. The 

relationships in this matrix are rated as Strong Positive, Positive, Negative, Strong 

Negative, and None. If two HOWs help each other meet their target values, they are rated 

as Positive or Strong Positive. If meeting one HOW's target value makes it harder or 

impossible to meet another HOW's target, those two HOWs are rated with a Negative or 

Strong Negative relationship. 
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