In Ethiopian Desert, a Window into Rifting of Africa

July 9, 2013
A new study in the journal Nature provides fresh insight into deep-earth processes driving apart huge sections of the earth’s crust. The process, called rifting, mostly takes place on seabeds, but can be seen in a few places on land—nowhere more visibly than in the Afar region of northern Ethiopia. (See the slideshow below.) Here, earthquakes and volcanoes have rent the surface over some 30 million years, forming part of Africa’s Great Rift Valley. What causes this, and does it resemble the processes on the seafloor, as many geologists think?
The study suggests that conventional ideas may be wrong. Past calculations done by scientists predict that the solid rock under the Afar should be stretching and thinning substantially as the continent tears apart; thus molten rock should not have far to travel to the surface. Led by David Ferguson, a postdoctoral researcher at Columbia University’s Lamont-Doherty Earth Observatory, researchers analyzed the chemical makeup of lava chunks they collected from the Afar. They showed that magmas actually came from quite deep–greater than 80 kilometers, or 45 miles, within the earth’s mantle–and formed under extraordinarily high temperatures, above 1,450 degrees C, or 2,600 F.
This implies that magmas are generated by a long-lasting plume of mantle heat. It also indicates that magma must make its way up through a surprisingly thick lid of solid rock, called the lithosphere. This idea has been supported by some seismic images of the Afar subsurface.
Rifting here is fairly slow—one or two centimeters a year, or 0.4 to 0.8 inches, and this may partly explain why so much solid rock persists. As the lithosphere is pulled apart, it does stretch, crack and thin. However, because the process in this region takes so long, the base of the lithosphere has time to cool down by losing heat to the colder rock above. This keeps the relatively cold, brittle lithosphere thicker than would be expected, and counteracts stretching. Sometimes, though, magma suddenly spurts long distances to the surface, and the earth visibly cracks and pulls apart during spectacular rifting events. That includes a series of events that started in 2005, and was closely observed by scientists.
Parts of the rift have already sunk below sea level. In the distant future–maybe 10 million years from now–the process will advance so far that the Red Sea will break through and flood the region. A new sea will open up, whether or not there is anyone around to name it.

In East Africa, earth’s crust is stretching and cracking, in a process called rifting. Here in the Afar region of northern Ethiopia, hundreds of faults and fissures have formed over time. (David Ferguson)

 An important force driving the rifting is magma created beneath earth’s rocky outer shell, which has forced its way upward to push apart the crust. This eruption happened in the Afar in June 2009. (David Ferguson)

An important force driving the rifting is magma created beneath earth’s rocky outer shell, which has forced its way upward to push apart the crust. This eruption happened in the Afar in June 2009. (David Ferguson)

Fresh lava erupted onto the desert floor preserves fragile surface textures, formed as the viscous molten rock cooled and hardened. Over time, these sharp features will erode away. (David Pyle)

A remote field site within the rift. Afar is one of the hottest and most sparsely populated regions on the planet. (David Pyle)

In a region that is vast, largely roadless and dominated by armed tribes, scientists depend on helicopters to get around, and on local people to act as guides and security guards. The climate necessitates large amounts of portable drinking water. (David Ferguson)

Lavas forming the rift surface cracked apart during an earthquake in 2005 to form this fault. The horizontal boundary between the light and dark area marks the pre-2005 ground surface, and shows that the area in the foreground dropped several meters during the quake. The geology of Afar provides many clues to the tectonic and magmatic process operating beneath our feet. (David Pyle)

Media Inquiries: 
Kevin Krajick
(212) 854-9729