Particle export during the southern ocean iron experiment (SOFeX)

Publication Type  Journal Article
Year of Publication  2005
Authors  Buesseler, K. O.; Andrews, J. E.; Pike, S. M.; Charette, M. A.; Goldson, L. E.; Brzezinski, M. A.; Lance, V. P.
Journal Title  Limnology and Oceanography
Volume  50
Issue  1
Pages  311-327
Journal Date  Jan
ISBN Number  0024-3590
Accession Number  ISI:000226406800030
Key Words  particulate organic-carbon; fertilization experiment; phytoplankton bloom; equatorial pacific; small-volume; seawater; th-234; flux; 170-degrees-w; transport

We studied the effect of iron addition on particle export in the Southern Ocean by measuring changes in the distribution of thorium-234 during a 4-week iron (Fe) enrichment experiment conducted in the high-silicate high-nitrate waters just south of the Southern Antarctic Circumpolar Current Front at 172.5degreesW Decreases in Th-234 activity with time in the fertilized mixed layer (0-50 m) exceeded those in unfertilized waters, indicating enhanced export of Th-234 on sinking particles after Fe enrichment. The addition of Fe also affected export below the fertilized patch by increasing the efficiency of particle export through the 100-m depth horizon. Extensive temporal and vertical Lagrangian sampling allowed us to make a detailed examination of the Th-234 flux model, which was used to quantify the fluxes of particulate organic carbon (POC) and biogenic silica (bSiO(2)). Iron addition increased the flux of both POC and bSiO(2) Out of the mixed layer by about 300%. The flux at 100 m increased by more than 700% and 600% for POC and bSiO(2), respectively. The absolute magnitude of the POC and bSiO(2) fluxes were not large relative to natural blooms at these latitudes or to those found in association with the termination of blooms in other ocean regions. Our results support the hypothesis that Fe addition leads directly to significant particle export and sequestration of C in the deep ocean. This is a key link between ocean Fe inputs and past changes in atmospheric CO2 and climate.


888XFTimes Cited:21Cited References Count:53

URL  <Go to ISI>://000226406800030