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ABSTRACT

A formalism is developed to examine the effect of zonally varying stratification on equatorial wave phenomena;
an effect present in the real ocean but neglected from standard linear theory. The approach utilized involves
the application of a matching condition to equatorial waves incident on a single zonal discontinuity in the
density field of a shallow water system. Transmission and reflection coefficients are sought for the projection of
an incoming wave onto the entire set of resultant vertical and horizontal wave modes of a general continuously
stratified fluid. The limiting case of a meridional density front is extended, in a manner analogous to radiative
transfer problems, to a series of discrete density intervals. These techniques are applied to specific choices of
stratification ranging from a zonal jump discontinuity in the density field to density changes with zonal scales
large with respect to the waves in question, i.e., a WKB limit. The results demonstrate that zonally varying
stratification does not produce substantial changes in the energy flux of propagating equatorial waves. However,
as a result of changes to the equatorial radius of deformation, the amplification of equatorial zonal velocity can
be appreciable. A corresponding decrease in pressure, albeit smaller, may also be non-negligible.

1. Introduction

One of the common approaches to the study of
equatorial ocean circulation has been to invoke linear
theory. Problems in this class include the steady vertical
structure of equatorial currents, the seasonal response
in each tropical ocean, and interannual events such as
El Nifio. Those studies that include nonlinear physics
often utilize linear equatorial wave theory to decipher
the more complicated solutions. By necessity or for
simplicity these approaches tend to neglect effects due
to coastal geometry, islands, bottom topography, or
spatial and temporal variations in the stratification of
the ocean. _

Previous investigations have addressed the influence
of several of these effects on equatorial waves. Clarke
(1983) and Cane and Gent (1983) considered the re-
flection of equatorial waves from non-meridional east-
ern and western boundaries. Yoon (1981), Cane and
du Penhoat (1982) and Rowlands (1982) calculated
the effects of islands on equatorial wave motions. The
influence of submarine ridges was recently considered
by McPhaden and Gill (1986). Yet to be addressed is
the influence of horizontal variations in stratification.

The standard procedure in linear theoretical studies
is to linearize about a basic state including the as-
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sumption that the vertical stratification is horizontally
uniform. Together with assumptions on vertical and
horizontal mixing, this permits the vertical dependency
to be separable from the horizontal and temporal
structure. The vertical structure is decomposed into an
infinite series of vertical normal modes corresponding
to eigenfunctions of a Sturm-Liouville equation. The
associated eigenvalues determine the phase speed, or
equivalently the deformation radius of each mode. All
of these are fixed in space and time. ‘
Hydrographic observations indicate, however, a rich
structure to the density field at low latitudes. The most
prominent feature is the zonal slope of the equatorial
thermal field. In response to mean easterly trade winds,
the equatorial thermocline shoals eastward by approx-
imately 160 m across the Pacific Ocean (Meyers 1979)
and 100 m across the Atlantic Ocean (Merle 1980). In
both oceans the change is comparable to the mean
depth. On a smaller spatial scale, associated with the
oblique intersection of the Galapagos Front and the,
equator, mean dynamic height (0/500 db) changes
dyn c¢m in a zonal distance of 300 km in the eastern
equatorial Pacific: This change in dynamic height is
roughly one-half the amplitude of the seasonal cycle
(Lukas 1981). Representative of these zonal changes is
the range in baroclinic phase speeds: computations us-
ing CTD observations at 179°W have indicated phase
speeds of 291 and 178 cm s™! for first and second baro-
clinic modes (Eriksen et al. 1983); in contrast, the mean
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density profile at 92°W yields speeds of 214 and 111
cm s~ for the first two modes (Lukas 1981).

An extreme example of temporal changes is the 100
m isopycnal displacement observed on the equator at
85°W during the 1982 El Nifio (Behringer 1984). In
the context of a two-layer system with Ap/p =2 X 1073
and initial pycnocline depth of 200 m, a 100 m pyc-
nocline displacement would correspond to a change in
phase speed from 200 to 245 cm s~ .

Variations of the density field such as these, and the
inherent changes in the deformation scaling, lead us
to question their importance for equatorial wave dy-
namics. Examples of interest include the behavior of
equatorial waves impinging upon a meridionally ori-
ented density front and waves propagating along a
sloping thermocline. One potential application is to
the question of whether the response to wind energy
input in the western equatorial Pacific retains its modal
identity eastward or is transformed and depleted
through significant modal dispersion.

The intent of this work is to develop a formalism to
examine the influence of zonally varying stratification
on equatorial wave phenomena, and subsequently il-
lustrate the application to idealized cases. We wish to
isolate the influence of zonal changes in stratification;
mean currents are ignored. Our work is thus comple-
mentary to that of McPhaden et al. (1986), which ne-
glects zonal variations but treats the influence of mean
currents and the associated meridional variations in
stratification required for geostrophic balance. We are
aware of the inconsistency in the present approach: a
basic state with a horizontally varying stratification
generates non-zero pressure gradient forces which pre-
sumably are balanced by forces associated with water
motion. There is general agreement that stresses as-
sociated with zonal currents are important to the zonal
momentum balance, but there is no universally ac-
cepted idea of what form these stresses take. Conse-
quently, there is no obvious choice for the currents
associated with a zonal pressure gradient. Rather than
becoming enmeshed in this issue, and in efforts to sep-
arate the influence of mean currents from that of strat-
ification per se, we simply assume ab initio that mean
currents may be neglected.

Our approach, as described in sections 2 and 3, is
to apply a matching condition to equatorial waves in-
cident on a single zonal discontinuity in the density
field of a shallow water system. Transmission and re-
flection coefficients are sought for the projection of the
incoming wave onto the entire set of resultant vertical
and horizontal wave modes of a general continuously
stratified fluid. In contrast to a WKB procedure this
approach allows us to examine the cases where the
density variations are rapid compared to the wave-
length. For the long waves of greatest interest in low-
frequency equatorial dynamics this is the more realistic
limit. This is extended in section 4, in a manner anal-
ogous to radiative transfer problems, to a finite number
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of discrete density intervals. In section 5 these tech-
niques are implemented for specific choices of strati-
fication. The results are summarized and the impli-
cations are discussed in the final section.

2. Equatorial Kelvin wave incident on a meridional
density front

We first consider a low-frequency, free equatorial
Kelvin wave with time dependence exp(iwt) incident
on a discrete change in the vertical stratification at x
= (. The ocean is unbounded, and the density fields
within the regions east and west of the discontinuity
are horizontally homogeneous: west of x = 0 the Brunt-
Viisild frequency is N(z2); east of x = 0 it is N'(z). (We
will use primes to mark variables east of x = 0.) The
usual decomposition into vertically standing modes
(e.g., Moore and Philander 1977) results in a set of
structure functions and associated wave speeds { F,(2),
Cn,m=1,2, «++} west of the front which differs
from the set {F),(z), C}n, m= 1,2, « - - } east of it. As
a result the incident free Kelvin wave, with vertical
index I and structure Fy(z), cannot pass through x
= 0 unaltered.

It is intuitive, as well as straightforward to demon-
strate rigorously, that zonal velocity # and dynamic
pressure p must be continuous across the interface x
= 0. Since this is true for all ¢, all motions generated
by the incident Kelvin wave must also have the form
exp(iwt). The solution may be considered to be-com-
posed entirely of free waves at the low frequency w.
We first list the possible components and establish no-
tation. (The notation is the dimensional version of that
used in Cane and Sarachik 1981, henceforth CS.)

(i) The incident Kelvin wave, with unit amplitude
atx=0:

(u, D) = 272Yo(y)e ™ (Cy, CAIFA2)

= K{ype ™F((z); (2.1)

where
xr=wx/Cp; yr=y/Ly, (2.2)
Yo(y) = w e ? (2.3)

is the zero-order Hermite function, and L; = (Cy/8)"?
is the equatorial radius of deformation for vertical
mode 1. This Kelvin wave is present only west of the
front; i.e., for x < 0.

(i) An infinite number of long Rossby waves re-
flected at x = 0 and propagating westward in the region
x < 0. The sum of these waves may be written in the
form

(4, p) = Z Sn(Xms> Ym)EFm(2),

m=1

24

where x,, = wx/C,, and y,, = y/L,. For each vertical
mode m, S,, is composed of an infinite sum of long
Rossby waves with different meridional structure, but
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for the present we need not concern ourselves with this
additional decomposition.

(iii) An infinite number of transmitted Kelvin waves
with amplitude T,, propagating eastward east of the
front (x > 0):

WD) = 3 TuKo(Vh)e *nFo(2).

m=1

(2.5)

The notation is analogous to (2.1)ff.
(iv) Transmitted, short Rossby waves east of x = 0.
Atx=20

e}

(U, D) = 2 (ConXn(Vim)y CrXo (¥ u)F il 2)
m=1
= 3 XpFol2), 8

m=1

Our method of solution is an extension of the meth-
ods of CS and is similar to the technique used by
Cane and DuPenhoat (1982) to sotve for the flow past
equatorial islands. In the notation of (2.1)-(2.6) the
condition that ¥ and p be continuous at x = 0 for all
y becomes

= 2 TuKnFp

m=1

KIFI+ 2 Sm(x=0)Fm

m=1

+

M8

X!, F',.

1

2.7

m

In practice the infinite sums in (2.7) are truncated
at some finite upper limit A, Although it is not strictly
necessary to do so in order for our analysis to proceed,
doing so now avoids certain technical questions related
to convergence. We continue in a manner analogous
to Cane and DuPenhoat (1982). The equatorial Kelvin
waves have v = 0 and in the low frequency limit the
long westward Rossby waves also have v = 0. Hence
the lhs of (2.7) and the Kelvin waves on the rhs all
satisfy the geostrophic relation

Byu + dp/dy = 0. (2.8)

It follows that the short Rossby waves must also satisfy
this relation for each m (since the F), are mutually
orthogonal). Cane and Sarachik (1977) show that in
the low frequency limit there is a streamfunction
¥(y},) such that

u = —a‘I,/aym, me = y;n\I’
Substituting in (2.8), after replacing yby L,y

o l
—BLnCny; t-

il 2 /
o (C2ym¥] =

6/
SO

]
—y0¥ /0y, + F m¥] =
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Therefore, ¥ = 0 and no short Rossby waves are gen-
erated: X/, = 0.
Returning to the now simpler (2.7) we note that

0 0
f FouFodz = f FiuFy = bpn.
-D -D

Define o
= f F,F,dz
-D

(2.9a)

(2.9b)

and project (2.7) onto the vertical structure function
F;. This eliminates the vertical dependence in (2.7):

M
Klal,j + Sj = 2 Tm’Yj,mK;n; j=1,M.

m=1

(2.10)

We now define the dot product scaled from the west
side:

((my Pm)* (U, DRl =

X f AV Crthmtty + Pmpr)s  (2.11)

L 'Cn™

with the understanding that the primes are optional.
Taking the dot product of (2.10) with K eliminates the
Rossby wave term S; because the Kelvin wave is or-
thogonal to each of the Rossby waves in the sum; the
result is

2 Tm'YJmKJm’ J=LM (2.12)
m=1
where
Cm Ch
2~ 12 -m —m
= [, K] = 27 [1 -
11 1 T2
“tlrml
Kim = w21 + @)/2]'? (2.13)
with
u(j, m) = Cj/Cry = (L/Ly)*. (2.14)

The M unknown transmitted Kelvin wave amplitudes
T,, can now be calculated from the M equations (2.12).
The rhs of (2.10) is now known so S; is now known at
x = 0. To find its x-dependence for x < 0 we may
proceed as follows. Since it is a sum of long Rossby
waves,

Z‘ siCiRAA(y)), C

n=1

Si(x, y) = CAR ()]

Xexpli2n + 1)xj], (2.15)

where the R are the (1, p) components defined in CS,
Eq. (A6). The s, may be found by projecting the #nth
Rossby horizontal mode onto (2.10), making use of
the orthogonality of the individual Rossby wave terms
in (2.15). Only the symmetric (odd 7) modes are non-
Zero.
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There is a shortcut to a closed form solution instead
of the infinite sum of (2.15). Each term on the rhs of
(2.10) has the same Gaussian form and may be re-
written in terms of y; and C; as

K., = 2720 Gy, CP) expl—1/2up7).  (2.16)

A sum of free Rossby waves having the form (2.16) at
x = 0 can be deduced immediately from Eq. (A27) of
CS to be

1_“1/2 1+“l/2.
-2 — —iXjy .
<)) e

. 1—u 12 2ix:
+ e‘XJLj(yj, [1—_}_—“] e ’x/)] (2.17a)

where
Li(y, m) = 2722747+ )AL = )G,

2 2 _
(1 + 1)CP) exp[y— (=1

T 1)]. (2.17b)

3. Long Rossby waves incident on a meridional density
front

Next we consider a set of low-frequency long Rossby
waves impinging on the front at x = 0 from the east.
At x = 0 the waves are assumed to have the form
S7(y)Fi(z). The wave modes available for reflection
and transmission are as in (2.2)-(2.4): (i) Long Rossby
waves west of x = 0; (il) Kelvin waves east of x = 0;
(iii) short Rossby waves east of x = 0. Since Kelvin
waves propagate eastward, none can be generated west
of the front. As before [(2.8)ff] the fact that all other
terms have « and p in geostrophic balance means the
short Rossby waves (iii) cannot be present. Hence the
conditions that # and p be continuous across x = 0 is,
in analogy to (2.7),

M M
z S Fm = Z TmKFm + SiFy.

m=1 m=1

3.1

We proceed exactly as before. First, eliminate the ver-
tical dependence by projecting (3.1) onto Fj(z):
M
Sj = z Tm‘Yj,mK’m + 'Yj,ISIIa ] = 1, M.

m=1

Next, take the dot product of (3.2) with K;. Since the
Rossby waves S; are orthogonal to this Kelvin wave,

(3.2)

M
0= 2 Tuvimkjm + viulKi-SHl;, j=1,M. (3.3)

m=1

Since S} is given, the dot product in (3.3) may be cal-
culated and the M equations (3.3) solved for the un-
known amplitudes T, of the reflected Kelvin waves.
The transmitted Rossby waves are now known at x
= 0 from (3.2). In general, determining their form for
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x < 0 requires writing S; as a sum of individual waves
as in (2.15) and then finding the amplitude of each by
projecting the wave form onto S;.

4. Multiple changes in the zonal density field

The results of sections 2 and 3 form the basis for
considering a multiple number of density intervals. We
begin with two discrete changes in density and consider

. a Kelvin wave incident on the interface J between re-

gions J and J + 1 and a Rossby wave incident on the
interface between regions J + 1 and J + 2 (Fig. 1). We
set out to solve for the resulting Kelvin wave incident
on interface J + 1 and the Rossby wave at J. The so-
lution is determined by the transmission and reflection
processes outlined in the previous sections together with
the internal reflections that take place between the two
interfaces. The reflection, transmission, and propaga-
tion of the Kelvin and Rossby modes is described by
the following operators:

S; reflection of a Kelvin wave at interface J
T, transmission of a Kelvin wave at interface J

O, reflection of a Rossby wave at interface J
U, transmission of a Rossby wave at interface J
PX Kelvin wave propagation across region J

PR Rossby wave propagation across region J.

The Kelvin wave, K, incident on interface J will
produce a reflected Rossby response in region J and a
transmitted Kelvin disturbance in region J + 1. In a
similar manner the Rossby wave, R4, incident on
interface J + 1 will reflect as Kelvin waves in region J
+ 2 and transmit Rossby waves to region J + 1. Within
region J + 1 the transmitted waves undergo multiple
reflections between interfaces Jand J + 1.

The problem described above is analogous to the
discrete difference approach to the equation of radiative
transfer for a slab of some medium (Peebles and Plesset
1951; Grant and Hunt 1968). Our approach follows
accordingly.

We seek to calculate the transitions in region J + 1
from interface J to interface J + 1. The reader will find

INTERFACE INTERFACE
J J+1

REGION J + 1

K *
PJ+1K)

QR Q3R

e PR LRI .

UJ+ IRJ+1

FIG. 1. Schematic of the reflection and transmission processes
between two discrete changes in density.
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it helpful to refer to Fig. 1. Propagation of wave forms
across region J + 1 is characterized as

K = P.II(+1K7, (4.1a)

R, = P§+lRy+1- (4.1b)

The Kelvin wave on the eastern side of interface J,

K% is a combination of transmitted and reflected Kel-
vin waves. The Rossby wave on the western side of J

+ 1, R},, is a combination of transmitted and reflected
Rossby waves, i.e.,

K7 = T;K; + QJR,, (4.2a)
RGii = SraKra + UraiRyy. (4.2b)

Eliminating the starred terms relates waves about to
exit region J + 1 with those about to enter it:

Ky = (PXATHK; + (P5.Q)R,, (4.3a)
R, = (P§+ISJ+1)KJ+I + (P§+1UJ+I)RJ+I- (4.3b)

To lessen the notational burden (4.3) is rewritten as

Ky = t5o K + s5.R,, (4.4)
R; = s§uKp + 15 R. (4.5)

The meaning of the new symbols should be obvious
from (4.3) and the definitions given above. For ex-
ample, ¢4, is the propagation of a Kelvin wave across
region J + 1 after its transmission through interface J.

Equations (4.4) and (4.5) relate outgoing waves to
incoming ones only implicitly. To obtain explicit
expressions we first eliminate R, and then K, between
(4.4) and (4.5) to obtain

(I - SKSR)KJ.H = tKKj + SKtRR_].H (463)
(I — s®s®R; = s”*¥ K, + tRR,,, (4.6b)

where the subscript J + 1 has been omitted from the
operators and I is the identity. It is still necessary to
invert the operators on the lhs; now

- s8Ry 1T=r1+ % (s%s®y' = GX, (4.7a)

n=1

- sRsKy =1+ % (sBsXy =GR, (4.7v)
© n=1
Ky = GX{*K; + s*1%R;.}
= GXt*K; + sKGRtRR 4 (4.8)
and, similarly,
R; = sRGXt*K, + GRtRR,,,. 4.9)

The presence of the operators G show that the waves
emerging from region J + 1 are the result of multiple
internal reflections within the region. The operator sXs®
represents the reflection of a Kelvin wave as Rossby
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waves, the propagation of the latter across the region,
their reflection as a Kelvin wave, and finally, its prop-
agation back across the region. The infinite sum in
(4.7a) represents all the possible repetitions of this pro-
cess.

Having determined the solutions for one pair of in-
terfaces it becomes possible to extend the approach to
a series of density intervals where the number of in-
terfaces (each change of density) and the width of each
region are all arbitrary (Fig. 2). This problem now takes
on the character of a multiple scattering problem. We
consider an incoming Kelvin wave, K;, of amplitude
Ay, and an incoming Rossby wave, Ry, of amplitude
By and set out to find an expression for the resulting
Kelvin amplitude 4y and the Rossby amplitude By in
terms of the incident waves.

The methodology is to march through the system
and determine the unknown amplitudes at each inter- -
face as a function of the Kelvin and Rossby waves of
the end where one starts. Since there is an unknown
wave amplitude at each end, the procedure is an inverse
method for that particular wave. We choose to sweep
from east to west because the inverse problem for Kel-
vin waves is straightforward, while for the Rossby waves
it is complicated by the meridional mode dependency.
By sweeping from east to west, the known Rossby am-
plitude, By, will be carried forward to each interface
and the unknown Kelvin amplitude, 45, will be run
backward to each interface. Although the east to west
progression of the Kelvin wave is unphysical, the ap-
plication of the inverse technique is permissible.

The east to west calculation of the wave amplitude
requires that the amplitudes at any interface J be writ-
ten in terms of previously determined amplitudes, e.g.,
those from J + 1. Equation (4.5) for the Rossby waves
at J is already in the desired form; with explicit am-
plitude factors 4;, B, as discussed above (4.5) becomes

BjR; = Ap1sFiKpe1 + BratFRpsy . (4.10)

Having solved (4.10) the needed relation for the Kelvin
wave is obtained from (4.4):

A;K; = (50 {40 K — BisK R, (4.11)

Assuming values for Ay and By, (4.10) and (4.11) are
solved for/J=N—-1,J=N-—2, -+« westward to J
=0.

Since the system is linear, we may treat the incoming
Kelvin wave and incoming Rossby wave solutions sep-
arately.

AK,

0~0

AnKy —

B.R

(AL

= BnBy

FIG. 2. Schematic of entering and exiting waves as a result of internal
transmission and reflection processes within a series of density in-
tervals.
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(i) To consider only the incoming Kelvin wave we
let the outgoing Kelvin wave have unit amplitude, Ay
= 1 and set the incoming Rossby amplitude to zero,
By = 0. Values of 4y and B, result from the westward
marching solution procedure. However, we actually
want to solve for Ay given an incoming Kelvin wave
of unit amplitude. Thus all Kelvin and Rossby ampli-
tudes are normalized by dividing by 4. The outgoing
waves resulting from an incident Kelvin wave of unit
amplitude are then given as

outgoing Kelvin: A4y 'Ky (4.12a)

(4.12b)

(ii) The solution due solely to an‘incoming Rossby
wave of unit amplitude begins with an east to west
sweep of the wave amplitudes with incident Rossby
amplitude By = 1 and no outgoing Kelvin wave, Ay
= 0. Upon reaching the western terminus, the ampli-
tude B, of the final transmitted Rossby wave Ry has
been determined. However, [as indicated in (4.11)] this
westward sweep results in an erroneous incoming Kel-
vin wave of nonzero amplitude 4,. To cancel this “in-
coming” Kelvin wave, a corresponding Kelvin wave
of opposite sign, —Ay, must be introduced to the sys-
tem. The effect of this incident wave, from (4.12), is
to induce an outgoing Kelvin, Ky, of amplitude
—Apdo!, a contribution to the outgoing Rossby wave,
R, of amplitude —A4o4y™'By, and no net incoming
Kelvin wave. Therefore, the total result of an incoming
Rossby wave of unit amplitude is

outgoing Kelvin: —ApAKy
outgoing Rossby: BoRo — AoAo'BoRy.

outgoing Rossby: 4y "'BgRy.

(4.13a)
(4.13b)

5. Applications

A straightforward application of the formalism of
sections 2 and 3 can be made if the eigenfunctions of
different index are required to be orthogonal from one
region to the other. With suitable boundary conditions,
this requirement that the functional dependency of the
vertical density profiles be equivalent includes situa-
tions where the Viisdld frequency may be written as
N = N;(x)N(2); for example, N? independent of depth.

Effectively, this prevents any modal dispersion from
one region to the next; i.e., the projection of vertical
modes for region to region is only nonzero for corre-
sponding mode number. In terms of (2.9b)

(5.1

Hence, the vertical structure of the propagating wave
disturbances remains intact although the density field
changes zonally.

We consider first the incident Kelvin wave of section
2. As a measure of changes to the zonal redistribution
of energy resulting from the transmission-reflection
process, the zonal energy flux, f f; updy, is computed

Ymn = Omn.
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at the interface, x = 0. From (2.1), the energy flux of
the incoming Kelvin wave is given by

fdzf dy(u-p)

where we have used (2.3) and (2.10). Similarly, the
transmitted Kelvin wave has energy flux

CrLy, (5.2a)

1
2

=0

% CPLTH (5.2b)
in view of (5.1) and (2.12)
Ty = «pi = w’12/(1 + W], (5.3)
where [cf. (2.14)],
u = CyCy= (Li/Ly. 3.4)

Hence the ratio of the transmitted to the incident en-

ergy flux is
Jr=2u"(1 + p)7 (5.5)

The energy of the reflected Rossby wave (2.17) at x
= 0 may be found by similar methods; its ratio to the
incident flux comes out to be

=21+ " - L (5.6)

Equation (5.6) shows the Rossby wave flux is west-
ward as expected; also note that (5.5) and (5.6) are
consistent with conservation of energy. In Fig. 3 the
energy flux (5.5) is plotted as a function of the relative
phase speed. The decrease in transmitted energy flux
is seen to be small for geophysically reasonable changes
in the phase speed: even a 50% change in the phase
speed produces at most at 6% decrease from the inci-
dent zonal energy flux.

However the zonal energy flux is a meridional in-
tegral of the zonal velocity and pressure fields and, as
such, may obscure amplitude changes associated with

1.0

0.8

0.6

0.4

02F n

0.0 " PR | " "y —

"0.0 1.0 2.0

FIG. 3. Ratio of transmitted Kelvin to incident Kelvin wave zonal
energy flux, fr, as a function of u for the case where eigenfunctions
of different vertical index are orthogonal across an interface.
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the varying deformation radii. Consideration of the ac-
tual zonal velocity and pressure fields is more relevant
to what would be observed by moored instruments at
the equator. Following a procedure similar to that
above, evaluation of (2.1) and (2.12),at x =0,y =10
yield the following ratios for the transmitted to incident
zonal velocity (Ur) and pressure (Pr) at the interface:

Ur = ul2/(1 + W] (3.7a)
Pr=[2/(1 + W] (5.7b)

The reflected Rossby wave velocity (Ug) and pressure
(Pg) ratios may be calculated directly from (2.17), or,
more simply, by using the continuity of U and P at x

UR=UT—1; PR=PT—1. (58)

The effect of a small change in the stratification may
be estimated by letting u = 1 + ¢, so € is the relative
change in wave speed. Assume |e| < 1. Equations (5.5)
and (5.7) then yield the approximate formulas
fral=ié Upml43¢ Pral-S. (59)

8 ’ 4 ’ T~ 4 . .
Apparently, the energy flux is hardly altered while the
change in velocity is 3 times that in the pressure,

Figure 4 shows the behavior of the equatorial zonal
velocity and pressure fields as given by (5.7). Sensitivity
to the change in phase speed is clearly more evident
here. The equatorial zonal velocity increases and the
pressure of the transmitted Kelvin wave decreases with
decreasing phase speed or deformation radius. For a
+50% change in the phase speed, a 30%-60% change
in the zonal equatorial velocity and a 10%-20% change
in pressure can result.

We next consider an incident long Rossby wave,
Ry (¥/L}). An antisymmetric wave is transmitted with
no reflection; a symmetric mode of index k(k = 1, 3,

T H T I L T
i Ur 3
16 [ —
10 — —
. =
05 = -
L i
L i

00 1. 3 ) l H 1 1
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HG. 4. As in Fig. 3 but for the ratios of transmitted Kelvin to
incident Kelvin wave equatorial zonal velocity, Uz, and pressure Pr.
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Fi1G. 5. As in Fig. 3 but for the ratio of reflected Kelvin to incident
Rossby wave (meridional index k) zonal energy flux.

5, « « +) with amplitude as in CS Eq. (A6) has energy
flux

[ @z [ wvry-piormpay = = § micetede + i,
(5.10)

From (3.3) the amplitude of the reflected Kelvin wave
is determined to be

T; = —«kpi[Kr R;

k! Ve ) A -1/, __ 1\G+D2
G T o

Using (5.2b), (5.10) and (5.11) the ratio of the re-
flected to the incident flux is

fr = —4k(k + VT

k4 D (k+ 1\THu— 17
R (e

This ratio of the reflected Kelvin wave energy flux with
respect to the energy flux of the incoming Rossby wave
of meridional index k is plotted in Fig. 5. Similar to
what was found for the incident Kelvin wave, the zonal
energy flux of the reflected wave is relatively insensitive
to realistic changes in the phase speed. Additionally,
the reflected Kelvin energy flux decreases as the me-
ridional scale k of the incident Rossby wave increases.

In terms of the equatorial zonal velocity and pressure
fields, the ratios of the reflected Kelvin wave variables
to the incoming Rossby wave are found to be

| 1 — (k+1)/2 1 — @ (k+1)/2
= —+ N — . = — .
Up=Q2k+1) (1 T ”) ; Pr (1 " p,)

(5.13)

As seen in Fig. 6 , a £50% change in the phase speed
can induce a reflected Kelvin wave disturbance with
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FIG. 6. As in Fig. 4 but for the ratios of reflected Kelvin to incident
Rossby wave equatorial zonal velocity, Ug, and pressure, Pg.

zonal velocity 7%-11% and pressure 20%-30% those
of an incident first meridional mode Rossby wave.
These percentages decrease markedly as the meridional
index of the Rossby wave increases. .
For the second application of the formalism of sec-
tions 2 and 3, the restriction that the eigenfunctions
be orthogonal from region to region is removed: the
Ymn Of (2.9b) are now nonzero for m # n and modal
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dispersion occurs. Thus an incident wave is projected
onto infinitely many transmitted and reflected wave
modes.

As in many theoretical studies the vertical density
profile is taken to be an exponential function with
depth,

p(z) = pg for —z < Hyx;
p(2) = po + Aoman{l — expl(z + Hmix)/Dmain]}

+ Appeep{! — exp[(z + Hwix)/Doeer]}
for —z> Hyx. (514)

where p is a constant background density, Ap the
change in density across a main or secondary deep
pycnocline, Hyx a surface mixed layer thickness, D a
depth scale for the pycnocline, (cf. McCreary 1977).
The profile parameters of Table 1 represent a west to
east decrease in depth scale and magnitude of a main
pycnocline. The corresponding profiles for the square
of the Viisild frequency are given in Fig. 7. The model
ocean is 4000 m deep and the modal decomposition
is performed for 24 vertical modes. It was determined
that additional modes had little effect on the solutions.
The baroclinic phase speed for the gravest modes are
given in Table 1. The choice of profile parameters
translates to an eastward decrease in the low order
phase speeds of approximately 27%, constituting a sig-
nificant change while retaining some semblance of
reality. The eigenfunction projections for a few of the
lowest modes are given and indicate the transmission
of an incident wave mode, while nearly perfect, will
leak energy to other vertical modes.

Given this information on the vertical structure, the
techniques of section 2 are applied separately to inci-
dent first and second baroclinic Kelvin waves, each of
unit amplitude. In an analogous manner, the findings
of section 3 are used to solve for incident, first sym-
metric mode, Rossby waves with unit amplitudes for
first and second baroclinic modes. The zonal energy
flux, equatorial velocities, and equatorial pressures of
the incident, transmitted, and reflected waves for these
four cases are summarized in Table 2. The individual
contributions from the lowest order vertical modes are

TABLE 1. Profile parameters.

Density (g cm™)

Low-order baroclinic phase speeds

(cms™)

Region 1 Region 2 Region 1 Region 2 Modal projections
APMAIN = 005 APVMA]N =.002 C] = 276 C’] = 201 Y1 = 97
Appggp =.0020 AprEp = 0015 Cz = 150 C’z =109 Y12 = 21

Hyix = 25m Mix = 25 Cs= 98 5= 74 Yo = -'gg
Dyan = 100 Dian = 50 12’2 _ ‘10
Dpgep = 500 Dipgep = 500 23 = .

Y32 = —.08
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WEST N2 (Z) also provided. Results pertaining to transmitted and
L L e T reflected Rossby waves are summed over 20 symmetric
r 1 Rossby modes.

100 - 1 Clearly, the matching conditions for the total solu-
- 8 tion are very similar to the previous application (Figs.
200 | . 3-6) with p = 1.37. The transmission of energy is rel-
L - atively efficient with minimal loss to reflected waves.
a00 L i Equatorial velocities and pressures change by 10%-30%
T F _ of the incident wave, consistent with the single mode
T L0l i reflection-transmission results of the first application.
E | | These similarities are not surprising because the gross
structure of the low order modes in each region is sim-
soo ilar: y;; ~ 1. This is an indication that the vertical
1000 T scale of the zonal change in vertical structure is not
" ] comparable to the vertical scale of the gravest baroclinic
2000 |- ) 7 modes.
r . Differences from the previous single mode results
3000 - . arise when considering the properties of individual
- . modes. Although there may be small differences be-
A S AU U SV PO PO ST S PO i tween the gravest eigenfunctions, the projections of dif-
o .00025 1] .00025 .0005 . . . .
fering mode numbers, because they involve integration
SEC-2 over the entire water column, can be nonnegligible,
FIG. 7. Squared Vaisils frequency profiles corresponding to the ~ Yrr+1 # 0. These coefficients then determine the be-
two exponential density profiles of Table 1. havior of the amplitudes of the transmitted waves when
TABLE 2. Summary.
Incident Kelvin Wave Incident Rossby Wave
mode 1 mode 2 mode 1 mode 2
Zonal energy flux
Incident wave (cm? s73) : 2.3 2.7 x 107 -9.2 X 1072 ~1.1 X 1072
Transmitted total (as % of incident) 98.2 98.5 98.7 98.2
Contribution from: mode 1 93.3 5.0 93.1 4.4
mode 2 44 91.4 5.0 90.9
mode 3 0.1 1.0 0.4 0.6
Reflected total (as % of incident) -1.8 -1.5 -1.3 -1.8
Contribution from: mode 1 -1.6 -0.2 -1.0 -0.2
mode 2 -0.2 —-1.1 -0.2 -1.3
Equatorial velocity, x = 0, y = 0,
Incident wave (cm s™') 1.1 54 %107 -4.9 %X 107! ) —3.8 X 107!
Transmitted total (as % of incident) 127.4 123.4 95.1 96.3
Contribution from: mode 1 104.7 —16.4 107.9 15.7
mode 2 50.8 154.5 —26.3 71.4
mode 3 —6.1 16.8 7.5 —-6.0
Reflected total (as % of incident) 27.4 23.4 -49 -3.7
Contribution from: mode 1 30.6 10.0 -4.7 -0.9
mode 2 15.1 25.6 —4.6 -5.4
mode 3 —6.9 4.1 1.2 -0.7
Equatorial pressure, x =0, y = 0,
Incident wave (cm? s72) 3.0 X 102 8.2 X 10! 3.3 x 10! 1.4 X 10!
Transmitted total (as % of incident) 89.9 88.9 117.8 118.4
Contribution from: mode 1 75.6 -21.8 132.4 26.5
mode 2 19.9 112.5 -21.4 87.0
mode 3 -1.6 8.3 4.3 -5.6
Reflected total (as % of incident) —10.1 —11.1 17.8 18.4
Contribution from: mode 1 —9.3 —4.6 14.2 4.9
mode 2 -2.6 -7.9 7.5 16.2

mode 3 0.8 -0.9 —-1.3 1.4
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solved from the system of linear equations (2.12) and
(3.3). Evidence of this dependency can be seen in the
transmitted pressure fields for the incident Kelvin wave
cases. For the example of an incident, first mode, Kel-
vin wave, the pressure field of the transmitted, first
mode, Kelvin wave is less than the incident wave. In
fact, the pressure decrease is greater than predicted for
the transmission of a single wave. The first mode de-
crease is greater than a single mode transmission due
to pressure contributions from the higher modes which
drop off rapidly with increasing mode number. The
situation is different for the incident second mode Kel-
vin wave: the pressure of the second mode increases,
contrary to what might be expected from the single
mode transmission examples. The increase in the sec-
ond mode transmitted pressure compensates for the
negative amplitude of the transmitted first mode Kelvin
wave that is attributable to v, = —0.22,

In the final application the formalism of section 4
is implemented for a Kelvin wave incident on multiple
changes in stratification. Once again for simplicity, the
eigenfunctions are required to be orthogonal from re-
gion to region. We choose to consider an annual Kelvin
wave propagating through 50 regions separated by 49
equidistant interfaces. Increasing the resolution beyond
50 regions has negligible effect. The phase speed of the
incident wave is chosen to be 300 cm s~! decreasing
linearly to 100 cm s~'. Solutions for the zonal velocity
and pressure at each interface are determined for the
range in which the width of the total transition, xg,
changes from being small to large with respect to the
wavelength of the easternmost Kelvin wave, Ag.

When the width of the transition from 300 to 100
cm s~! is small (xg € Ag) the limiting case should be
the frontal example of section 2. With 4 = 3 across a
single interface; i.e., xg = 0, the ratio of the zonal energy
flux of the transmitted to the incident Kelvin wave
(5.5) is 0.87. At the other limit, xz long compared to
g, perfect transmission should result. The energy flux
in a Kelvin wave at longitude x is $U(x)P(x)L(x),
where U and P are the amplitudes of the zonal velocity
and pressure, and as before, L is the radius of defor-
mation. If no energy is reflected

Uxp)P(xp)L(xg) = U(0)P(0)L(0)
and since P = ¢U we may conclude that
U(xg) = UQOICO)/Cxe)]**;
P(xg) = PO)[C(0)/Clxp)] ™. (5.15)

As shown by (5.9), these results agree with the single
step transmissions, (5.5) and (5.7), to O(e).

The ratio of the mean zonal energy flux integrated
over one period for the transmitted Kelvin wave at
each interface relative to the initial incident Kelvin
wave is given in Fig. 8 for xg/Ag ranging from 0.05 to
1. The limits for perfect transmission and for trans-
mission across a jump discontinuity are indicated by
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F1G. 8. Ratio of mean zonal energy flux integrated over one period
for the transmitted Kelvin wave at each interface relative to the initial
incident annual Kelvin wave. The phase speed of the incident wave
decreases linearly from west to east across 49 equidistant interfaces
within a transition region of width xz. Six cases are presented where
the width of the transition zone is changed relative to the wavelerigth
of the transmitted Kelvin wave, Ag, at the eastern terminus. The
limits for perfect transmission and for transmission across a single
jump discontinuity are indicated by dashed lines.

dashed lines. For a total width that is small compared
to the Kelvin wavelength the transmitted Kelvin zonal
energy flux decreases monotonically eastward to the
limit of a single jump discontinuity. At width scales
comparable or larger than the Kelvin wavelength nearly
perfect transmission occurs at all interfaces. In between
these limits, for xz equal to 0.3\g and 0.5\g, the energy
flux of the transmitted Kelvin wave at interior points
actually increases slightly beyond that of the initial in-
cident Kelvin wave. Internal reflections and construc-
tive interference between the interfaces enhances the
zonal energy flux of the Kelvin wave in the interior.
This increase is necessarily compensated by an increase
in the westward zonal energy flux of reflected Rossby
waves.

The changes in equatorial zonal velocity and pres-
sure at each interface as a function of xz are presented
in Figs. 9a and 9b. As a point of reference, for u = 3
across a single interface, the ratio of the transmitted
Kelvin to incident Kelvin wave zonal velocity is 2.12
and the ratio for pressure is 0.71 [cf. (5.7)]. As the total
width of the region increases to order Ag, both ratios
depart slightly from the jump discontinuity limit. For
X£ 2 Ag, a WKB limit is attained and the transmission
behavior remains constant. '

6. Discussion

In this paper we have developed a formalism for
evaluating the effects of zonally varying stratification
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FIG. 9. As in Fig. 8 but for the absolute value ratios of equatorial
zonal velocity, | Ur|, and pressure, | Pr|, at each interface relative
to those of the initial incident Kelvin wave, | Uw|, | Pw|.

on equatorial waves. Qur initial motivation for con-
sidering this problem was some unexplained results in
two investigations of the oceanic response in the eastern
equatorial Pacific which employed linear theory. Gill’s
(1982) study of hydrographic data-suggested strong
modal dispersion in the eastern Pacific. In his analysis
the first baroclinic mode appears to be dominant in
the central Pacific, whereas the second baroclinic mode
is dominant in the east. One suggestion is that first
mode Kelvin waves are somehow transformed into
second mode waves as they enter the eastern Pacific.
It seemed a reasonable speculation that the change in
stratification might be responsible. The results repre-
sented in the last section do not support this idea: even
with an unrealistically abrupt change in stratification
the calculated modal dispersion is too small to account
for Gill’s result.
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Cane (1984) noted that while the wind-driven linear
theory seemed to account for much of the eastern Pa-
cific sea level response during El Nifio, there were im-
portant discrepancies. The typical El Nifio sea level
signal shows two peaks at the coast of about equal am-
plitude. The first appears to be associated with the
anomalies in the central or western Pacific toward the
end of the year preceding the event. In all accounts
these anomalies are small, much smaller than the mas-
sive collapse of the tradewind system at the height of
the event which accounts for the second peak. Hence
some mechanism seems to be needed to enhance the
response to the earlier wind changes.

Cane (1984) speculated that the zonal changes in
stratification might be responsible. The results given
here contradict this idea: effects on pressure are small
and in the wrong sense. (An explanation for the first
peak is provided by the theory of Cane and Zebiak,
1985, and Zebiak and Cane, 1987, which implies that
the first peak results from an unforced Kelvin wave
which is the reflection of Rossby waves at the western
boundary. Gill, 1983, offered a similar explanation. By
starting too close to the time of the event to allow the
needed Rossby waves to be generated, Cane’s, 1984,
calculation missed this.)

A broader motivation for the present study was our
observation that the linear theory is successful in ex-
plaining many equatorial ocean phenomena despite
the fact that it cannot be justified rigorously (Cane and
Busalacchi 1987). In the present study we have treated
zonally varying stratification, one of the effects which
is present in the real ocean but is neglected in the stan-
dard linear theory. The results obtained here tend to
support the use of the simplified theory. The variations
modify the model ocean’s response quantitatively to
some extent, but do not alter its basic character.

Since the change in the energy flux carried by prop-
agating waves is so small, the theory which assumes
horizontally uniform stratification may be used to
compute basinwide equatorial responses. That is, the
use of the constant equivalent-depth shallow water
equations for each of the vertical modes can be expected
to give approximately the correct answer for the modal
amplitudes: the varying stratification does not modify
the solution substantially. However, the amplification
of zonal velocity can be appreciable. This could be im-
portant in enhancing the anomalous advection which
can create SST anomalies in the eastern Pacific (Gill
1983; Harrison and Schopf 1984). The diminution of
the pressure signal, though much smaller, may still be
non-negligible.

Our analysis suggests a relatively straightforward and
computationally efficient way to modify the usual
modal decomposition solution procedure to take ac-
count of the leading effects of zonally varying stratifi-
cation. As before [e.g., Eq. (2.4) we write, for example,

ulx, v, z, £) = u(x, y, OF,,
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and compute u, from the shallow water equations.
However, whereas in the standard method F,, is based
on the horizontal mean stratification and so is a func-
tion of z only, we now compute it from the local strati-
fication. Doing so modifies the amplitude of u as called
for by the results of section 5. In effect, we ignore the
correction at O(¢?) in the energy flux by using the un-
modified shallow water equations, but then make the
correction to # and p which is O(e). There is still an
error in timing due to the neglect of the change in wave
speed, but it is negligible if one is only concerned with
monthly means and longer timescales. If desired, it
- could be accounted for by stretching the zonal coor-
dinate to be equally spaced in terms of wave travel
times; this is just the WKB stretching.
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