Detrital zircon provenance of Mesoproterozoic to Cambrian arenites in the western United States and northwestern Mexico

Publication Type  Journal Article
Year of Publication  2001
Authors  Stewart, J. H.; Gehrels, G. E.; Barth, A. P.; Link, P. K.; Christie-Blick, N.; Wrucke, C. T.
Journal Title  Geological Society of America Bulletin
Volume  113
Issue  10
Pages  1343-1356
Journal Date  Oct
ISBN Number  0016-7606
Accession Number  ISI:000171421800007
Key Words  cambrian; geochronology; mexico; proterozoic; united states; zircon; u-pb geochronology; north-america; east antarctica; eugeoclinal strata; belt supergroup; grand-canyon; laurentia; connection; evolution; australia
Abstract  

U-Pb isotopic dating of detrital zircon from supracrustal Proterozoic and Cambrian arenites from the western United States and northern Mexico reveal three main age groups, 1.90 to 1.62 Ga, 1.45 to 1.40 Ga, and 1.2 to 1.0 Ga. Small amounts of zircons with ages of 3.1 to 2.5 Ga, 1.57 Ga, 1.32 Ga, 1.26 Ga, 0.7 Ga, and 0.5 Ga are also present.Detrital zircons ranging in age from 1.90 to 1.62 Ga and from 1.45 to 1.40 Ga are considered to have been derived from Proterozoic crystalline basement rocks of these known ages, and probably in part from reworked Proterozoic supracrustal sedimentary rocks, of the western United States. The 1.2 to 1.0 Ga detrital zircon ages from California, Arizona, and Sonora are characterized by distinct spikes (1.11 Ga, in particular) in the age-probability plots. These spikes are interpreted to indicate the influx of zircon from major silicic volcanic fields. Igneous rocks such as the Pikes Peak Granite (1.093 Ga) of Colorado, and the Aibo Granite (1.110 Ga) of Sonora, Mexico, may represent the deeply eroded roots of such volcanic fields. Samples from farther north along the Cordilleran margin that contain abundant 1.2-1.0 Ga detrital zircons do not show spikes in the age distribution, but rather ages spread out across the entire 1.2-1.0 Ga range. These age spectra resemble those for detrital zircons from the Grenville province, which is considered their source.Less common detrital zircons had a variety of sources. Zircons ranging in age from 3.36 to 2.31 Ga were apparently derived from inland parts of the North American continent from Wyoming to Canada. Zircons of about 1.577 Ga are highly unusual and may have had an exotic source; they may have come from Australia and been deposited in North America when Australia and North America were juxtaposed as part of the hypothetical Rodinian supercontinent. Detrital zircon of similar to1.320 Ga apparently had the same source as that for tuff (1.320 Ga) in the Pioneer Shale of the Apache Group in Arizona. Detrital zircons of about 1.26 Ga in the Apache Group and Troy Quartzite appear to be related to local, approximately coeval volcanic fields. Zircons of about 0.7 Ga may have had a source in igneous rocks related to rifting of the Proterozoic supercontinent of Rodinia, and 0.5 Ga zircons a source in relatively small areas of granitic rocks of this known, or inferred, age in Oklahoma, Texas, New Mexico, and Colorado.

Notes  

479UKTimes Cited:33Cited References Count:71

URL  <Go to ISI>://000171421800007