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ABSTRACT

In Part 1 of this study on the application of the interactive Kalman filter to higher-dimensional systems, a
modification suited to periodically forced systems is introduced. As in Part I, the object of study here is the
ENSO model of Zebiak and Cane, but here the technique of quasi-fixed points is applied to certain Poincare
maps of that system that are related to the forcing period of 1 year. As a result, it is possible to search the model
systematically for possible periodic orbits, no matter whether they are stable or unstable. An unstable 4-year
cycle is found in the model, and it is argued that this cycle can be traced back to a 4-year limit cycle, which is
known to exist under weak atmosphere—ocean coupling. All other quasi-fixed points are related to orbits that
do not appear to be periodic. The findings are applied to the modified version of the interactive Kalman filter,
which deals with cycles as regimes. Comparing these results with the findings in Part L, it is found that the filter
performances improve using, in the following order, the extended filter, the interactive filter with cycles, a
seasonal average filter, and the original interactive Kalman filter from Part 1.

1. Introduction

It has been shown in Biirger and Cane (1994) that
it is possible to utilize for data assimilation purposes
the tendency of nonlinear systems to occupy regimes.
This was done via some modified version of the ex-
tended Kalman filter (EKF), the so-called interactive
Kalman filter (IKF). In their work, Biirger and Cane
deal with autonomous nonlinear systems such as the
Lorenz system (see Lorenz 1963), which is a classic
example of a regime-occupying system. A regime can
be understood as a transient locking of the system into
a quasi-linear behavior usually near an equilibrium
state and, depending on the stability structure of that
equilibrium, the more or less fast switching to another
equilibrium. For the IKF it is, therefore, essential to
know the distribution of system equilibria and which
of them should be used and which not; using those with
the strongest stabilities and instabilities contributes
most to a good performance of the IKF. In the abstract
limit that one uses every possible state as a regime, one
ends up with (an infinitely more complicated version
of) the EKF. But the EKF increasingly fails with higher
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degrees of nonlinearity and the tendency to form re-
gimes (see Miller et al. 1994; Biirger and Cane 1994).
With a suitable choice of system regimes, however, the
IKF seems more appropriate to that situation, and the
assimilation errors, especially during the regime
switching, are drastically decreased.

The main problem for the IKF application is, hence,
the determination of the system equilibria. Unlike in
low-dimensional systems like that of Lorenz where one
can derive the fixed points algebraically, the difficulty
drastically increases when the systems become higher
dimensional or, like most atmosphere and ocean sys-

- tems, cannot even be described in finite dimensions by

ordinary differential equations. In an effort to apply the
IKF to such systems, we introduced in Part I the con-
cept of a quasi-fixed point (QFP), see Biirger et al.
(1995). QFPs have, by definition, a minimum tendency
in the system’s model function. (This tendency would
be zero for a full fixed point.) The tendency, however,
is not measured in the full space but in a certain reduced
phase space that is supposed to contain, among other
things, the main physical signal. The reason for this
reduction lies in the fact that the determination of QFPs
is done by a search algorithm that becomes unfeasible
for the full system space.

As . in Part I, our object of study is the El Nifio—
Southern Oscillation (ENSO) model of Zebiak and
Cane (1987, hereafter ZC). We use the same multiple
EOF projection as in Part I, with the exception that we
now retain 40 multiple EOFs that explain 99% of the
full system variance (as opposed to 9 EOFs and 90%
variance in Part I). The reason for this will become
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clear later. The main problem for the IKF application
is the autonomous (time independent) character of the
(quasi-)fixed points on the one hand and the nonau-
tonomous (time dependent) character of ZC on the
other. In Part I we tried to reconcile both aspects by
splitting up the nonautonomous ZC into autonomous
monthly pieces ZC,, and determine monthly quasi-fixed
points for those models. The five QFPs we found (for
each month, two cold states, two warm states, and the
state of no anomalies that is a fixed point) were, from
a physical point of view, not very satisfying as their
existence strongly depended on the chosen phase space
reduction, but they worked surprisingly well with the
IKF. The filter performance was better than both a sea-
sonal average model and the extended Kalman filter.

In Part II, we introduce an alternative to reconcile
the autonomous QFPs with the nonautonomous model
ZC. By switching our attention from the model ten-
dency function to certain Poincare maps of ZC, we are
able to systematically search periodic orbits of any
kind. The so found orbits are of interest in their own
right in understanding the dynamics of ZC (and of any
model where this search can be applied). We will dis-
cuss some of the implications that this might have for
the route that ZC takes toward chaotic behavior. In a
final section we will apply the periodic orbits as re-
gimes for the interactive Kalman filter, and compare
the results with our findings from Part L.

2. QFPs of Poincare maps: Periodic orbits

From Part I we can assume the existence of a low-
dimensional subspace of the full model space of ZC,
which has the following properties:

¢ it contains the major part of the physical signal;
e it contains all prognostic variables for ZC.

These conditions enable us to pull each map of the full
space down to the low-dimensional EQF subspace. In
Part I we applied this to the single step model function
ZC,, such that we could investigate the local monthly
behavior of the model in the subspace along with its
quasi-fixed points. Here we apply it to Poincare maps
of the full model ZC, reflecting v-year transitions of the
model state, where v is an integer. Their local behavior
should reflect the orbit structure of the full model as it
is reflected in the EOF subspace, especially periodic
orbits that correspond to fixed points of the appropriate
Poincare map. Symbolically, we do the following.

ZC (v yecars)

z——z'

embedding 1t U projection

X——>X

M,

In words, this means that for a state x in the EOF trun-
cated phase space, M,(x) is the result of running ZC,
starting from the state z that corresponds to x, for v
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years and projecting the result z’ back into the EOF
phase space. The map M,: x — x' represents an EOF-
truncated version of the v-year Poincare map for ZC.
Similar to Part I with the function M,,, we consider the
cost function

Fo(x) = [M.(x) — x|. ()

Any periodic orbit of ZC with period v/k years, k
integer, appears as a root of I',(x). But not vice versa.
The roots of T', are those orbits, which after v years of
running ZC have the same EOF projection. Not every
root of T', is automatically a root of I';,. However, the
differences should disappear when we increase the
EOF resolution so that, finally, v-periodic orbits should
be “‘visible’” as roots of I',. In the Poincare map M,
they appear as points of period v. By applying exactly
the same search algorithm as in Part I, we are therefore
in a position to directly search and estimate states in
the EOF space that serve as initial points x for orbits
that are approximately v periodic, depending on the
size of I',(x).

As the dependence on initial conditions increases
with the integration time, the dependence of I', on x
increases dramatically with growing v. Consequently,
the algorithm converges much slower for large periods
of v and, in fact, fails to converge at all without a good
first guess. In Part I we retained 9 multiple EOFs that
explained 90% of the full system variance; for reasons
which will become clear later we now keep 40 multiple
EQFs that explain 99% of the variance. We confined
ourselves to seek orbits vy, with periods v = 1-6 years
(or fractions thereof).

3. The search algorithm

As a reference time for the Poincare map we choose
mid-March. The search algorithm involves three major
steps. Two of the steps deal with the estimation of a
good first guess. First, we run ZC for the very long
period of 40 000 years and save the mid-March con-
ditions as reflected in the principal components x(?).
For any time ¢t we calculate

[,(2) = | x(¢ + v yrs) — x(1)]. (2)

Note that because x(# + v yrs) comes from an unfil-
tered initial condition, we generally have that x(r + v
yrs) = M,[x(#)] and so () = I'(t). But as long as
the EOF resolution is fine enough, I',(¢) is a good ap-
proximate of I',[x(¢)]. Figure 1 depicts I',(¢) for a
typical section of the run, for the periodsv =1, ---, 6
years. From the NINO3 value (lower panel), we
clearly observe that active periods change with those
of quiet behavior when the model evolution seems to
die out; all T, values are accordingly lower during
those periods. In the active periods there is a distinct
preference of the 4-yr period, as can be seen in the
behavior of 1';, which shows much lower values than
all other periods. Picking the v with minimum ", for
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that [",(¢) has persistently large values then.

each ¢ introduces a partition of the set { ¢} into subsets
{T,},v=1, ---,6;suchthatif z € T,, the v periodicity
is, at time ¢, best among all periods. A perfect v periodic
orbit would be represented in T, as v points, which
represent the v different states that are taken each mid-
March during the v-year period, and its stability struc-
ture is mirrored by the cloud that surrounds each of the
v points, the blur increasing with larger instability. Fig-
ure 2 depicts the six sets of T,,, exemplified by the scat-
terplot of the two leading PCs. In all periods the origin
shows a certain attraction that is caused by the wan-
dering of the system about the zero state when it is in
the quiet mode. The figure suggests that there is no
stable cycle of any period apart from the 1-yr period
(when the system is quiet), supporting the experience
with the model ZC. But especially the 4-yr period
shows a strong tendency to cluster about four points in
phase space, indicating that there is an unstable 4-yr
cycle involved. For other periods, this is not quite as

300

400 500

TIME [year]

FiG. 1. The function f' () forv =1, -+, 6 (upper six panels) as calculated from the 40 000-yr run, in a typical section; we show
the situation according to mid-March of each year. It measures the difference in phase space of the current state and the state v years
ahead. During active periods of the model (see lower panel) only [,(r) shows small values over a considerable length of time. Note

clear: in T; and Ts one might recover cluster points
other than the origin, but they are by far not as signif-
icant as those in 7,. An objective way to find the clus-
tering points of the sets T, is to look at local maxima
of the function

0,(&) = Z e‘[:(')—ilzio,

1ET,

(3)

which represents the density of the point clouds; o mea-
sures the scale of the clouds. We used a standard sim-
plex method to calculate the maxima of 6. The outcome
of this search is the sought after first guess for the final
estimation of the local minima of the function (1). For
this minimization we applied the same conjugate gra-
dient method that was used in Part I for the correspond-
ing minimization problem. It uses the Levenberg—Mar-
quardt technique for sums of real quadratic functions
and calculates the Jacobian of the problem internally,
see Press et al. (1992). The only thing that needs to be
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FiG. 2. The scatterplots that result from the partition of the model
time steps into the six subsets T, each of which consists of states
x(7) such that f'.,(t) is a minimum among all v. All sets together give
a two-dimensional representation of the annual Poincare map of ZC.
A perfectly cyclic behavior would result in a group of v points where
v years is the period. Only T, shows considerable clustering. Dis-
carding the points near the origin (they are somewhat random since
they originate from the quiet model phases), one might recognize
three clusters in 7.

provided for the algorithm is the code that calculates
the mapping M,,.

4, The 4-yr cycle

The algorithm revealed the existence of a quasi-fixed
point of M,, which was very close to a true fixed point
and gives strong evidence for an unstable 4-yr periodic
orbit of the full model ZC. We will study this orbit now
in some detail. We see in Fig. 3 the orbit, which has as
initial point the QFP of I, with mean conditions taken
from mid-March. We depict it in a way that demon-
strates its cyclic nature, as a polar plot where the angle
moves with speed 4 years per cycle and the radius
shows NINO3 suitably scaled (the dashed circle is
NINO3 = 0, and the origin is NINO3 = —3). As we
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FiG. 3. The 4-yr cycle y4(1), initialized from the QFP of I'y in mid-
March. We show NINO3 in a polar plot to emphasize the cyclic
nature of y,(f), and the two leading PCs. The polar angle rotates for
a time period of 11 years, with speed 4 years per cycle. The radius
shows NINO3 suitably scaled (the dashed circle is NINO3 = 0, and
the origin is NINO3 = —3). The angle covers a period of almost 11
years. We see how, after an initialization shock, the evolution gets
into an orbit that repeats itself every 4 years to a very high level of
accuracy. The PC evolution where the errors between two cycles
appear larger shows nevertheless the same structure within each cy-
cle. This is marked by the stars that represent the system state of mid-
March. Note the initialization shock after the first star.
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started it, the NINO3 values begin, in mid-March of
year 1 of the cycle, at the high level of about 2.7 and
enter negative values by January of year 1 (Jan-1). A
minimum NINO3 is reached by Jul-2, with minimum
values of about —1.5, and after that NINO3 goes back
to 0 by Jan-2. At the beginning of year 3, however, it
does not turn positive but instead falls back to the neg-
ative (~ —1) during the next summer and turns posi-
tive only in the fall of year 3. The fourth year develops
a strong positive anomaly of about +3.5 at Aug-4,
which slowly decays to the starting values of Mar-1.
From there, the next cycle is started, and we see that
NINO3 evolves practically identically to its first cycle;
merely in late year 7 we see minor differences of
NINO3 values, but at the beginning of the third cycle
they have again returned to the same values of cycles
1 and 2. At least until late year 11, the orbit is locked
into the 4-yr cycle; after that it slowly diffuses to more
irregular behavior.

The small deviation in Mar-2 from the initial state
Mar-1 can be seen more clearly in the other panel of
the figure, which depicts the two leading PCs of the
orbit: the three stars at the right edge of the panel show
the three states of the system at times Mar-1, Mar-2,
and Mar-3. At the initial star, which corresponds to the
QFP of 'y, we see the important detail that the system
undergoes a slight initialization shock. The reason for
this is that the QFP is bound to exist in a 40-dimen-
sional subspace of the full system space, but a periodic
orbit hardly projects completely onto such a subspace.

In Fig. 4 we see the 4-yr cycle as it appears in the
equatorial SST, thermocline (TCL), and wind (WND)
field in a Hovmoller diagram. In Mar-1, the warm pool
in the east has already begun to dissipate (it culminated
3 months earlier), but the strong westerlies pile up
warmer water in the east, producing a deeper thermo-
cline there. In exchange, a negative TCL anomaly has
built up in the west. By Sep-2, negative SST anomalies
of moderate size spread over the entire equator, accom-
panied by light easterly winds. The development of a
warm cell in the central Pacific by Mar-3 does not de-
velop into a full warm phase but turns back to colder
than average conditions over the full equatorial ocean.
This is probably caused by the lack of warmer waters
in the west, which are necessary to trigger a strong
warm event. However, the renewed cold phase creates
easterlies in the central Pacific that pile up new warm
water in the west, and so, by Sep-3, the conditions are
met that a full-scale warm event can evolve, reaching
maximum positive SST anomalies of about 4.5°C by
Dec-4.

Although we found strong evidence for an unstable
4-yr periodic orbit in ZC, we can never rule out with
certainty that the 4-yr cycle is instead an 8-yr or 16-yr
or even higher-periodic cycle; it might even be possible
that what we see is the transient locking into a periodic
behavior of an otherwise chaotic system (a phenome-
non that is usually called intermittency ). Although this
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question might be of some academic appeal, it is nev-
ertheless of minor practical importance as all possibil-
ities are not distinguishable empirically. It is known
from other studies (see, e.g., Zebiak and Cane 1987;
Tziperman et al. 1995) that ZC locks into a stable 4-yr
cycle (limit cycle) when the parameter that controls the
atmosphere—ocean coupling strength is decreased. In
that case the NINO3 amplitude is much smaller than
what we found here. To compare both 4-yr cycles we
performed a test run of ZC with a wind stress factor
(which controls the coupling ) being 80% of the normal
value. We do not show the result of this run, as its
evolution in NINO3 and PC1/2 space, respectively, is
just a scaled-down version, by a factor of about 10, of
Fig. 3 (the 4-yr cycle with full coupling ). We therefore
conclude that it should be possible to trace the 4-yr
cycle through the whole range of the coupling param-
eters, such that the weak, 4-yr limit cycle that governs
the dynamics with little coupling gradually increases
amplitude with enhanced coupling, becomes unstable,
and, finally, with the normal coupling, approaches the
strong, unstable 4-yr cycle.

5. Other orbits

Apart from the 4-yr cycle there is only one orbit that
appears to be closely related to a periodic solution of
the ZC equations. This orbit comes from the QFP of

. M, so that the period would be 3 years. But as Fig. 5

suggests the orbit appears by far not as cyclic as it does
in the 4-yr case. Although the NINO3 values return to
their former values from 3 years ago relatively closely,
the following cycle is already so different from the first
that one can hardly speak of a 3-yr periodic orbit. This
becomes especially clear when we look at the two lead-
ing PCs, which differ considerably after one cycle. For
the periodic orbit that might lurk behind its EOF-re-
duced image there is only one alternative left: it is either
strongly unstable or it does not exist at all. The reason
for this alternative, which applies to all other orbits as
well, is that our search routine would certainly have
found a stable or weakly unstable periodic orbit if there
was one: with respect to the first-guess selection it is
clear that a weakly unstable periodic orbit would lead
to a considerable clustering in the Poincare map. And.
if the initialization error caused by the EOF reduction
is small it cannot amplify enough to create a significant
difference after one period, and this would be detected
by the search algorithm. This is the reason why we
wanted to keep as many EOFs as were feasible for the
search algorithm (see section 2).

It has been argued recently (see Tziperman et al.
1995) that the chaotic nature of ZC is created by its
capability to lock into different modes, depending on
the coupling (or nonlinearity ) parameters. The chaotic
motion in the fully coupled case would thus be created
by the system’s inability to stably stay in one of these
modes and to switch instead ‘‘randomly’’ between
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them. By elaborating this picture a bit further, we might
say that the stability of these modes is a direct measure
of their contribution to the chaotic motion. The fre-
quency spectrum of ZC’s NINO3 evolution, for ex-
ample (see, e.g., Zebiak and Cane 1991), shows some

BURGER ET AL.

2819

4-year cycle, TCL

year

306 140E 1S0E 160E 170E 180 170W 160W 150W 140 130W 120W 1109 100% 90¥

Equator

0
1.

FiG. 4. (a) The 4-yr cycle as seen by the equatorial SST
field, in a Hovméller diagram. The starting point is the QFP
of I',; the end point is exactly 4 years later. (b) The same as
(a) but for the TCL field. (c) The same as (a) but for the wind
field. Note the discrepancies between beginning and end of
the cycle in the east Pacific.

power on bands other than the dominant 4-yr peak, like,
for example, smaller 3-yr and 5-yr peaks. Recent stud-
ies (see Rasmusson et al. 1990; Barnett 1991; Kep-
penne and Ghil 1992) furthermore suggest spectral ev-
idence for a 2-yr periodicity in the ENSO phenomenon.
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FiG. 5. Similar to Fig. 3, here for the 3-yr orbit y(#), which is the
orbit initialized from the QFP of T';. There is no convincing periodic-
ity recognizable. The fact that the initial state is approached closely
does not lead to periodicity.

Although the model ZC might not capture all signifi-
cant ENSO periodicities, and although one should al-
ways be careful in applying linear techniques (like
Fourier analysis) to nonlinear problems, there are in-
dications that unstable cycles of periods other than 4
years exist in ZC, but they are too unstable to be de-
tected by our routine.

As we remember, the main problem for the search
algorithm, especially in the presence of strong insta-
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bilities, was the need of a good first guess. A possible
method of detecting even strongly unstable cycles can
be derived from the 4-yr example: there we could trace
back the cycle to a limit cycle of the same characteristic
that existed under weaker coupling conditions. This
suggests an iterative scheme of the following kind: start
with the model under weak coupling and determine the
(possibly) stable cycles. Use those as initial guesses
for a new search under slightly enhanced coupling
strength, and so forth until the full coupling case. But
this can be only the topic of another study.

As mentioned earlier, there is no chance of finding
an exact periodic orbit in any of the reduced spaces we
consider, and thus there will always be some initial
error in the search algorithm. This fact, together with
the growth of any initial error as described in Part I of
this study, enforces that after already one or two cycles
the initial error has grown to a size comparable to the
process itself. This causes the gradient of the cost func-
tion to be extremely hard to estimate. A refined cal-
culation of the gradient such as via the adjoint model
might bring significant progress in this case.

6. Interactive Kalman filtering using the cycles

Although the 3-yr orbit did not show clear periodic
behavior, we decided to include it, together with the 4-
yr cycle and the cycle of no anomalies (which is a 1-
yr cycle), for assimilation experiments with the inter-
active Kalman filter. For this, a slight modification of
this filter, together with a reinterpretation of what we
understand as a regime, is necessary.

The basic concept used by the interactive Kalman
filter, the regime, was understood so far to be a time-
independent, quasi-linear behavior that is occupied by
the system for a while until it switches, more or less
quickly, to another regime. The quasi-linear behavior
of a regime usually comes from a nearby fixed point or
equilibrium, and the dynamics are those of the fixed
point’s localization. In this way, the global behavior of
the system can be understood as a sequence of regime
lockings interrupted by sharp and therefore highly non-
linear switches between the regimes.

What has been a time-independent quasi-linear be-
havior will now become a time-dependent periodic be-
havior. In other words, we want to deal with systems
whose global behavior can be understood as a sequence
of transient lockings into different cycles, as described
in the former section. We will refer to the cycle-version
of the interactive Kalman filter as IKF,. To apply the
IKF, we need a weighting function of the cycles that
reflects this locking. Consequently, the only change for
the IKF. comes through a different definition of the
weighting; all other elements of the filter are exactly
like in Part I, and we refer the reader to that part. In
the appendix we give a detailed definition of the
weighting function. Here we need to know only the
following : for a number of periodic solutions (cycles)
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FiG. 6. The weighting 8 (upper panel) of the 3 cycles v,(7) (hatched), v:(r) (gray), and y4(¢) (dark gray) cumulatively,
calculated from a run of ZC with typical NINO3 evolution (lower panel). There is no clear sign of a persistent cycle
regime over a time span longer than the duration of that cycle. The warm and cold events are governed by the 4-yr
cycle y4(t), and the transitions between them by the no-anomaly cycle ,(#). The 3-yr cycle y(?) is of minor importance;

only the peak warm phases seem to be governed by it.

vi(1),i =< N, of ZC, we can assign to each state of ZC
N numbers §;, i = N, such that

® 0 = ,Bf = 1;
e ¥ B, = 1;and
e 7, is a good approximation of ZC = §; — 1.

In Part I we performed assimilation experiments with
three different Kalman filters: a seasonal filter whose
error model is determined by a monthly Markov tran-
sition matrix; the interactive Kalman filter with regimes
chosen from the monthly quasi-fixed points; and the
extended Kalman filter whose error model is given by
the local linearization of the current state of the (assim-
ilated) system. To be able to compare our results with
Part I, all assimilations were done in the truncated
phase space defined by the nine leading EOFs of the
multiple EOF projection, which represent 90% of the
entire model variance. The true process was a ZC run,
and observations were generated synthetically by per-
turbing this run with a white noise process, the variance
of which is given by the variance of the true process
(in the reduced space), scaled by some factor i, which
varied between O and 1.

To exemplify the behavior of the weighting function,
we depict in Fig. 6 a section of the weighting that has

been applied to the true process of one of the assimi-
lation test runs. We used the 1-yr (no anomalies, §,),
3-yr (1), and the 4-yr (B,) cycle that are described
above. As a comparison, we also show the true process
in terms of NINO3. We clearly see the minor role of
the 3-yr cycle, although it gains some weight during
peak phases of NINO3. But the main feature is that 8,
does not become dominant for longer than a fraction
of the basic period of 4 years. The cycle vy, seems to
dominate the warm and cold peak phases for about 1.5~
2 years, but each time the temperature sign changes vy,
becomes dominant for about half a year. We have to
conclude that, either, our choice of the weighting func-
tion is not appropriate, or, the model ZC does not settle
into a periodic behavior over a significant time span
that at least covers that period.

Under the same conditions as in Part I, we performed
a number of assimilation runs with various observa-
tional noise scales . Figure 7 depicts, in a typical sec-
tion for the scale ¢y = 0.6, the outcome of the assimi-
lation together with the three filters of Part 1. We show
the filter’s sensitivity to observations as well as the as-
similation error (both defined in Part I, see the appen-
dix) together with the true NINO3 index. Compared to
the other three filters, the IKF, lies between the EXF
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and the seasonal filter. This can be seen especially dur-
ing strong events when the EKF error peaks and has
the lowest sensitivity toward observations. The IKF.
error also rises strongly in the beginning of an event
but then drops earlier than the EKF error. The reason
for this can be found in the sensitivity that grows back
to normal values in the middle of an event. Although
(3, is strong in the peak phase of an event, we attribute
this sensitivity growth to the instabilities of the origin
because 3, becomes stronger right after an event. Table
1 shows the performance result of all four filters. Note
that because observations are available only every third
time step, A goes beyond 100%. For small noise levels
(¢ = 0.2-0.6) the IKF performs better than all other
filters; the other filters are similar, with errors that are
about 30% larger. For ¢ = 1.0, the seasonal filter and
the IKF., are similarly good compared to the other two.

7. Conclusions

In a second approach to utilize regimes for the pur-
pose of data assimilation, we undertook in this study
an approach via periodic orbits. Compared to Part I,
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TaBLE 1. The overall performance of the four Kalman filters
(we adopt the measure A from Part I; SEAS denotes the seasonal
average filter). Columns give the various noise levels ¥. For smaller
noise (¥ = 0.2-0.6) the IKF shows the smallest assimilation error.
For ¥ = 1.0, both the IKF and the EKF show similar errors slightly
larger than the other two, which are also similar.

A (%) SEAS IKF IKF. EKF
02 166.2 1372 168.3 165.1
04 100.1 88.6 102.8 102.2
0.6 69.8 66.2 71.0 72.8
08 53.0 545 53.6 579
1.0 2?7 47.6 42.8 46.8

this approach seems more physical and more appropri-
ate for a periodically forced system like the Zebiak—
Cane model ZC. Both parts are linked through the no-
tion of a quasi-fixed point: This is defined to be a state,
in a suitably defined subspace of the model space,
where the system’s tendency is at a minimum. For a
fixed point, this minimum would be zero, and the
smaller the minimum the more a quasi-fixed point
should share the merits of a full fixed point (mainly the

v
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FiG. 7. Assimilation result from a typical section of a ZC run by using the four Kalman filters
SEAS (the seasonal average filter, solid lines), IKF (using the quasi-fixed points from Part I as
regimes, dashed lines), IKF. [using the three cycles y,(r), v3(f), y4(t) as regimes, dotted lines], and
the EKF (dash—dot lines). (lower panel) The true NINO3 values. (middle panel) The sensitivity
function. Note the drops of sensitivity for the IKF, and EKF during warm events. The IKF, sen-
sitivity returns to the normal values earlier than the EKF sensitivity. The other two sensitivity
functions show just the typical seasonality (more sensitive in spring and less in fall), but the IKF.
function is much greater. (upper panel) The error functions. Generally, the IKF error has the lowest
values of all. Especially during the breakdown of warm events (years 11 and 15) the EKF (and
IKF,) error is drastically increased. Similarly, during fast warmings (year 14) the IKF error remains

low, unlike the other filters.
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richness of the local structure). The advantage of
quasi-fixed points is that they can be determined purely
numerically, by an application of standard search al-
gorithms that find local minima of multidimensional
functions. But before we can utilize quasi-fixed points
as regimes for ZC, we have to find a way to reconcile
the autonomous (time independent) nature of quasi-
fixed points with the nonautonomous (time dependent)
character of ZC. In Part I we did this by splitting up
ZC into its monthly autonomous pieces ZC,, and de-
termined quasi-fixed points for these. As it turned out,
the so designed interactive Kalman filter appeared su-
perior to both a seasonal average filter as well as the
standard extended Kalman filter.

Although the monthly quasi-fixed points are valu-
able from a pragmatic point of view, they seem unsat-
isfactory from a physical perspective as, for instance,
their existence heavily depends on the chosen reduc-
tion. In the current study (Part II), we have tried an
approach that is more satisfying from a physical stand-
point but, as it turned out, is less practically useful, at
least for data assimilation purposes. By interpreting
quasi-fixed points not for the monthly pieces ZC,, but,
instead, for the Poincare maps of the various periods,
we were able to systematically search for periodic or-
bits and apply the solutions as regimes for the inter-
active Kalman filter. The definition of a regime as the
transient locking of a system into periodic behavior is,
as far as ZC is concerned, physically intuitive and ech-
oes current interpretations of that system’s chaotic na-
ture. The method of how to weigh the regimes for a
single state of the system is chosen similarly to the
method used in Part 1. It reflects the quality of the ap-
proximation of the current dynamics by the single re-
gimes.

Our search algorithm revealed, apart from the ever-
present (1 yr) cycle of no anomalies, an unstable 4-yr
cycle, which we can trace back to the well-known sta-
ble solution in the case of weak atmosphere—ocean
coupling. No other convincing quasi-fixed points—
that is, cycles—were found. This is probably caused
by the fact that the search routine is unable to detect
strongly unstable periodic orbits. We suspect, however,
that such orbits can be detected by utilizing the models
mode-locking behavior under weaker coupling condi-
tions. A full overview of all stable or unstable periodic
orbits would certainly provide valuable insight into the
nonlinear dynamics of the model, especially as its route
to chaotic behavior is concerned.

In the most practical sense, the cycles we just de-
scribed are not very useful—at least not how we used
them for the interactive Kalman filter IKF,.. Our sim-
ulations showed that although the IKF. worked slightly
better than the extended filter both the seasonal average
filter and the IKF, as they are described in Part I,
showed much smaller assimilation errors. The reason
can be found in the different behavior of the filter sen-
sitivity toward observations. During fast system
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changes, like when an El Nifio event is generated or
during the breakdown of such an event, the assimilation
error for both the EKF and the IKF. increases drasti-
cally. We can attribute this to the fact that the filter
listens too little to observational input during those
‘‘switches,”” a characteristic that occurs similarly in
other highly nonlinear systems such as the Lorenz sys-
tem. From that system we learned earlier that it is the
strong stability—instability structure about its fixed
points that can significantly contribute to the evolution
of the error model, by flexibly decreasing or increasing
the estimated assimilation error covariance or sensitiv-
ity, respectively. We see this same mechanism working
again for the IKF,, when in the middle of an event the
error goes down and the sensitivity goes up parallel to
the contribution of the 1-yr cycle, the fixed point of no
anomalies. Nevertheless, from our results from Part 1
we have to conclude that this mechanism works much
more effectively with the original IKF or even the sea-
sonal filter. A possible improvement might come from
the inclusion of more unstable periodic orbits if they
exist, as they would provide faster error growth in the
assimilation.

With similar arguments one can explain the gener-
ally higher level of sensitivity toward observational in-
put: With only a few of very unstable regimes being
constantly active during the assimilation (through the
weighting ) and not only when the state actually passes
through them (like in the EKF), the general influx of
instability into the error model is increased, and so is
the sensitivity.

The question of how applicable the IKF or IKF. is
for assimilation purposes with real data can generally
be reduced to the possibility of working in an EOF
reduced space at all. If one finds a method of projecting
the error structure of ZC, say, to a reduced space, one
should be able to apply the interactive Kalman filter.
In this direction much effort has been undertaken with
considerable success. The next step will, therefore, be
to combine the reduction method with the application
of the IKF (or, if one wants, the IKF,) and its quasi-
fixed points to see if a significant improvement can be
achieved.

APPENDIX
The Modified Interactive Kaiman Filter Weights

We assume that the system S under consideration is
given by

x(ty = fx(@ —~ 1), 1], (Al)

where x(¢) denotes the state of the system and the de-
pendence of the model function f on the time ¢ is pe-
riodic with period P. For simplicity, we assume that P
equals 1 year, but it could as well be 1 day, 0.5 years,
or any other period. We further assume that we have N
periodic solutions (cycles) y;(¢), i < N, with periods
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P,, ..., Py, which are multiples of 1 year. We further
consider the Jacobian V f to be known at each month
of each cycle y;. The definition of the weighting pro-
ceeds in two steps.

Given a state x(¢) that S occupies in March, say, we
find, for each cycle y; a number P; of March situations,

vi(t1), ..., vi(tp,). Writing, for eachj < P,,
x(t) = vi(5) + &), (A2)
we can calculate the differences
67 =1 lvi(]1 + V ey (p&(1) = f(  (A3)
and let
6;(¢) = min &). (A4)

j=p;

This is a formal way of expressing the goal to use the
March situation of each cycle that gives the best current
approximation to the actual state and dynamics of S.
The weighting itself.can now be given as

1/62 (1)
s 1/63(1)°

jsN

Bi(r) = (AS)
which is the same expression that has been used for the
time-independent version of the interactive Kalman fil-
ter. As time enters April, the same is done for that
month.

Three quantities are of importance for any assimi-

lation. The two time series of the assimilation error
itself,

e(r) = [£(t) — x(0), (A6)

where %(t) is the assimilated value, and the sensitivity
of the assimilation toward observations
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sH=3 [z (K,>%j] , (AT)

i=N Ljsn

with K, being the Kalman gain matrix; with the actual
assimilation error covariance P and the observational
noise R one can define the performance index A
= Tr(P)/Tr(R), which is a good measure for the over-
all performance of the assimilation.
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