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ABSTRACT

A fast, efficient numerical procedure for modeling the linear low-frequency motions on an equatorial beta
plane is developed. The model is capable of simulating the seasonal and interannual variability in realistically
shaped ocean basins forced by realistic winds. The timestep allowed is the order of days rather than hours as
allowed by more conventional schemes. The numerical method is designed around the special characteristics
of low-frequency equatorial waves. A crucial element is the formulation of proper boundary conditions,
including those for a partial boundary such as the western end of the Gulf of Guinea.

The response of an Atlantic-shaped basin to a periodic wind is compared with the analytic results of Cane
and Sarachik for a meridionally unbounded ocean. The response along the equator is essentially the same.
A narrow boundary layer forms along the Guinea coast, too narrow to be a single coastally trapped wave: it
is the sum of many modes. The near lack of phase variation along the coast and the smallness of the phase
difference between the equator and the coast are additional contrasts to the results for an initial value
problem studied by Moore and others. The implication is that the annually recurring upwelling in the Gulf
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of Guinea cannot be adequately modeled as the response to an impulsively applied wind stress.

1. Introduction

Beginning with the seminal work of Lighthill (1969),
linear shallow water models have proven remarkably
useful for explaining equatorial phenomena on sea-
sonal and interannual time scales. While it is true
that most of the success of these models comes in
comparing relatively unstructured, integrated quan-
tities like dynamic topography, it is nonetheless un-
expected that theories that invoke only such simple
physics should work so well. (For a list of recent
examples see Cane and Sarachik, 1983.) Most of the
work along these lines has used simple geometry (e.g.,
meridionally infinite equatorial beta plane) and highly
idealized wind forcings, but recently a number of
studies with realistic basin shapes and wind forcings
have been carried out (e.g., Busalacchi and O’Brien,
1980, 1981). One of the key points of the present
work is that such realistic studies are essential if the
true applicability of shallow water theory is to be
tested: results from highly idealized calculations (e.g.,
initial value problems with switched on winds; fea-
tureless wind systems) are often misleading.

Even the studies we refer to as realistic have been
highly idealized. They neglect nonlinearity, heat ex-
change with the atmosphere, surface layer mixing
and most of the complexity of the thermal stratifica-
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tion of the real oceans. Of course, these simplifications
have the virtue of making the results more easily
understood. Even so, interpretations are made in
terms of only a subset of the possible motions that
the shallow water system allows: the low-frequency,
long zonal-scale equatorial Kelvin and Rossby waves.
While these are the only motions relevant in such
problems, the shallow water equations also describe
inertia—gravity waves with much higher frequencies.
Their presence forces the numerical models employed
in the realistic calculations to use time steps that are
very small compared with the time scales of interest
(i.e., a few hours compared with a few months.)

In the present study we develop a numerical model
that filters all but the low frequency, long zonal-scale
waves. The physically interesting motions are retained,
but a very long timestep (we use 10 days) is allowed.
This makes the model extremely fast, so that even
with modest computing resources many calculations
may be carried out. It is then possible, for example,
to run dozens of simulations in order to explore what
features of the wind system are responsible for such
oceanic responses as the upwelling in the Gulf of
Guinea (cf. Patton, 1981). It is also feasible to perform
many experiments with a stratified ocean model by
decomposing the response into a sum of vertical
modes (e.g., Cane, 1984).

Our numerical procedure has been designed with
the characteristics of the physics of the system in
mind. Our approach is based on the extensive theory
for the shallow water system developed by Cane and
Sarachik (1976, 1977, 1979, 1981; henceforth CSI,
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CSII, CSIII, CSIV, respectively). We particularly ex-
ploit the fact that of the allowed free motions, all
propagate westward with the exception of the equa-
torial Kelvin wave. It is essential to our procedure to
extract the Kelvin component of the solution. We do
so by projecting the Kelvin mode onto the governing
equations; this is possible because the vector shallow
water modes (u, v, 4) form an orthogonal and com-
plete set. (The proof of this for a meridionally bounded
basin is given in CSIII, Appendix A.)

It is a relatively simple matter to find the equations
that govern the low-frequency, long-wave motions
(cf. Section 2), but the formulation of proper initial
and boundary conditions is far less obvious. First,
the restricted class of motions remaining after the
equations are filtered do not satisfy the obvious
boundary conditions of no normal flow. Second, the
usual algorithms for calculating boundary conditions
(e.g., Moore and Philander, 1977) are based on a
complete decomposition into normal modes, some-
thing we wish to avoid as computationally extravagant.
Moreover, they have no obvious extension to a
meridionally bounded ocean. Here we construct
proper, computationally efficient boundary conditions
based on the results presented in CSIII. Section 2 of
this paper reviews the equations for our physical
model, including initial and boundary conditions. It
is obviously desirable to be able to model a more
realistic basin geometry than a simple rectangle. A
complete extension of the CS theory to partial bound-
aries was developed in DuPenhoat et al. (1983, here-
after DCP). In Section 3, we present the results
needed to treat a partial boundary such as the Gulf
of Guinea, the case to be considered in this paper.

Before formulating the present model we considered
the more obvious alternative of a special procedure
in which the solution would be represented as a sum
of the normal modes of the shallow water equations
on an equatorial beta plane. For low frequencies
these are the Kelvin wave and Rossby waves. For
realistic problems this alternative has (at least) three
serious drawbacks:

(i) the nonexistence of a “fast Hermite transform™
means it is slow and awkward to obtain the needed
projections of the forcing fields. This difficulty is
exacerbated in a meridionally bounded basin where
the eigenfunctions are sums of parabolic cylinder
functions which themselves must be obtained nu-
merically (cf. CSIII). *

(il) At a partial boundary such as the western end
of the Gulf of Guinea, the meridional structure of
the eigenfunctions changes. Hence continuing the
integration across such a line requires that one set of
eigenfunctions be expanded in terms of the other.

(iii) The eigenfunctions have poor convergence
properties. For example, the eastern boundary reflec-
tion of a low frequency Kelvin wave has meridionally
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uniform height at the coast. It takes very many
Hermite functions to represent a constant height out
to, say, 15°N.

Section 4 describes our numerical scheme. We
decompose the solution into (i) a Kelvin mode and
(ii) everything else (Rossby modes and an anti-Kelvin
mode). The Kelvin mode is integrated analytically,
eastward along characteristics. Everything else is
marched collectively westward using an implicit
scheme that is centered second-order in time and
space. Marching westward obviates the need to invert
a large matrix; only a simple tridiagonal system must
be solved at each longitude. Thus the scheme is
computationally efficient and the time step is limited
by accuracy considerations, rather than stability cri-
teria.

In this paper we use the model to extend the purely
analytical results of CSIV on the baroclinic response
of equatorial oceans to periodic forcing to the analyt-
ically intractable case of a basin resembling the
Atlantic in having a feature like the Gulf of Guinea.
Section 5 treats a wind forcing identical to that in
CSIV, while Section 6 considers the case where the
forcing is confined to the western part of the ocean
(cf. Moore et al., 1978). Some implications of our
results for theories for upwelling in the Gulf of
Guinea are pointed out. The final section summarizes
our results.

2. The physical model

We begin from the linear shallow water equations
on an equatorial beta plane:

w—yw+h.=F—ru
v, +yut+th,=G-r
h+u.+v,=0Q—rh

2.1

The equations have been nondimensionalized in the
usual equatorial way: the time scale is T = (¢8)'/?
and lengthscale is L = (c¢/B)"/?, where ¢ = (gH)"? is
a scale for wave speeds. Here H may be interpreted
as the equivalent depth of a particular vertical mode
or as H = Ap/(pH’) for a reduced gravity model with
an active layer of mean depth H'. The external
forcings F, G, and Q, are due to zonal wind stress,
meridional wind stress and buoyancy flux, respec-
tively. A Rayleigh friction damping with decay time
r~! has been included; note that, with the definitions

(u*, v*, h*, F*, G* Q") = e"(u, v, h, F, G, Q), (2.2)

the equations for the starred variables are formally
the same as (2.1) with r = 0. Our numerical model
treats friction in this way; in the remainder of this
section we will assume r = 0. The appropriate initial
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and boundary conditions for the system (2.1) in a
rectangular basin 0 < x < xg, yg < y < yy are
t=0,

u-n=0 at x=0,X5Y = Vs, V¥

u=v=h=0 at 2.3)

2.4)

when n is normal to the wall. The unforced solutions
to (2.1) may be classified into five types (CSHI):

1) Equatorial Kelvin waves, propagating energy
eastward with v = 0 and « and 4 equal and propor-
tional to

Yoi(y) = Cle?? (2.4a)
with

844 2
C?= f e Vdy; (2.4b)
B

S

2) Long Rossby waves propagating energy west-
ward;

3) An “anti-Kelvin wave,” related to coastal Kelvin
waves, propagating energy westward,

4) Short Rossby waves, propagating energy slowly
eastward;

5) Inertia—gravity waves.

Since we are interested in seasonal responses and
large-scale features of the wind field, we make the
low-frequency, long zonal-scale approximation:

9 4

6—t=5)—c=0(6)’ e< 1.
Scaling (2.1) accordingly reveals that v = O(eu), h
= O(u) and
w—yw+h,=F, (2.52)
yu+ h, = G+ O(é?), (2.5b)
h+u+v,=Q. (2.5¢)

We make no assumption about the relative magnitude
of F and G but we note that if they are of the same
order dimensionally, then G is O(e) relative to the
left-hand side of (2.5b).

The free solutions to the system (2.5) are only of
types 1), 2), and 3), with the long Rossby waves 2)
modified to be nondispersive. The high frequency
inertia—gravity waves 5) and the short wavelength
Rossby waves 4) have been eliminated. As a conse-
quence, the initial conditions (2.3) and boundary
conditions (2.4) can no longer be satisfied. As shown
in CSI and CSII the appropriate initial conditions are
now

. d

= — -1 . = —
u yL™(G); oy
v = L~Y(yF + 3Q/3y),

LG

(2.6)

where L = 3*/dy> — y? and the boundary conditions
are
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v=0 at Y = Vs, YN (27)
u=0 at x=xg, (2.8)
YN
f udy=0 at x=0 2.9)

ys

(on the last of these also see CSIV, p. 657).

In CSIII, it was shown that the wave solutions to
(2.1) or (2.5) form a complete and orthogonal set.
We will make extensive use of the fact that the
Kelvin mode is orthogonal to all other modes: the
solution to (2.5) may be written as

(ua v, h) = aK(-x’ f)['[’—l(.V), 0’ \1/—1(J’)]

+ [W'(x, y, B, Y0x, p, 0, H(x, 3, D], (2.10)

where the prime quantities are long Rossby (type 2)
and anti-Kelvin (type 3) modes. Therefore,

(‘l/—l s 0’ \b—l ) ° (u'a v” hl)
YN
= Yo'+ h)dy=0. (2.11)
Vs
In terms of the decomposition (2.5) into a Kelvin
mode and all other modes, (2.9) may be expressed as

YN
ax(x =0,1) v_i(y)

Vs

YN
= —f ul(x = Oa Y, t)s

Vs

(2.12)

and (2.8) as
u(x = xg, y, 1) = —ag(x = xg, W-(y). (2.13a)
In addition (2.8) together with (2.5b) determines that
Y
Mo = x5, 3,0 = hotd) + || Gox = x5, 3, 0.

Hence at x = xg,

'y
h' = ho+J; Gdy — agy-,.

The integration constant /,(f) can be found in terms
of ax by projecting the Kelvin wave onto this expres-
sion for h together with u = 0 [as per (2.8)]; the
result is (cf. CSIII, p. 379)

wo={ax— [ a0 J] G}

Vs

(2.13b)

<[ ¢_.<y)dy]"l.

3. Boundary conditions for the Gulf of Guinea

In order to represent the geometry of the Gulf of
Guinea we cut a corner north of y = b and east of x
= xp out of the ocean basin (Fig. 1). The boundary
conditions at the new solid boundaries are again that
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the normal velocity vanishes, but the influence of the
partial boundary on propagating planetary waves is
not obvious.

First consider a low frequency equatorial Kelvin
wave arriving at longitude x from the west with unit
amplitude [i.e., u = h = Y_(»); cf. (2.4)]. When the
Kelvin wave encounters the boundary, part of the
wave will be reflected as long Rossby waves (u,, v,,
h,), as is the case at a full boundary, but south of b
and east of xp, there also will be a transmitted Kelvin
wave. One might expect the Kelvin wave to pass
through unchanged, so that its transmitted amplitude
is also one. The reflected Rossby waves would then
be absent south of y = b since u and 4 must be
continuous across xz. In general, however, these
conditions are inconsistent with geostrophy (2.5b)
and the fact that no new Kelvin waves can exist west
of XB.

Our method for calculating the influence of the
partial boundary is similar to that used by Cane and
DuPenhoat (1982) to find the influence of islands on
equatorial waves. It has been described in detail in
DuPenhoat e al. (1983), henceforth referred to as
DCP. We summarize the results here.

For the problem described above of the incident
Kelvin wave of unit amplitude, the amplitude 7% of
the transmitted Kelvin wave is

re=2/[2 yz¢i.dy+¢_lgb) [ va] 6

while at x = xj the reflected Rossby waves take the
form

u'= =y (Y =D"—y_(y) for y=b, (3.2a)
u = = (T~ 1W_(y) for (3.2b)

where DX, the height of the total solution along the
boundary north of b, is

DK = TK\I/_l(b).

y <b,

(3.3)

The other situation to be considered is Rossby
(and anti-Kelvin) waves propagating in from the east
and encountering the corner at xz. Say their amplitude

Y= YN
y=b
[}
I
ol
1
1
\
]
1
I
1 Y= Y¥s
X =0 X=Xg X =Xg

FIG. 1. The model basin geometry.
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there is [#7,(1), h,()]. There may be a reflected Kelvin
wave east of xp; denote its amplitude by 7. West of
Xxp there can only be Rossby waves. North of b at xp
there is a wall so # = 0 and geostrophy then requires
that /2 be independent of y. Hence there the trans-
mitted solution (., /,) must be:

u,=0, h=D, y=b, (3.4a)

D’ a constant. South of b continuity of u and /4 across
X = xp yields

u = 4,(y) + TY_,(3), y<b,  (3.4b)
h, = h(y) + TY-(3), y<b. (3.4¢)
DCP shows that
D’ = h(b) + TY_\(b), (3.5)
VN
“hty [y
T = (3.6)

2 [ b oty +9oi®) [ vty

Note that the only feature of the incident motion
that 7" and D" depend on is its height at the wall,
h,(b), and their dependence on this variable is linear.
Figure 2 of DCP shows the behavior of TX, DX, T7,
D’ as functions of b for a meridionally infinite basin.
The westward moving solutions include the n = 0
Rossby mode (cf. CSIII), which cannot exist away
from the boundary and so, unlike the other Rossby
modes, cannot travel past the corner into the interior.
The mass flux associated with this mode must be
transferred past the corner and eventually into the
large basin. However, the speed of propagation of the
Rossby modes west of the corner is slower than that
of the n = 0 mode so that the flux of mass would
decrease if the mass density (i.e., height) did not rise
in compensation. Most of this rise takes place along
the wall north of y = b, making up the missing mass
flux as the Rossby modes move away from the wall.
This is the beta-plane low-frequency version of a
coastal Kelvin wave turning the corner. This mass
balance can be shown analytically when the corner -
at b is sufficiently far away from the equator. From
(2.5) we may derive a single equation for 4:
Ry — 2 _ y*h, — h, = 0. 3.7
If 5> 1, then y > 1 along the wall, while 4 is a
smooth function of y (ie., h, < O(1)). Hence we
have approximately (cf. Meyers, 1979)

y2h, + he = 0.

If the height, Ay = constant, is given along the
boundary, the solution is & = hoH(x — x5 + t/y?),
where H is the Heaviside function. After a time ¢ the
total mass north of y = b and west of x = xjp is given
by
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o] XB
M, = f f hoH(x — xp + iz)dxdy
b —o y

© t t
=| hosdy=ho~.
J; oyzy Ob

The form of the n = 0 wave is approximately A
= —u = A'e*"%; a change of variable to n = b — y
gives

(3.8)

b2 nz
u=A4 exp|:— —by+ —] = fgbngnl2,

2 2
" For 5 small, the second exponential is close to one
and this looks like the equation for a coastal Kelvin
wave on an f-plane. The mass M,, arriving at the
boundary due to this wave, can be calculated by
integrating the zonal mass flux in y and ¢. Expanding
the second exponential in its Taylor series and inte-
grating in » and ¢ gives

t t 1
MO?AB+AF+O(Z§).
Since 4 is continuous at the corner [cf. Eq. (3.5)], 4
= hy and M, = M, to O(b™%). The coastal n = 0 wave
can be thought of as turning the corner and transfer-
ring its mass flux into the Rossby modes, producing
the constant height 4, as it travels up the wall.

4. Numerical methods
a. Numerical scheme

As noted in Section 2, of all the free solutions to
(2.5) only the equatorial Kelvin modes propagate
eastward. Thus if we write the total solution as in
(2.10), i.e.,

(ua v, h) = aK(xa t)(lp-—ls 09 ¢—1) + (u,3 v,’ hl)a

then the primed part of the solution, consisting of
long Rossby and anti-Kelvin modes, propagates only
to the west. The equation governing ax is found by
projecting the Kelvin mode onto (2.5):

da, , da

ot + ox = Jk(x, 1), (4.1a)
where
f __FG A W-1,0,¢-0)
N W1, 0,9_ 1) (-1, 0,¢¥1)
YN
= % (F + Q)-1ay. (4.1b)

Vs

The appropriate boundary condition for (4.1) is (2.12)

24t 2
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at x = 0. The initial condition is ax = 0. The solution
may be written

ax(x, to + At = ax(x — At ty)

At
+ f fxlx—t, o+ thdl. (4.2)
0

The finite difference approximaﬁon to (4.2) is
straightforward. Define o = At/Ax and let p
= integral part of « and ¥ = a — p. Then

ak() =ak'(i—a)+ Ax{vf?"z(i -p- %)
+ 3 f;’(‘/z(i ~m+ %)} 4.3)
m=1

where the expressions in parentheses index the lon-
gitudes. If « is nonintegral, then x; — alAx is not a
grid point and ax(i — «) is found by linear interpo-
lation. The low-order approximation to the integral
of fx used in (4.3) is sufficiently accurate as long as
fx varies little on the grid scales, Ax and At

A slightly different procedure is needed when x;
— aAx lies west of the western boundary x,. In this
case the characteristic passing through x; at time step
n left x, at time level n — (i — 1)/a, which is after
time step n — 1. We find the value of ax(x;) at that
time by linearly interpolating in time between the
values at time steps # — 1 and n. The value of
a%(x,) is determined from the obvious finite difference
version of the boundary condition (2.12) once we
have calculated the rest of the solution (i.e., the
Rossby and anti-Kelvin waves—the westward prop-
agating part).

The differential equations governing the remainder
of the solution are found by subtracting the Kelvin
wave equation from (2.5):

up—yw+hi=F =F— fyy,
w'+h,=G
hi+u+v,=Q =Q— fr

The initial conditions for (4.4) are given in (2.8).
Boundary conditions cannot be given at the west;
instead, as noted above, u’ at the west determines the
initial Kelvin wave amplitude. Equation (2.7) applies
north and south while (2.13) determines the eastern
values in terms of the Kelvin wave amplitude.

The finite difference versions of (4.4) are defined
on the staggered grid depicted in Fig. 2. With n, i, j
indexing time, longitude and latitude, respectively,
the equations of motion take the form

4.4)

1
- —1 —1/2 —
— (Ui + ui;— uf:jl - uij) — = yj(vl"'+|1/2,j+|/2 + U?'H]/zz,j—l/z)

1 — n n— n -
+ Ax (Wil + Wiy — HEGY — Ry = FISl2,  (4.52)
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1 n n 1 n n n
5 (yul; + yiuljm) + Ay (B jsr — BE)) = Gljvip, (4.5b)
2At (hf', + hy VJ hz":fl hi j) + (u;':ll,j + u?ﬂ,j - uzfl - uE,-)
+ ~ (”:H/z 172 vm/z j~12) = Q:+1 3,j-  (4.5¢)
We march the equations forward in time and from where
east to west in space; that is, in the direction of wave (1 - o?)
propagatiop. To describe the procedu;e, we assume = 2Q; + aF)) + ad 2
that all variables are known at the previous time level At
(n — 1) and the grid longitude immediately to the (1 - o?)
east (i + 1). Our solution method is analogous to the iy oy — HGY) — (u,ﬂ J—ulh

usual procedure for finding equatorial modes (e.g.,
Moore and Philander, 1977). We first solve for the
unknowns u7}; and A}; in terms of known quantities
and the unknowns v, V.12 (the time index n
— !5 and longitude index i + Y2 are omitted):

At 2a
U =T [R} + vj—llz(yj + A—y)

2a
+ v,+1/2(y,- - X_;)):I . (463)

where
l —
R =25+ ag) + LD
(1+a?
_T(u;l‘flj_ul]l)——_-(hl'flj Ul;
At (2
hzj = 1= az [st + vj_l/z(z; + ay,)
-2
+ Uj+1/2 ?y + ay; N (4.6b)
u,h u,h
/ /\
'
6 | G
L
! y
nti fWh E Iv/—: U,h
Vo
/v |
/ Ly i+, 4
n+1/2 F/|° : ,/
ls G
/// oy
’
n Lk 4 u,h lé.x

i i+1/2 i+1,j

F1G. 2. Finite difference grid, staggered in space and time.

and « = At/AXx represents an inverse numerical phase
speed. An equation in v only can be found by
substituting expressions (4.6a, b) in (4.5b): The result
is

. 2(1 — a?)
Ly = T ij+1/2
- (.V_]le + yj+1R}+1) Rj+l R}),
where the operator L is defined by
X ~ , 4
Lvjyyp = vyl 7 — A—yz + Vg1
2 2 8 8
X\y; + Vi + Ay — + 4a ) + Vjy3p2 y,+n - Z;E .

Note that L/4 is the ﬁmte difference analogue to the
operator L = 8*/dy* — y*. Given the value of (u}x;,
hjx,;) at the eastern boundary, the tridiagonal system
(4.7) can be solved for v at i = NX — Y% with the
boundary condition v = 0 at the northern and
southern boundaries. Equations (4.6a, b) then give u
and h at NX — 1, the procedure having moved the
solution over to the left by one grid point. The
scheme then continues calculating successive values
of u and & to the left until the western boundary is
reached.

Initial conditions (n = 0) are determined by the
finite difference analogues of (2.8). Values of #” and
A" at the eastern boundary (i = NX) are found from
the finite difference analogue of (2.13); the requisite
value of a%(xnx) is obtained from (4.3). The only
tricky point in using (2.13) is that the Kelvin mode
meridional structure function ¥; must be the exact
solution of the unforced version of (4.5b) with u
= h; that is

1 1
5 (¥ + yirdin) + XJ‘) Wjs1 —¢) =0. (4.8
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When the Gulf of Guinea is included in the basin,
the boundary conditions and transmission coefficients
are calculated using the finite difference forms of the
appropriate equations given in Section 3 (see Patton,
1981, for details).

b. Accuracy and stability

The accuracy and stability of this scheme is de-
scribed in detail in Patton (1981). The most salient
points will be summarized here. The scheme (4.5) is
second order accurate in time and space. The Kelvin
wave procedure (4.3) is exact for integral values of «;
otherwise a second order interpolation is needed to
find ax at i — a. In the absence of forcing and
damping, both the finite difference equation for the
Kelvin wave (4.3) and those for all other modes (4.5)
identically conserve mass and energy. They do so in
both time and space, i.e., they are fully conservative
and not just semi-conservative. There is some loss
(or gain) at the boundaries, where reflections exchange
mass and energy between the Kelvin and Rossby
waves. It is possible to formulate consistent numerical
boundary conditions that would be mass conserving,
but since in practice the ones we use generate very
small changes in mass and energy it was not deemed
necessary.

Another view of the accuracy of our scheme is
afforded by considering how well it models the west-
ward propagation of a meridional mode with phase
speed C,,. The expression for the error,

1 &u  , o

€ 12 30 At {1 — (aC)~7],
shows the importance of the parameter p = aC,,, the
number of grid spaces the wave moves in one time
step. If p = —1, then the numerical speed matches
the mode speed and the model moves the wave
exactly along the characteristic without error. For a
wave that crosses many grid boxes in a time step (|p}
> 1) the expression in square brackets is close to one.
Then, for example, if we use a 10-day time step, the
relative error in motions with a 2-month period is
about 10%, reducing to about 3% and 1% for 3-
month and 4-month periods, respectively. As p de-
creases, the error decreases until p = —1 and then
begins to rise again (in absolute value), attaining the
same value as for large p when p ~ —27Y2, With At
= 10 days, Ax = 1 degree of longitude, a second
baroclinic mode equivalent depth (~20 c¢cm) and C,,
~ (2m + 1)"! this occurs when m ~ 10. We conclude
that a 10-day time step with a one-degree grid spacing
will yield acceptable accuracy in simulations of the
annual cycle.

Our scheme is unconditionally stable for westward-
traveling waves. However, it is unstable for eastward-
propagating modes and there is a single eastward
mode allowed by the system (4.4). the equatorial

4.9)
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Kelvin wave. Therefore, although the direct forcing
for a Kelvin wave has been removed from (4.4), an
unstable Kelvin wave will be generated from trunca-
tion error and other noise as the scheme marches
westward. However, since we know that this com-
putational error must have precisely the Kelvin wave
form [i.e., u = h = agy-,, with y_, given by (4.8)] it
is a simple matter to filter it from the solution. This
is now done efficiently as a part of the calculation

OffK.

5. Effects of basin geometry

In this section and the next we consider the model
response to periodic forcings. This work extends the
analytic calculations of CSIV to (i) the more complex
geometry of a realistic Gulf of Guinea and (ii) a
spatially varying wind amplitude. In our first set of
calculations we used a model Atlantic basin nondi-
mensionalized as for a first baroclinic mode forced
by a zonal wind of the form F = exp(—0.1y?) coswt,
where w is the annual frequency. This corresponds to
the case shown in CSIV in their Fig. 5. In addition
to changes in the geometry and the method of
solution, the present calculation differs by including
Rayleigh friction (nondimensionally, » = 0.01; the
frequency w = 0.026). While the model will run with
zero friction, it is desirable to damp the poorly
resolved; slowly moving short (zonal and meridional
scale) waves generated at the eastern side as the
reflection of Kelvin waves.

Figure 3 shows fields of # and 4 at wt = 0 (January)
when the forcing is a maximum; Figure 4 displays
them at wt = w/2 (April) when the forcing is zero.
The annual variation of the phase and amplitude of
h along the equator is shown in Fig. 5. These pictures
are similar to the results shown in CSIV (Fig. 5) in
many ways. Along the equator, the height is either in
phase with the wind or 180° out of phase with it,
except in a narrow region where the amplitude is a
minimum and the phase changes abruptly. As in
CSIV, the minimum is not quite zero: there is no
true node in the solution. In our bounded basin this
near-nodal pivot point is closer to the center of the
basin than is true for the meridionally infinite basin
of CSIV. As one moves poleward the response is no
longer in phase with the wind, as is readily apparent
in Fig. 4, a time when the wind is zero. The feature
in the southeast corner of Fig. 4a (absent in Fig. 3a)
bears a qualitative resemblance to the Angola dome
(e.g., Mazieka, 1967). The nonlocal influence of the
altered geometry is slight.

The principal effect of the coast at 5°N is to add
a narrow boundary layer, as is evident from Fig. 6,
which shows the variation of 4 at 2°E. (It also can
be seen clearly in Fig. 3b.) Note that the amplitude
is greatest at the coast and near the equator, dimin-
ishing in between. There is little if any apparent
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FiG. 3. Response in the model Atlantic basin for uniform
periodic forcing F = exp(0.1y*)coswt when wt = 0 (January): (a)
height contours 4; (b) zonal velocity u.

phase difference between the equator and the coast.
The variation of h along the coast in time and
longitude (Fig. 7) shows that there is only a slight
westward phase propagation along the coast (cf. CSIV).
This is in fact consistent with data, although the data
has sometimes been interpreted differently [see Merle
et al. (1980); Picaut (1983)]. A single coastal wave
generated in response to an impulsive forcing would
generate phase differences consistent with its phase
speed (of about 50-100 km day™'). The response
shown in Fig. 7 (and, arguably, the Atlantic Ocean)
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is a standing, periodic pattern, comprised of many
waves. The lack of phase variations results from
interference among these waves.

The narrowness of the boundary layer and the
absence of any obvious influence of the boundary on
the interior recommend an analysis of our results in
terms of (i) an interior, forced solution plus (i1) a
boundary layer of unforced motions generated in
order to satisfy the boundary condition v = 0 at the
Guinea coast. The boundary layer visible in our
solution is too narrow to be a single coastally trapped
meridional mode: CSIII show that the appropriate
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FI1G. 4. As in Fig. 3 but for wf = «/2 (April):
(a) height contours 4; (b) zonal velocity w.
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FIG. 5. Amplitude and phase of height along the equator for the
uniform periodic forcing case. Phase is shown in units of degrees/
100 and is relative to ¢ = 0 when the phase of the wind is zero.

mode is the n = 0 Rossby mode and from their Fig.
4 it clearly extends to the equator. Rather, it must be
a sum of many westward-moving Rossby waves. Each
of these, and hence their sum, satisfies (2.5) with the
forcings set to zero. The small scale of the boundary
layer suggests that d/dy > y and introduces the scaling

v=0(1), h=0(1), u=0w™?,
9 0w, y= 9 _
5~ 0w, y=0Mm, —=0m,

where 3/t =~ w < 1. (See Patton, 1981, for details.)
The continuity equation (2.5¢) then shows that to
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FI1G. 6. Height as a function of time and latitude at 2°E.
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FIG. 7. Height as a function of time and longitude along the
model Guinea coast at 5°N.

O(w*?) we can define a streamfunction y? for the
boundary layer velocities #Z and v®:

uB = —yB o = yh. (5.2)

Consistent with the scaling (5.1) the lowest-order
vorticity equation derivable from (2.5) is

62
th/f+¢f=0.

The largest term neglected, y*YZ, enters at O(w): at
O(w*?) the streamfunction relation (5.2) breaks down.
Denoting the interior meridional velocity by v/, the
boundary conditions are y# = 0 at the eastern bound-
ary, xg and

Vo by = — [ oo, Bydx' = — i)

at the coast y = b. When Rayleigh friction is included
(cf. Sec. 2) it introduces a term similar to the time
derivative and 4/d¢ can be replaced by iw + r = 4.
By defining 5 = b — y, 6 = Xz — X, so that distances
are measured positive from the zonal coast and the
eastern boundary, the boundary layer problem can
be cast in the standard form

Y =oy0, (5.2)
vP=—o), =0
2 —0, n— o (5.3)
V2 =0, 7=0

Even before solving, it is evident from the boundary
condition (5.3) that the phase variation (and hence
phase speed) along the coast will be determined by
the interior solution. This interior solution, which is
essentially the same as the meridionally unbounded
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§olution of CSIV, exhibits very little phase variation,
1n contrast to a coastal wave.

When 46 is real, (5.2) is a diffusion equation with ¢
the time-like variable and % the space-like one. One
expects that the boundary layer would broaden as
one moves westward from the eastern corner (cf.
Cane and DuPenhoat, 1982, Section 4); our solution
(viz. Fig. 4b) does have this character. If § is pure
imaginary then the solution would oscillate with an
ever-broadening wavelength in y as one proceeds
westward. Our parameters give both a damping and
an oscillatory effect, with the former the more readily
visible. Eventually the boundary layer becomes wide
enough so that the assumption that 4/dy > y is no
longer valid. At this point the term —§y*J® enters on
the right-hand side of (5.2) and the boundary layer
width no longer increases downstream (westward).
For the first baroclinic mode this occurs at a point
3600 km from the eastern boundary—outside the
Gulf of Guinea.

6. Effect of non-uniform amplitude in the wind forcing

As we have seen, even the simplest periodic forcing
gives rise to considerable phase and amplitude vari-
ation in the ocean. The reflection and interference of
the long, low frequency equatorial waves create a
response which may have little resemblance to the
propagation of a single wave or to local forcing. The
increased complexity of the real winds also raises the
issue of how the ocean redistributes variations in the
phase and amplitude of the wind. The equilibrium
adjustment of the height along the equator, for in-
stance, would have to change from a simple “‘seesaw”
to more complicated undulations to respond to a
shifting phase in the forcing.

The seasonal signal for the zonal wind field in the
equatorial Atlantic is much larger in the western half
of the basin than in the east (Hastenrath and Lamb,
1977). Moore et al. (1978) and Adamec and O’Brien
(1978) considered only the winds in the western
Atlantic in their studies of upwelling in the Gulf of
Guinea. Our model periodic winds were modified so
that the zonal forcing was nonzero in the western
%0 of the basin only. Figure 8 shows the amplitude
and phase of the height along the equator for this
case. Compared with Fig. 5 for a uniform amplitude,
the difference is a shifting of the approximate node
of the oscillation to near the center of the forcing.
To the east of this, the ocean responds in phase with
the wind. The far western part of the basin is 180°
out-of-phase, as would be expected. The change of
the response from in-phase to out-of-phase takes
place over roughly the same distance as in the uniform
forcing case. The amplitude over the eastern part of
the basin is almost uniform and is diminished com-
pared to the uniform wind forcing case where the
amplitude increased toward the east. The reason for
the constant amplitude, constant phase region to the
east of the forcing may be understood by considering
the form of the analytic solution (cf. CSIV). Of the
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F1G. 8. Amplitude and phase of height along the equator for
periodic winds nonzero only over the western 30% of the basin
(50°W to 32°W). Cf. Fig. 5.

modes of motion that are directly forced only the
equatorial Kelvin wave propagates eastward. Therefore
the periodic response east of the forcing region consists
of a Kelvin wave plus the Rossby waves generated
when it is reflected off the eastern boundary. In a
meridionally infinite basin the height along the equator
due to the Kelvin wave and its reflections takes the
form (Cane and Moore, 1981)

h oc [cos2w(x — xg)]2e™. 6.1)

The discussion of the effects of the Guinea coast in
the last section indicate its form will be little modified
by meridional boundaries. [The small “bumps” in
Fig. 9 appear to be due to the Guinea coast.] The
phase of A relative to the wind will not change from
zero until w(xz — x) = w/4, which lies outside the
basin for the present parameter values. The amplitude
is approximately 1 — [w(x — xg)], which varies by a
barely perceptible 15% east of the forcing. In the
previous section we saw that there was little phase
variation along the Guinea coast for a spatially uni-
form wind. If the wind is confined to the west the
phase along the coast becomes even more uniform.

7. Discussion

The principal result presented in this paper is a
fast, efficient numerical procedure for modeling the
linear, low-frequency motions on an equatorial beta
plane. The model is particularly well suited to studying
seasonal and interannual variability. The size of the
time step is limited only by accuracy considerations,
notably the need to resolve the variations in the wind
forcing. In practice, we find that a 10-day time step
provides sufficient accuracy in simulations of seasonal
response. (This gives 6 points per wavelength for
motions with a 2-month period; also see the error
analysis in Section 4b.)
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Our numerical method makes use of the special
characteristics of low-frequency equatorial dynamics.
We extract the Kelvin mode part from the entire
response and solve for it by integrating along char-
acteristics; in essence, an analytic procedure. The
remainder of the solution (Rossby modes and a
coastal, Anti-Kelvin mode) propagates only westward.
We use this fact to design an implicit scheme that
achieves computational efficiency by marching west-
ward longitude-line by longitude-line. Formulation
of the model equations is straightforward, but proper
formulation of computationally tractable boundary
conditions is not. To do so we rely on the methodology
developed in the series of papers by Cane and Sarachik
(especially CSII and CSIII).

One of the objectives of our modeling effort was
to handle realistic basin geometry, not just simple
rectangles. To this end a set of formulas for the
influence of partial boundaries on low-frequency
equatorial waves was developed. The complete deri-
vation is given in DuPenhoat et al. (1983); in this
paper we review the results for a partial boundary
like the western end of the Gulf of Guinea. The
amplitude of a Kelvin wave increases as it passes
such a corner, though only by a few percent for a
coast as far from the equator as the Guinea coast.
Even this small effect is important in long term
integrations; its omission resulted in a substantial loss
of mass in earlier calculations.

The application of our model considered here is
an extension to a basin geometry that models the
Gulf of Guinea of the results of CSIV on the response
to periodic winds in a meridionally unbounded ocean.
We first consider a zonally uniform forcing, a case
identical to one treated in CSIV. We find only minor
differences from their results away from the Guinea
coast. Along the coast there is a narrow coastal
current, too narrow to be a single wave; instead, it is
a sum of many waves. There is little, if any, phase
variation along the coast and very little phase lag
between the equator and the coast. We analyze the
boundary layer using standard boundary layer meth-
ods and show that the phase of the coastal regime is
determined by the interior solution; so the lack of
phase variation is to be expected in this periodic
problem.

Next we consider annual winds in the western
equatorial Atlantic only. This is the periodic version
of the wind forcing used in earlier initial value studies
of Gulf of Guinea upwelling (Moore e al., 1978;
Adamec and O’Brien, 1978). Phase variation along
the coast is even less than before: there is essentially
no phase or amplitude variation anywhere to the east
of the forcing region. This result may be readily
explained by existing theory for the response to
periodic winds.

We conclude that the Guinea current system,
including the annual upwelling, is better described as
a periodic response rather than an initial value one.

MARK A. CANE AND RANDALL J.

PATTON 1863

The lack of westward propagation along the coast
and the narrow meridional scale of this boundary
layer are both signatures of a response to periodic
forcing.
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