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ABSTRACT

Seasonal heat transport is examined in a simple, lineaf, shallow-water model on the equatorial beta plane.
It is found in this model that meridional transport by the seasonally varying western boundary current is
of the same magnitude but opposite phase to the seasonally varying interior transport and therefore tends

1. Introduction

In a previous paper (Cane and Sarachik, 1981) we
solved for the response of the linear shallow water
equations to a periodic zonal forcing:

iwu = yv = —h, + F(y) expliot),

yu = _hy,
iwh+ u, +v,=

(1a)
(1b)
0.

These equations have lengths scaled by the equatorial
radius of deformation (C/8)!/? and time by (CB)~'72,
where Cis the Kelvin wave speed. The équations were
solved in the long-wave approximation [hence the
~ absence of iwv in Eq. (1b)] on an equatorial beta plane
~ basin bounded by meridians at x = 0 and x = Xj
- and unbounded in the y direction. The forcing

pendent of x, symmetric in y and Gaussian: F(y)
= exp[—(1/2)uy?]. The boundary condition at the
eastern boundary of the basin was ¥ = 0 but at the

- plicitly include the effect of the western boundary
current which, being composed of short Rossby
"~ waves, is not described by Eq. (1). The proper bound-
. ary condition on the interior motions is [© wudy
= 0 [see Cane and Sarachik (1977, 1981) for more
- details].

It turned out that the only internal parameter in

"distance a Kelvin wave travels in time ™), ie., ¢
‘= wXzC"! (see also Kindle, 1979). For annual forcmg

first baroclinic mode. Calculation of the annual depth
matlons for this value of ¢ showed some close (per-

£ oclme vanatlons in the Atlantlc (Merle, 1980)

; the calculation is the ratio of the basin scale to the

(o)

was ‘chosen, for analytic convenience, to be inde-

‘western boundary the boundary condition had to im-

in a basin the width of the Atlantic, ¢ = 0.54 for the

fortuitous) agreement with the gbserved annual

In particular, the interface in the calculation exhibited
a minimum amplitude somewhere near one-third of
the basin length from the western boundary rather
than at the center. This implies that mass is redis-
tributed meridionally as well as zonally so that zonal
strips of ocean, extending zonally from x = 0 to x
= Xg and meridionally from y = ysto'y = yy, will
exhibit annual variations in total mass content above -
the interface.

It is the purpose of this note to examine the mech-
anism for annual mass content changes in our model.
Since the thickness of the layer above the interface
is a proxy for the total heat content, the terms mass
and heat will be used interchangeably in the fol-
lowing. ‘

2, Mechanisms for heat content variations -
We may define the total rate of storage of heat in
a zonal strip across the basin to be proportional to

N [ XE
Sowya = io [ [ hos sy, @
Vs

where the i'ntegra] term is the heat content of the strip
and the iw gives the rate of change in this periodic

‘problem.

Because we allow no heat fluxes across the ocean .
surface, the variations in heat content are caused
solely by convergences and divergences of mass. In-
tegrating the continuity equation (lc) across the zonal -
strip yields

SOw, Vs) -f u(x = O)dy

f [v0m) — o9ldx. (3)
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The second term, denoted Ky, ys), is the net flow
of mass into the zonal strip by interior meridional
motions. and is positive when ©(yy) is southward or
v(ys) northward. The first term of (3), denoted B(yw,
ys) is the influx of mass into the zonal strip by con-
_vergence due to the western boundary layer.

That the first term has a similar form to the second
may be seen by applying the western boundary con-
_ dition in its original form u®(x = 0) + u(x =0) =0
“to the definition of B(yw, ys) (super b here represents

boundary layer quantities). Then

VN
B(yy, ys) = —fys u(x = 0)dy

- _Lw [v°(yn) — v*(rs)ldx,  (4b)

where (4b) follows by simply integrating the conti-
nuity equations u2 + v5 = 0. (The upper limit oo is
the usual boundary layer terminology for integrating
over the entire layer, which is here of dimensional
scale w/8, or non-dimensional scale w € 1 < X;.

We see that the storage rate in a zonal strip is sim-
ply the net meridional mass flow into the strip, part
in the thin boundary layer [Eq. (4b)] and part in the
interior.

3. Calculations

In order to evaluate the storage rate using only
interior quantities, we must know u(x, y) and v(x, y).
The solutions for u(x, y) and A(x, y) were previously
given in Cane and Sarachik (1981); v(x, y) may be
calculated from the solutions for # and 4 given in
that paper using the momentum equation (1a) or may
be constructed directly using the methods of that pa-
per. In either case, the result is

_ o | elig) expl(1/2)y*n(0, 8)]
v= yexp(twt){ VT+_u 10, 8) -

W expl(1/2)y*n(u, ¢8)]

3(I-¢, 3]
ot exp[(1/2)y*n(z, O]
’fo 2w, ) dr}’ ®

.where .
£=(x—Xp)/Xe,

i) = (1 + ' = )G sin2e)
X [ ¥ — uglu, —¢) +i f q(u, -¢’)d¢’]

_ 11(#, ¢) =
p, 9) =

(n cos2¢ — i sin2¢)'?,
(cos2¢ — ui sin2¢)'?,

ol )= % N ).

NOTES AND CORRESPONDENCE

TABLE 1. Amplitude and phase (radians, positive phases lead the -

forcing) of the storage rate S, the western boundary layer contri-
bution B, and the interior contribution I: .S = B + I Case
corresponds to first baroclinic mode Atlantic annual response,
¢ = 0.54. The scale of zonal forcing is 10° of latitude.

Y, Vs B(yn, ys) - I(yn, y5) S(yn, ys)
1,0 0.252, 0.761 0.256, —2.67  0.0740,2.24
2,1 0.485, —1.28 0.472, 1.85 0.0140, —0.888
3,2 - 0.449,2.20 0.474, —1.10  0.0741, -2.25
4,3 0.00943, —0.530 - 0.038, —298  0.0314, —2.79
5,4 0.166, —1.79 0.167, 1.36 0.00173,2.50
6,5 0.157, 1.53 0.154, =1.55  0.00944, 0.2769

(4a)

For a symmetric! zonal wind of form F(y)
= exp[—(1/2)uy?] having a scale of about 10° latitude,
p = 0.2. The zonal strips were taken to be of non-
dimensional width 1 (~3° latitude). The two terms
on the right-hand side of (3) were calculated numer-
ically and the results of the complex integrations were
checked by verifying the sum with Eq. (2) calculated

directly. The results are shown in Table 1. Note that - -

1745

results for thicker zonal strips can be calculated di- .

rectly from those given here using
S(yNs yl) + S(yh J’s) = S(yN;/yS)s

where yy < ¥, < ys. Similar relations result for I(y)v,
ys) and B(yw, ys).

4. Results and discussion

A glance at Table 1 or Fig. 1 immediately shows
the main result of this note: the boundary layer con-

tribution to the storage rate is of the same magnitude

as the interior contribution but almost exactly out of
phase (i.e., = radians). Therefore the boundary and

interior terms tend to cancel and, indeed, the total

storage rate is at least a factor of 4 smaller than either
of the constituents.

Although neither B nor I have ever-been observed -

in the Atlantic, Merle (1980) has calculated, from
monthly climatological data, the annual variations

. in the heat content of zonal strips in the tropical
Atlantic. He shows that (his Fig. 9c) the time rate of

change of heat content from 6°S to 6°N across the
Atlantic reaches its maximum in October. If from

Table 1 we calculate the corresponding quantity,i :

S(2, 0), we find its phase to be 2.23 so that we expect

- the storage rate to lead the wind forcing by about four

months. The zonally averaged easterlies across the

Atlantic are weakest in February-March (Katz et al.,

1977), so that the annual westerly (positive) anomaly

"I An antisymmetric zonal wind does not_contribute appreciably

to heat content changes in near-equatorial zonal strips [see Cane

. and Sarachik(1981) and Schopf (1980)] so that only the symmetm:
'partofthewmdneedbeoonsldered : JERED
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FIG. 1. Amplitude of the total storage rate S(y, 0), the western
boundary layer contribution B(y, 0), and the interior contribution
I(y, 0). Case corresponds to first baroclinic mode Atlantic annual
response, ¢ = 0.54. The scale of zonal forcing is 10° of latitude.
y = 1 corresponds to about 3° of latitude.

/

is largest during these same months. Thus our simple
theory predicts the storage rate to be maximum in
October-November, in agreement with Merle’s re-
sults. Merle also shows that the amount of heat ex-
changed seasonally between the eastern and western

halves of the equatorial Atlantic is much greater than

the amount exchanged with higher latitudes, consis-

“tent ‘with our results [see also Fig. 5¢ of Cane and

Sarachik (1981)].
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A detailed comparison of linear theory with ob-
servation réquires a calculation with realistic winds
and surface heating. We anticipate that our most
striking result, the near cancellation of the boundary"
layer and interior contributions to the storage rate,
will continue to hold. Moreover, we have reason to
expect that this result will carry over to realistic nen-
linear numerical models: in the interior an integrated
quantity like heat content tends to be well predicted
by linear theory, while the usual boundary layer ar-
guments imply that the western boundary current
transport is’ determined by the flux at the coast as-

" sociated with the interior solution regardless of the

detailed dynamics of the boundary layer. Of course,
this should be tested in nonlinear models. Our results
also have important implications for attempts to cal-
culate heat transports in the tropics from hydro-

~ graphic data (e.g., Behringer and Stommel, 1981). In

particular, both the interior and western boundary
current transports must be known to great accuracies,
accuracies that we believe are unobtainable with pres-
ently available data.
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