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[1] Previous tree-ring—based Northern Hemisphere temperature reconstructions portray a
varying amplitude range between the “Medieval Warm Period” (MWP), “Little Ice Age”
(LIA) and present. We describe a new reconstruction, developed using largely different
methodologies and additional new data compared to previous efforts. Unlike earlier
studies, we quantify differences between more traditional (STD) and Regional Curve
Standardization (RCS) methodologies, concluding that RCS is superior for retention of
low-frequency trends. Continental North American versus Eurasian RCS series developed
prior to merging to the hemispheric scale cohere surprisingly well, suggesting common

forcing, although there are notable deviations (e.g., fifteenth to sixteenth century).
Results indicate clear MWP (warm), LIA (cool), and recent (warm) episodes. Direct
interpretation of the RCS reconstruction suggests that MWP temperatures were nearly
0.7°C cooler than in the late twentieth century, with an amplitude difference of 1.14°C
from the coldest (1600—1609) to warmest (1937—1946) decades. However, we advise
caution with this analysis. Although we conclude, as found elsewhere, that recent warming
has been substantial relative to natural fluctuations of the past millennium, we also note
that owing to the spatially heterogeneous nature of the MWP, and its different timing
within different regions, present palacoclimatic methodologies will likely “flatten out™
estimates for this period relative to twentieth century warming, which expresses a more
homogenous global “fingerprint.”” Therefore we stress that presently available
paleoclimatic reconstructions are inadequate for making specific inferences, at
hemispheric scales, about MWP warmth relative to the present anthropogenic period and
that such comparisons can only still be made at the local/regional scale.

Citation: D’Arrigo, R., R. Wilson, and G. Jacoby (2006), On the long-term context for late twentieth century warming, J. Geophys.

Res., 111, D03103, doi:10.1029/2005JD006352.

1. Introduction

[2] Determination of how climate has varied in the past is
important for evaluating the sensitivity of the earth’s climate
system to natural and anthropogenic forcing. High-resolu-
tion large-scale temperature reconstructions [Jacoby and
D’Arrigo, 1989; D Arrigo and Jacoby, 1993; Overpeck et
al. 1997; Jones et al., 1998; D Arrigo et al., 1999; Mann et
al., 1999; Briffa, 2000; Esper et al., 2002a; Mann and
Jones, 2003; Cook et al., 2004; Moberg et al., 2005]
provide valuable insights into the types of natural climate
changes that have occurred in the past and place
recent warming into a longer-term context [Anderson and
Woodhouse, 2005; Esper et al., 2005b]. A great range in
reconstructed amplitudes is observed, however, between the
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currently existing Northern Hemisphere (NH) temperature
reconstructions. One such reconstruction [Mann et al.,
1999] demonstrates minimal temperature amplitude (e.g.,
during the “Medieval Warm Period” (MWP) [Lamb, 1965]
and “Little Ice Age” (LIA) [Grove, 1988]) while others
[Briffa, 2000; Esper et al., 2002a; Cook et al., 2004;
Moberg et al., 2005] exhibit more pronounced variability.
Moberg et al. [2005] considered that tree-ring records
cannot reliably resolve lower frequency trends, and only
used them to represent shorter-term variations. However,
other studies [Esper et al., 2002a; Cook et al., 2004]
demonstrated that tree rings can reflect longer-term trends,
provided that data are appropriately processed (e.g.,
detrended using Regional Curve Standardization or RCS
[Mitchell, 1967; Cook et al., 1991; Briffa et al., 1992,
Becker et al., 1995; Cook et al., 1995; Esper et al.,
2002b], and/or have long individual series that can record
multicentury trends. RCS allows capture of low-frequency
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Figure 1.
regional composites (yellow boxes) used to reconstruct NH
temperatures over the past millennium. See Table 1 for site
code description.

Location map of individual sites (red) and

variance in excess of the mean length of individual samples
used in chronology development [Briffa et al., 1992; Cook
et al., 1995; Esper et al., 2003, 2004]. When this method
was previously applied to a tree-ring data set averaged over
14 North American and Eurasian sites [Esper et al., 2002a;
Cook et al., 2004], pronounced “MWP” and “LIA” epi-
sodes were observed, with an approximate 1°C range over
the past 1000 years [Cook et al., 2004].

[3] In this paper, we develop two new tree-ring—based
reconstructions of NH temperatures that address several
priorities recommended for the generation of such records
[Esper et al., 2005b]: (1) utilization of regional proxy data
processed to capture low-frequency trends, (2) need for
improved coverage of millennial length records, and (3) use
of nested modeling to allow systematic evaluation of
uncertainties back in time. We refine the reconstructions,
compared to previous efforts, by only utilizing tree-ring data
that appear to portray a non-biased signal with temperature;
that is, we minimized inclusion of data with mixed climate
signals that also incorporate precipitation influences. Taking
into account criteria that cause them to vary [Esper et al.,
2005a; Rutherford et al., 2005], our reconstructions are
compared to previous versions [Jones et al., 1998; Mann
et al., 1999; Briffa, 2000; Esper et al., 2002a; Mann and
Jones, 2003; Cook et al., 2004; Moberg et al., 2005], as
well as outputs from several climate models [Jones and
Mann, 2004] to make inferences about past temperature
variability, amplitude change and forcing over the past
millennium.

2. Data, Methods, and Analysis

[4] Tree-ring width (and limited density [Luckman and
Wilson, 2005]) data derived from living and subfossil wood
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of coniferous tree species were compiled from 66 high-
elevation and latitudinal treeline North American and Eur-
asian sites. Figure 1 shows the locations of individual sites
and regional composites, identified using principal compo-
nent analysis, for which raw measurements were standard-
ized and merged to create regional, continental and
hemispheric scale records. The combining of raw data for
several sites within each region increased sample size for
many of these composites, which is important for the
successful application of RCS [Esper et al., 2003]. Both
standard (hereafter, STD) negative-exponential or straight-
line curve fits [Cook and Kairiukstis, 1990] and RCS
composites were generated for each region (Figure 2 and
Table 1). Compared to previous studies [Jacoby and
D’Arrigo, 1989; D Arrigo and Jacoby, 1993; D’Arrigo et
al., 1999; Jones et al., 1998; Mann et al., 1999; Briffa,
2000; Esper et al., 2002a], the North American data are
much improved with new or extended millennial-length
records, and updates of most of the data sets until at least
the late 1990s (Figure 2 and Table 1).

[s] We reconstructed annual, rather than warm-season
temperatures, as trees from selected treeline sites may
integrate climate conditions during nongrowing season
months [e.g., Jacoby and D Arrigo, 1989]. Reconstructions
based on seasonal versus annual temperatures should be
virtually identical on multidecadal or longer timescales in
any case [Esper et al., 2002a; Cook et al., 2004] (although
note possible inhomogeneities in early instrumental summer
data [Esper et al., 2005a]). The Jones et al. [1999] gridded
instrumental land temperature data set was utilized herein
for calibration of the reconstructions.

[6] Regional tree-ring chronologies were assessed for
signal strength and those periods represented by at least
10 tree-ring series were utilized for analysis. In all cases,
this equates to an expressed population signal (EPS) statistic
close to 0.85 [Cook and Kairiukstis, 1990]. We should note
that replication for TORN, POL and TAY (Figure 2) did
decline to eight or nine series for some select periods, but
the EPS was never <0.70. Following this strategy, six of the
regional composite series have sufficient signal strength for
use prior to 1000 AD. The regional chronologies were also
screened by comparisons with instrumental (local and larger
scale) temperature data to ensure that the temperature signal
in the final reconstructions was as strong as possible and
relatively unmuddied by precipitation effects. In so doing,
some potential data sets were discarded due to ambiguous
signals. For example, we did not utilize the long bristlecone
pine data sets from Colorado and California as many appear
to portray a mixed precipitation and temperature signal (in
addition to a purported CO, fertilization effect [LaMarche et
al., 1984]). We also did not use the Mackenzie Mountains,
Boreal, Upperwright and Gotland data sets utilized by Esper
et al. [2002a] for similar reasons, specifically that these
records either (1) did not demonstrate a significant temper-
ature signal on the local to regional scale, (2) displayed
significant correlations with precipitation, or (3) were lo-
cated at lower latitudes than those compiled for the present
analysis.

[7] To develop the large-scale reconstructions, iterative
averaging was performed to composite the regional records
into continental and NH STD and RCS series, and linear
regression analysis was used to calibrate these series to the
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normalized index (w.r.t. 1686-1978)

normalized index (w.r.t. 1686-1978)

Figure 2.
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Individual regional composite RCS chronologies and their replication. The period shown for
each chronology is that utilized for the generation of the reconstructions (see section 2 and Table 1). The
time series have been loosely grouped according to latitude bands and were normalized to the common
period. See Figure 1 for their locations. The bottom two panels in the right column show grouped
replication plots for both North America and Eurasia.
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Figure 3. Comparison between continental large-scale mean width chronologies. (a) STD chronologies.
(b) RCS chronologies. The time series have been normalized to the full period. Smoothed series are
20-year splines. Taking into account the autocorrelation of the series, the filtered correlations are not
significant at the 95% confidence level. They are shown only to give a guide of coherence.

instrumental record. A nested approach, which accounts for
the decrease in the number of chronologies back in time,
was used to generate the longest possible reconstructions
[Cook et al., 2002]. This procedure entails normalizing the
tree-ring series to the common period of all series in each
nest and then averaging the series together to create a nest
mean. To develop the final reconstructions, the mean and
variance of each nested reconstructed time series were
scaled to that of the most replicated nest (1686—1978)
and the relevant sections for each nest spliced together
(with all nests, the length of the final record spans from
713 to 1995). This approach stabilizes the variance of the
final time series. For each nest, separate average time series
were generated for North America and Eurasia (Figure 3),
and these continental scale time series were averaged to
produce a final large-scale hemispheric mean that was not
biased to one particular continent due to varying number of
series. This process, undertaken iteratively as each TR series

left the data matrix, resulted in 21 series upon which
calibration and verification were made separately. Full
period calibration was made over 1856—1978 (the common
period of the tree-ring and temperature data), while verifi-
cation was made over the period 18981937 after appro-
priate calibration using the combined 1856—1897/1938—
1978 period. This nonstandard approach was employed to
ensure as great a range in the predictand data as possible for
calibration. Calibration and verification statistics typically
employed to validate dendroclimatic reconstructions were
then used to evaluate the reliability of the reconstructions
[Cook and Kairiukstis, 1990]. As well as utilizing the
commonly used Pearson’s correlation and reduction of error
(RE) statistics, we also used the coefficient of efficiency
(CE). Both RE and CE are measures of shared variance
between the actual and modeled series, but are usually
lower than the calibration r>. A positive value for either
statistic signifies that the regression model has some skill.
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Figure 4a. STD NH reconstruction with nested modeling [Cook et al., 2002] results. Top two panels

show the final reconstruction with associated error bars. Bottom three panels present full period (1856—
1978) calibration and associated residual series analyses along with verification (1898—1937) after
calibrating over the combined 1856—1897/1938—1978 period.

CE is the more rigorous verification test. To test the
robustness of the decadal to long-term signal in the recon-
structed nested series, stringent assessment of the regression
model residuals was also employed using the Durbin-
Watson statistic (a test for residual autocorrelation) and by
calculating the linear trend of the regression residual time
series. As the modeled temperature signal is predominantly
at timescales >~20 years [Cook et al., 2004; Esper et al.,
2005a], it is particularly important to identify models that
have significant trends in the model residuals, as they would
therefore not portray long-term variability in a robust
manner. Calibration trials using a variety of data types
(e.g., land only; land and sea combined) showed that,
although correlations were stronger with the land/sea data

sets, significant autocorrelation was noted for all nested
model residuals (presumably related to the higher autocor-
relation of sea surface temperatures compared to land).
Calibration against land only temperatures, despite coher-
ence being weaker, resulted in less residual problems and
better verification. Final calibration was therefore made
against extratropical (20°N—90°N) land-only mean annual
(January—December) temperatures. The standard error of
the regression estimate (standard deviation of the regression
residuals) from the full period calibration was used to
generate the 2 sigma error bars and this was also adjusted
(inflated) to account for the change (decrease) in explained
variance in each nest. We should note, however, that these
calculated uncertainties are optimistic estimates as they do
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Figure 4b. As in Figure 4a but for the RCS reconstruction.

not incorporate the additional uncertainty of the regression
coefficients, the weaker signal strength in the early periods
of the TR chronologies (despite the use of EPS) and the fact
that calibration did not include the post mid-1980s diver-
gence (see section 3).

3. Results

[8] Following Esper et al. [2005a] and calibration trials
against a variety of seasonal temperature data sets, final
calibration was made against extratropical (20°N—90°N)
land-only annual (January—December) temperatures: a log-
ical result as the proxy records are extratropical and land
based. For the final NH STD and RCS reconstructions
(Figures 4a, 4b, and 5), 33% and 30% of the temperature
variance was accounted for, respectively. These values are
relatively low owing to little coherence between the recon-

structions and instrumental data at interannual timescales
[Cook et al., 2004; Esper et al., 2005a]. If the time series are
smoothed with a 20-year smoothing spline [Cook and
Kairiukstis, 1990], the explained variance increases to
87% and 84%, respectively. However, fidelity of this signal
decreases with time (Figures 4a and 4b). Although the
reconstructions cover 713—1995, verification shows that
the STD and RCS NH reconstructions are statistically
robust back to 918 AD (five regional composite series)
and 1117 AD (eight regional composite series), respectively.
Before these dates, CE values become negative and linear
trends are noted in model residuals. RE values do however
remain positive back to 747 for both reconstructions,
suggesting some signal fidelity when at least one record is
utilized from each continent. The weaker results for the
RCS reconstruction highlight the noisier nature of this
detrending method [Briffa et al., 1992; Cook et al., 1995].
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time series to the instrumental record [Esper et al., 2005a]. (c) As in Figure 5b but using smoothed
(20-year) time series. The values show correlations between the smoothed reconstructions and the
instrumental records for the extended periods 1859—1985 and 1859-1992. To reduce potential end
effect biases of the smoothed series, 3 years were truncated from the ends of the time series before
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correlation analysis.

We thus advise caution in assessing trends in RCS series
due to potential biases that may occur during standardiza-
tion [Esper et al., 2003; K. Briffa, University of East
Anglia, personal communication, 2005]. However, it is
difficult to assess long-term trends between the STD and
RCS reconstructions owing to the restricted length of the
instrumental data. Therefore the weaker RCS results do not
necessarily mean that the extra low-frequency information
is biased. Furthermore, it is important to emphasize that
only the RCS reconstruction enables an assessment of long-
term temperature trends in excess of the mean segment
length [Cook et al., 1995]. Depending on the segment
length structure in the individual regional composites (see
Table 1), it is not possible to reconstruct low-frequency
variations longer than some fraction (approximately one
third) of the mean segment length when utilizing individual
series detrending methods.

[o] The Eurasian and North American composites,
despite high variability between the regional composite
chronologies, cohere surprisingly well, especially for the
RCS detrended series (Figure 3). This coherency implies
common forcing, presumably related to external (solar,
volcanic and anthropogenic) influences. However, al-
though generally similar, there are also significant differ-
ences (Figure 3). The Eurasian RCS composite shows

high-index values ~1000 and the mid-twentieth century,
with prolonged low-index values from 1100—1350 and
1600—1900, punctuated by higher values circa 1400—
1550. The North American RCS record shows higher-
index values in the twentieth century which exceed levels
at ~950. Between these highs, prolonged low-index
values are noted throughout much of the last millennium.
Interestingly, the period of lowest-index values in the
North American series (~1500) coincides with a period
(1400—1550) in the Eurasian series when inferred con-
ditions would have been warmer.

[10] Clear differences are also observed between the STD
and RCS reconstructions on the hemispheric scale
(Figures 4a, 4b, and 5). Overall, significantly more low-
frequency information is captured using RCS. The NH RCS
reconstruction shows warming around the “MWP”* (~950—
1100) and overall cooling from ~1100-1400, with an
extended period overlapping the “LIA” from ~1450—
1850 [Grove, 1988]. Late twentieth century warming
exceeds peak MWP conditions by 0.67°C when comparing
decadal averages (960—969 (reconstruction) = —0.12°C
versus 1991-2000 (instrumental) = 0.55°C; the reconstruc-
tion was scaled [Esper et al., 2005a] to the instrumental data
to calculate these results (Figure 4b)). By comparison, peak
twentieth century warmth for the period covered only by the

8 of 12



D03103 D’ARRIGO ET AL.: TREE-RING TEMPERATURE RECONSTRUCTIONS D03103
80O 1000 1200 1400 1600 1800 2000
L 1 | 'l L 1
1) NH i = cor (1859-1976) with NH Land t - 20 year spli
Q
i —— Esper2002. r=0.87 —— Jones1998: r = 0.87 = This Study STD: r=0.94
© 0.5 - Briffa2000: r = 0.86 —— Moberg2005: r =0.52 = This Study RCS: r=0.91
£ S Mann1999; r=0.93
2 ©
=
o =
52 0.0
g =
=F:
® o
Q v i
8 -05
£
- = .
g - S 4
D 1.0 g
8 £
(%] =)
1.5 c
)
L —
o 1
=F
=)
Q —
a .
E T
23
- =
8 2
© 0.5 3
e —— Bertrand —— Gerber 1.5C03 —— C5M — Bauer{mBe) w
o Q Crowley —— Gerber25C0; —— GKSS Bauer (14c) el
T >
L@~ o0
=
L]
Q v
e
e o 0.5 4
L3
- =
Q@
8 -10 4 —— Reconstruction mean —— STD reconstruction —— NH Land (20-80°N) temperatures
w —— Model mean —— RCS reconstruction

T T
800 1000 1200

T T
1400 1600 1800 2000

Calendar Years

Figure 6. (a) Comparison of STD and RCS NH reconstructions with previous reconstructions.
(b) Model-based estimates of NH temperatures for the last millennium [Jones and Mann, 2004].
(c) Comparison of mean series of the previously developed reconstructions and models with the STD and
RCS series. The reconstruction and model time series were normalized to the common period and
averaged. All smoothed series in this figure were scaled to the smoothed instrumental NH temperature

series over the period 1859—-1976.

proxy data (1937—1946, 0.17°C) exceeds peak MWP con-
ditions by 0.29°C.

[11] Taking into account differences in calibration method
and target season [Esper et al., 2005a; Rutherford et al.,
2005] that affect interpretation, we compare our reconstruc-
tions with previous reconstructions after scaling [Esper et
al., 2005a] all the records to land-only annual temperatures
(20°N—90°N) (Figure 6a; see also auxiliary material’
Figure 1). Strong similarities are not surprising owing to
some overlapping data (especially in Eurasia) with prior
studies. Our reconstructions fall within the middle range of
sensitivity of series published thus far (Table 2). The long-
term trends of the STD reconstruction most closely match
the Mann et al. [1999] and Jones et al. [1998] series,
whereas the RCS reconstruction compares best with the
Esper et al. [2002a] and Cook et al. [2004] series. This
observation validates the hypothesis [Esper et al., 2004] that
one reason for the relative lack of long-term variability in

'Auxiliary material is available at ftp://ftp.agu.org/apend/jd/
2005JD006352.

the work of Mann et al. [1999] was their use of standard
detrending procedures that removed low-frequency varia-
tion. Besides differences attributable to RCS and other
factors noted above, solar-forced thermohaline circulation
changes [Bond et al., 2001] and their preferred impact on
higher-latitude climate may partly account for greater var-
iability in reconstructions with an extratropical emphasis
[Esper et al., 2002a].

Table 2. Coldest and Warmest Decades (Anomaly Values in
Parentheses) Calculated Over 1000—1979 for Each Reconstruction
After They Have Been Scaled (With Respect to 1856—1978) to NH
Land Only (20°N—90°N) Mean Annual Temperatures®

Coldest Warmest Amplitude
This Study STD 18131822 (—0.74) 19381947 (0.20)  0.94
This Study RCS 1600—1609 (—0.97) 1937—1946 (0.17) 1.14
Esper et al. [2002a] 1345-1354 (—1.18) 1950—1959 (0.15) 1.34
Briffa [2000] 1813-1822 (—0.80) 1951-1960 (0.10)  0.90
Mann et al. [1999] 14581467 (—0.68) 1957—1966 (0.10)  0.79
Jones et al. [1998]  1693-1702 (—0.77) 1929-1938 (0.06)  0.83
Moberg et al. [2005] 1576—1585 (—1.33) 1104—1113 (0.23) 1.56

“The difference between these two values is defined as the amplitude.
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Figure 7. Six longest (>1000 years) chronologies after they have been scaled against the optimum
season of their local Jones gridded data. The spatial area of the grids used is detailed. The bottom panel
compares the mean of the six chronologies with the RCS reconstruction after they have both been scaled

to mean annual land (20°N-90°N) temperatures.

[12] Figure 6b plots several large-scale NH climate mod-
els [Jones and Mann, 2004]. Although amplitudes are quite
variable, they all show the same general trend, with warm-
ing around the twelfth to thirteenth centuries and cooling
~1450-1850. When scaled [Esper et al., 2005a] and
compared to the instrumental record, recent warming
appears unprecedented over the last 1000 years in both
the models and reconstructions. The STD and RCS recon-
structions are compared to separate mean series of other NH
reconstructions and models (Figure 6¢). The RCS recon-

struction compares better with the model mean than the
STD series (r = 0.57 versus 0.49, respectively). This
suggests that although the STD reconstruction is perhaps
superior from a calibration/verification point of view
(Figures 4a and 4b), it is systematically biased in the
frequency domain as it does not portray long-term variability
adequately. We emphasize, however, that this comparison
must be considered with caution, as there is considerable
model uncertainty [Jones and Mann, 2004]. There are also
important differences between the model mean and RCS
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series. The RCS reconstruction shows cooler conditions
from ~1100—1400. The models, however, express warmer
conditions in the twelfth century, suggesting that the warm-
est phase of the MWP was later than in the reconstructions.

[13] To highlight the uncertainties in the investigation of
the significance of the MWP versus twentieth century
warming, Figure 7 shows the six longest (>1000 years)
chronologies after they have been scaled against the opti-
mum season of their local Jones gridded data. The figure
clearly shows that the recent period does not look particu-
larly warmer compared to the MWP; MON is the only
exception in this regard. However, the mean of these six
series (Figure 7, bottom), which compares well with the
RCS reconstruction, clearly places recent warming well
above reconstructed conditions of the MWP. This therefore
highlights a bias/artifact in the full RCS reconstruction (and
likely in many of the other reconstructions) where the
MWP, because it is expressed at different times in the six
long records, is “averaged out™ (i.e., flattened) compared to
the recent period which shows a much more globally
consistent signal. This observation not only emphasizes
the problem of using such a small data-set, and calibrating
during a period where the global signal is more coherent
(and therefore resulting in more optimistic calibration/ver-
ification results), but that the reconstruction of one single
large-scale parameter (in this case annual temperatures)
does not provide any valid spatial climatic information.
However, in light of this observation, although we cannot
make any robust conclusions about mean MWP conditions
compared to the present (unless one looks at the individual
regional records), we can confidently state that the global
warming ‘““fingerprint” is globally more homogenous than
warming during the MWP.

4. Discussion and Conclusions

[14] We have presented STD and RCS NH temperature
reconstructions for the past 1250 years. In so doing, we
have addressed several recommended priorities [Esper et
al., 2005b] for the development of large-scale reconstruc-
tions (see above). On the basis of the above comparisons
and analyses, we conclude that the RCS reconstruction is
superior to the more traditional STD method with regards
to the ability to retain low-frequency (centennial to multi-
centennial) trends. The NH RCS reconstruction displays
pronounced variability, including significant “MWP”* and
“LIA” departures. An apparent decrease in recent tem-
perature sensitivity for many northern sites [Jacoby and
D’Arrigo, 1995; Briffa et al., 1998] is evident in our
reconstructions, with divergence from instrumental tem-
peratures after ~1986 (Figure 5). There are several
hypotheses for this divergence [Jacoby and D’Arrigo,
1995; Briffa et al., 1998; Vaganov et al., 1999; Barber
et al., 2000; Wilson and Luckman, 2003; D’ Arrigo et al.,
2004; Wilmking et al., 2005], none of which appear
consistent for all NH sites. Although we calibrated to
the common 1856—1978 period, valid calibration using a
reduced data set would be possible until the mid-1980s
(Figure 5). After this period, however, the divergence
between the tree-ring and instrumental data results in
weakening of calibration results and failed verification
statistics.
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[15] Model comparisons show reasonable coherence over
the last 600 years with the RCS reconstruction (Figure 6).
Proxy reconstructions, however, show an earlier peak in
MWP warmth compared to models, possibly reflecting that
this was a spatially complex, highly variable period [Jones
and Mann, 2004] and that not enough proxy records yet exist
for this time. It is also possible that the models are themselves
biased in some way (e.g., although they incorporate external
(solar, volcanic, anthropogenic) forcings, they do not take
into account internal atmosphere-ocean dynamics [Jones and
Mann, 2004]). Taken at face value, our reconstruction indi-
cates that MWP conditions were nearly 0.7°C cooler than
those of the late twentieth century. These results suggest how
extreme recent warming has been relative to the natural
fluctuations of the past millennium. This conclusion,
however, must be taken cautiously. First, there is significant
divergence between reconstructed and actual temperatures
since the mid-1980s, which, until valid reasons for this
phenomenon have been found, can only question the ability
of tree-ring data to robustly model earlier periods that could
have been similarly warm (or warmer) than the present.
Second, there are presently only very few millennial length
records available for direct comparison between the recent
period and the MWP, and these records show trends which
are not necessarily coherent over the latter interval, resulting
in a “flattening” of MWP conditions compared to recent
warming in our reconstruction. Ultimately, many long records
from new NH locations and updating of existing records
(mainly in Eurasia) to the present are required. Successful
modeling of paleoclimate data with the high temperatures
of the late 1990s is essential if we are to make robust,
definitive conclusions about past temperature amplitudes
and variability.
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